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Summary: The importance of the heavy-tail phenomenon, and as well as, limitations of 
methods used to detect and measure this phenomenon, are sustaining incessant progress in 
the area of extreme value index estimation (EVI). Therefore, the paper is devoted to illumi-
nate possibility of making the Hill’s estimator to be shift-invariant, so that unintended mis-
estimating of the EVI may be reduced. The paper confronts the original Hill’s approach with 
Aban and Meerschaert’s [2001] ideas, which are, in addition, adopted, and modified by the 
author. Thus, the three estimation approaches are compared, and their accuracy is assessed 
by a simulation study. It occurs that in the Pareto distribution case, the best estimates, 
amongst the considered, seem to be the ones proposed by the author and based on a proper 
choice of the sample shift. In general, the present study elucidates clear advantages of the 
shift-invariance approach over the original Hill’s estimator. 

Keywords: extreme value index, Pareto distribution, shifted Hill’s estimator. 

Streszczenie: Waga efektu tzw. grubych ogonów, jak i niedoskonałość metod wykorzysty-
wanych do jego wykrywania i pomiaru sprawiają, że w zakresie estymacji indeksu ekstre-
malnego wciąż trwa nieustanny rozwój. Wobec tego niniejsze opracowanie ma na celu na-
świetlenie możliwości uniewrażliwienia estymatora Hilla na translacje próby po to, by  
w większym stopniu dało się unikać niewłaściwych oszacowań. Artykuł konfrontuje orygi-
nalny pomysł Hilla z ujęciem zaproponowanym w opracowaniu [Aban, Meerschaert 2001],  
a następnie zmodyfikowanym przez autora. Wszystkie trzy ujęcia estymacji zostały zwery-
fikowane i porównane dzięki przeprowadzonym badaniom symulacyjnym. Okazuje się, że 
dla klasy rozkładów Pareta najlepiej spośród rozważonych estymatorów wypada autorski, 
który odwołuje się do stosownej translacji wartości próby. W pełni ogólności, opisane za-
gadnienia wskazują na wyraźną przewagę ujęcia dopuszczającego translację próby nad kla-
sycznym ujęciem pochodzącym od Hilla. 

Słowa kluczowe: indeks ekstremalny, rozkład Pareta, estymator Hilla z przesunięciem. 
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1. Introduction 

As the heavy-tail phenomenon of a sample distribution is becoming more and more 
widely admitted in a breadth of economic research areas where stochastic modelling 
is involved, the notions of ‘tail thickness’ measures are emerging, and their estimates 
– as well. 

The subject matter of the present paper is embedded in the estimation of the ex-
treme value index – being one of the most prominent tail thickness measures – with 
use of an amendment of the, probably most common, Hill’s estimator which is origi-
nally scale-invariant only. A rather new and quite natural approach which is pro-
posed by Aban and Meerschaert [2001] is consisted in making further the estimate to 
be shift-invariant. 

In literature, there is a significant multitude of publications appearing in the re-
cent years, reporting more or less usable, applicative, sophisticated, advanced, theo-
retical, etc facets of the progress in constructing new estimators of the extreme value 
index, as well as in improving the known ones. We list arbitrarily ideas presented by 
Leadbetter at al. [1980], Dekkers at al. [1989], Gomes at al. [2008], de Haan and 
Ferreira [2006], to mention but a few. This progress is caused doubtlessly by high 
necessity of practical implementations arising in the wide range of research areas, 
including, of course, such issues as value at risk estimation, or distribution recogni-
tion of a risk posed by extreme events. The other reason of the progress is that none 
of the acknowledged estimators, up to now, seems to be the most adequate and to 
have an unassailable lead over the others. 

We focused on an acutely simple perspective of improving the classical Hill’s 
approach. This perspective is still evolving, for instance, see: Fraga [2001], Li at al. 
[2008, Nuyts [2010]. Therefore, the main goal of the presented study is to illuminate 
the necessity and possibility of making the Hill’s estimator shift-invariant, in order to 
avoid unintended misestimating of the extreme value index. The paper presents, in 
turn, the original Hill’s idea, a quintessence of Aban and Meerschaert’s theoretical 
considerations, and in addition, author’s own proposal of a simple estimation proce-
dure that is based on the appropriate shift detection (Section 2). The three estimation 
approaches are compared, and their accuracy is assessed by a simulation study con-
cerning the Pareto distribution case (Section 3), which discloses explicit advantages 
of the shift-invariance approach, and indicates the best estimates amongst the con-
sidered ones. 

2. Theoretical background 

In the paper, we assume that 𝑋1,𝑋2,𝑋3, … is a sequence of independent and identi-
cally distributed (i.i.d.) random variables with a common cumulative distribution 
function (cdf) 𝐹. The order statistics of a sample 𝑋1, … ,𝑋𝑛 are denoted by 𝑋1:𝑛 ≥
⋯ ≥ 𝑋𝑛:𝑛 for any fixed size 𝑛 ∊ ℕ+. 
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The main theorem of the extreme value theory (EVT) states that if there exist se-
quences of constants 𝑎𝑛 > 0, 𝑏𝑛 and some non-degenerate distribution function G, 
such that for all 𝑥 ∊ ℝ holds: 

 lim𝑛 → ∞ ℙ�𝑋1:𝑛−𝑏𝑛
𝑎𝑛

 ≤ 𝑥� = 𝐺(𝑥), (1) 

then there exists a constant 𝛾 ∈ ℝ, such that the distribution G has the form: 

 𝐺(𝑥) = 𝐺𝛾(𝑥) = �exp (−(1 + 𝛾𝛾)−1/𝛾) 1 + 𝛾𝛾 > 0 𝛾 ≠ 0
exp (−𝑒−𝑥) 𝑥 ∈ ℝ 𝛾 = 0

 , (2) 

which is unique up to a positive linear transformation. 

The parameter 𝛾 is called the extreme value index (EVI), and it impacts the right 
tail asymptotics of the common cdf 𝐹 (for instance see: de Haan and Ferreira 
[2006]). For the case of Pareto distribution, where 𝐹(𝑥) = 1− 𝑐𝑥−𝛼 for all 𝑥 ≥ 𝑑 
with some 𝑑 > 0 and 𝛼 > 0, it occurs that the EVI is the inverse of the parameter 𝛼, 
i.e. 𝛼𝛼 = 1. 

In 1975, Hill constructed (see: Hill [1975], Gomes et al. [2008]) the estimator: 

 𝛾�𝐻𝑘 = 𝛾�𝐻𝑘(𝑋1, … ,𝑋𝑛) = 1
𝑘
∑ ln𝑋𝑖:𝑛 − ln𝑋𝑘+1:𝑛
𝑘
𝑖=1  , (3) 

with the use of 𝑘 + 1 largest order statistics, where 𝑘 is chosen arbitrarily. 
Even though the Hill’s estimator is derived for the Pareto case only, it is also 

used in practical applications for the so-called Pareto-like distributions, where 
𝐹(𝑥) ≈ 1− 𝑐𝑥−1/𝛾 for 𝑥 → +∞. In such circumstances, one should be aware of the 
following collision of two requirements (for instance, see: Aban and Meerschaert 
[2001]). 

Namely, on one hand, the higher 𝑘 is, the more information about the sample dis-
tribution is involved in the Hill’s estimate. On the other hand, the smaller 𝑘 is, the 
better approximation of the distributional tail is preserved. Bringing together men-
tioned requirements is itself quite a rich and still not fully identified question of how 
to choose the 𝑘 properly somewhere in-between 1 and 𝑛. 

In order to avoid an unintended impact of the improper choice of 𝑘, we restrict 
further consideration to the Pareto distribution case only, which additionally con-
forms to the very Hill’s assumptions, and the assumptions, under which a shifted 
Hill’s estimator is introduced by Aban, and Meerschaert [2001]. 

In general, since the limit distribution G is determined up to a positive linear 
transformation of sample 𝑋1, … ,𝑋𝑛, any reliable estimator of the EVI 𝛾 should inher-
it this feature, being both scale-, and shift-invariant. Unfortunately, this is not the 
classical Hill’s estimator case. Straightforward calculation shows that 
𝛾�𝐻𝑘(𝑋1, … ,𝑋𝑛) = 𝛾�𝐻𝑘(𝑎𝑋1, … ,𝑎𝑎𝑛), while 𝛾�𝐻𝑘(𝑋1, … ,𝑋𝑛) ≠ 𝛾�𝐻𝑘(𝑋1 + 𝑠, … ,𝑋𝑛 + 𝑠) 
for any 𝑎 > 0, and 𝑠 ∈ ℝ, 𝑠 ≠ 0, provided that both of the equal/unequal sides make 
sense. 
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In that spirit, one may evaluate quite a wide range of Hill’s estimates by substitut-
ing different values of 𝑠 (see: Fig. 1). However, the problem will remain unsolved, as 
long as one has no criterion of how to make the most appropriate choice of a shift 𝑠. 

 

Note: The Hill’s plot for zero shift is depicted by the solid line.  

Fig. 1. An example of Pareto sample of size 𝑛 = 1000 with 𝛾 = 1 [left panel], and its several Hill’s 
plots for various shifts [right panel] 

Source: own study with the use of actuar R package [Dutang et al. 2008]. 

A theoretical approach, proposed by Aban and Meerschaert [2001] yields a col-
lective CML (conditional maximum likelihood) estimation of all three parameters of 
the shifted Pareto distribution: 

 𝐹(𝑥) = 1 − 𝑐(𝑥 + 𝑠)−𝛼, (4) 

given for any argument 𝑥 ≥ 𝑐1/𝛼 − 𝑠 with 𝛼 > 0 (see: Theorem 1 in [Aban, Meer-
schaert 2001]). The complex, and partially implicit, formulas from therein may be 
transformed into the explicit function formula1: 

 𝑔(𝑠) = 𝛾�𝐻𝑘(𝑋1 + 𝑠, … ,𝑋𝑛 + 𝑠) − 𝑘
(𝑋𝑘+1:𝑛+𝑠)∑ (𝑋𝑘+1:𝑛+𝑠)−1𝑘

𝑖=1
+ 1 , (5) 

whose unique (under some assumptions) root 𝑠̂ > −𝑋𝑘+1:𝑛 provides an estimate 
𝛾�𝑆𝑆𝑘 = 𝛾�𝐻𝑘(𝑋1 + 𝑠̂, … ,𝑋𝑛 + 𝑠̂), or 𝛼�𝑆𝑆𝑘 = 1/𝛾�𝑆𝑆𝑘  equivalently (compare the For- 
mula (7), therein.). Despite desired characteristics, and complete theoretical identifica-
tion, this approach may raise some nuisance with its implementation in numerical op-
timisation, which is noticed, and emphasised by the authors. Additionally, they exam-
ine their EVI estimator by simulation studies that are surprisingly – in a sense of unin-
tended impact of the improper choice of 𝑘 – carried out for 𝛼-stable distribution case. 
In the sequel, their estimation approach is simply called a shifted Hill approach (SHA). 

Because of the complexity appearing in the mentioned estimation procedure, we 
introduce another approach which is based on such a choice of a shift 𝑠 of the sample 
                     

1 In contrast to the original paper of Aban & Meerschaert [2001], we use equivalently additive, 
instead of subtractive, notation of shifts. 
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that stabilises the course of the Hill’s plot consisting of all points { � 𝑘, 𝛾�𝑆𝑆𝑘 (𝑠) �: 𝑘 ∈
{1,2, … ,𝑛 − 1} }. This approach – henceforth called the stabilising approach (STA) 
– demands an additional criterion that assesses the level of stability. In the sequel, we 
measure it – probably in the simplest possible way – via slope of a linear regression 
fitted for 𝑘’s from range determined arbitrarily by 0.6𝑛 ≤ 𝑘 ≤ 0.95𝑛. Thus, the 
most preferable shifts are these that yield a slope equal to zero. 

3. Numerical verification 
In order to compare the three mentioned estimation approaches, simulation research 
is carried out as follows2. Firstly, for a fixed pair of shifted Pareto distribution pa-
rameters3 𝛾 > 0 and 𝜎 – taken from arbitrarily chosen ranges 𝛾 ∈ { 0.05, 0.1, 0.2, 
0.4, 0.5, 1, 2, 2.5, 5, 10, 20 } , 𝜎 ∈ { 1, 10 }3F

4 – a pseudorandom i.i.d. sample of size 
𝑛 ∈ { 100, 1000 }  is generated. Secondly, 

1. the original Hill’s estimators 𝛾�𝐻𝑘 are calculated for 𝑘 ∈ { 0.4𝑛, 0.6𝑛, 0.8𝑛 }, 
2. the shifted Hill’s estimators 𝛾�𝑆𝑆𝑘  are calculated for 𝑘 ∈ { 0.4𝑛, 0.6𝑛, 0.8𝑛 }4F

5, 
3. with respect to the best choice of shift due to STA, estimators 𝛾�𝑆𝑆𝑘  are calculat-

ed for 𝑘 ∈ { 0.4𝑛, 0.6𝑛, 0.8𝑛 }, 
4. additionally, for the best choice of shift in point 3., and for all 𝑘’s, such that 

0.6𝑛 ≤ 𝑘 ≤ 0.95𝑛, a median 𝛾�𝑆𝑆𝑀  of estimators 𝛾�𝑆𝑆𝑘  is computed. 
Finally, all the previous steps are replicated 1000 times independently, so that 

the accuracy of the estimators may be revealed. For this, we start auxiliarily with 
careful visual examination of boxplots, depicting estimates’ location for all the con-
sidered combinations of distributional parameters and sample sizes, and in addition 
for different scales of graphs (see: Fig. 2, that is drawn in broad common scales for 
only a few selected combinations of parameters). 

Visual examination of all analogue plots discloses generally, that: 
• the Hill’s estimates 𝛾�𝐻𝑘 are much more biased than the others, and, moreover, 

only positive bias is diagnosed in their case. They are also the most dispersed es-
timates, excluding only the largest values of 𝛾; 

• the SHA estimates 𝛾�𝑆𝑆𝑘  have a slight negative bias for small values of 𝛾, and they 
become the most dispersed ones for large values of 𝛾, and moreover, they are 
more dispersed than STA 𝛾�𝑆𝑆𝑘  estimates for 𝛾’s greater or equal to 5; 

                     
2 The simulation research, and additionally all the calculations and plots presented herein, are 

carried out in R environment. 
3 In R’s actuar package, that is employed, we have a family of distributions (called Pareto  

Type II, or Lomax), given by 𝐹(𝑥) = 1− 𝜎𝛼(𝑥 + 𝜎)−𝛼 for 𝑥 > 0, 𝛼 > 0, 𝜎 > 0, that is in fact a 
subfamily of the shifted Pareto distributions, if letting 𝜎 = 𝑠𝛼. 

4 𝛾’s are chosen in order to provide a wide range of positive values, while 𝜎’s correspond to two 
cases: 𝜎 = 1, that provides – irrespective of 𝛾 – constant scaling, and 𝜎 = 10, that provides scaling 
which varies with 𝛾. 

5 The original optimisation problem is solved by implementation of grid search, instead of typical 
numerical root-finding used by Aban and Meerschaert [2001]. 
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Fig. 2. Boxplots of estimators’ sampling distributions for fixed 𝜎 =  1, and 𝑛 = 1000,  
and selected values of 𝛾 

Source: own study with the use of R package [R Core Team 2015]. 

• the STA estimates 𝛾�𝑆𝑆𝑘  seem to be the most stable ones – in terms of both bias 
and dispersion, and this observation is most apparent in the median estimator’s 
case (𝛾�𝑆𝑆𝑀 ). 
Next, we rely fundamentally on properly chosen two positional measures. In that 

role, we put absolute bias in median (given by |Med(𝛾�)− 𝛾|, and later on referred to 
as M1), and absolute bias in median enlarged with a half of interquartile range (given 
by |Med(𝛾�)− 𝛾| + IQR(𝛾�)/2, and referred to as M2). The latter measure may be 
regarded as an analogue of the mean square error6. 

                     
6 Positional measures are preferred to classical ones, since they are not limited by their incongrui-

ty to any theoretical assumptions, especially if the highest order of existing moment of distribution is 
unknown. The choice, however justified, may be criticised, as it is rather arbitrary. 



258 Michał Stachura 

With respect to a fixed measure, and a given combination of parameters (includ-
ing sample size), ranks are appointed to all the estimators (with 0 denoting the best 
estimator, and 9 indicating the worst one). Further, in order to make an assessment of 
the considered estimation approaches to be independent of the underlying tail asymp-
totics7, we sum up the assigned ranks upon all the values of 𝛾, and then we rank – in 
the same way – the sums so obtained (see: Table 1, whose values represent ranks for 
the analysed case of fixed 𝜎 = 1, 𝑛 = 1000). 

Table 1. Ranks of estimators for 𝜎 = 1, 𝑛 = 1000, with respect to measure M1 

 𝑘 γ Sums 
of ranks 

Total 
ranks  0.05 0.1 0.2 0.4 0.5 1 2 2.5 5 10 20 

HA 
400 7 7 7 7 7 7 7 7 7 4 3 70 7 
600 8 8 8 8 8 8 8 8 8 5 5 82 8 
800 9 9 9 9 9 9 9 9 9 9 8 98 9 

SHA 
400 4 6 5 3 0 5 0 6 6 6 9 50 5 
600 5 5 4 2 4 6 1 2 5 7 6 47 4 
800 6 4 6 1 6 4 2 3 4 8 7 51 6 

STA 
400 2 0 2 6 3 2 3 1 3 3 1 26 1.5 
600 1 2 3 5 5 1 4 4 0 1 0 26 1.5 
800 3 1 1 4 2 3 6 5 2 2 4 33 3 

median 0 3 0 0 1 0 5 0 1 0 2 12 0 

Source: author’s own calculation in R package. 

Table 2. Total ranks of estimators for all 𝜎’s, and 𝑛’s, with respect to both the measures 

 
𝑘 

Measure (M1) Measure (M2) 

 
𝜎 = 1 

𝑛 = 1000 
𝜎 = 1 
𝑛 = 100 

𝜎 = 10 
𝑛 = 1000 

𝜎 = 10 
𝑛 = 100 

𝜎 = 1 
𝑛 = 1000 

𝜎 = 1 
𝑛 = 100 

𝜎 = 10 
𝑛 = 1000 

𝜎 = 10 
𝑛 = 100 

HA 
400 7 7 7 7 7 7 7 7 
600 8 8 8 8 8 8 8 8 
800 9 9 9 9 9 9 9 9 

SHA 
400 5 6 6 3 6 6 6 6 
600 4 5 5 4 5 5 4.5 1 
800 6 4 4 6 4 4 1 4 

STA 
400 1.5 3 2.5 2 2 1 2 2 
600 1.5 2 1 1 1 2.5 3 3 
800 3 1 2.5 5 3 2.5 4.5 5 

median 0 0 0 0 0 0 0 0 

Source: author’s own study. 
                     

7 Such a formulation of assessment procedure seems to be very reasonable from an empirical study 
viewpoint, as if we examine a sample distribution, we must face with a priori unknown parameter 𝛾. 
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Lastly in Table 2, we gather total ranks obtained similarly for all combinations of 
sample sizes 𝑛, and scaling parameters 𝜎. 

Casting an eye8 over the results provided in Table 2 shows lucidly that STA es-
timators exhibit better properties than SHA ones, and further that STA and SHA 
estimators are definitely preferable than the original Hill’s estimator. 

4. Conclusion 

The presentation of accommodating the Hill’s estimator to the shift-invariance postu-
late clearly gives evidence that the Hill’s approach may be effectively improved by 
means of a simple ploy that involves algebraic translation of an analysed sample, 
albeit with some possible difficulties in optimising such a translation. 

Moreover, computer simulation research, that constitutes an integral part of an 
assessment of both SHA and STA against the backdrop of the Hill’s estimator, not 
only compliments the presented theoretical consideration, but also reveals both 
methodological framework simplicity and accuracy of the introduced approaches. 

However, in addition it should be pointed out that reproduction attempt of the 
technical solutions for the described estimation procedures, from Pareto’s to other 
distributions’ cases may not be conducted straightforwardly, since an appropriate 
choice of number of the highest order statistics that are to be taken into account is 
acutely dependent on the underlying law of a sample, and further the question of 
such a choice remains quite difficult, and still unsolved. 
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