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Abstract: The study shows that the functional equation f (f (x)) = ln(1 + x) has a unique result 
in a semigroup of power series with the intercept equal to 0 and the function composition as 
an operation. This function is continuous, as per the work of Paulsen [2016]. This solution 
introduces into statistics the law of the one-and-a-half logarithm. Sometimes the natural 
growth processes do not yield to the law of the logarithm, and a double logarithm weakens 
the growth too much. The law of the one-and-a-half logarithm proposed in this study might 
be the solution. 
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1. Introduction 

If the natural logarithm of random variable has normal distribution, then 
one considers it a logarithmic law – with lognormal distribution. If the func-
tion f being function composition to itself is a natural logarithm, that is 
f (f (x)) = ln(1 + x), then the function 𝑔𝑔(𝑥𝑥) = 𝑓𝑓(ln(𝑥𝑥)) applied to a random 
variable will give a new distribution law, which – similarly as the law of  
logarithm – is called the law of the one-and-a-half logarithm. 

A square root can be defined in any semigroup G. A semigroup is a non-
empty set with one combined operation and a neutral element. The general 
form of a quadratic equation has the form of 

𝑥𝑥2 = 𝑎𝑎, 
where 𝑎𝑎 ∈ 𝐺𝐺. Solving such an equation is equivalent to answering the qu-
estion when the element 𝑎𝑎 is a square in semigroup G. When the semigroup 
G is a set of functions with the function composition as an operation and iden-
tity function as a neutral element, the solution 𝑓𝑓 of the quadratic equation 
𝑓𝑓2(𝑥𝑥) = 𝑓𝑓o𝑓𝑓(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) is called a functional square root of function 𝑔𝑔. 
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2. Examples 

If 𝐺𝐺 is a semigroup of natural numbers ℕ = {0,1, … } with addition, then 
every even number 𝑛𝑛 = 2𝑘𝑘  is a square, as the quadratic equation is satisfied 
when 𝑥𝑥 = 𝑘𝑘, 𝑘𝑘 + 𝑘𝑘 = 𝑛𝑛. A square in this case represents a simple parity of 
natural numbers. If, however, ℕ is a semigroup of natural numbers with the 
operation of multiplication, then the quadratic equation boils down to the 
question: which natural numbers are real squares. In this case, the answer is 
a little more difficult. The equation 𝑥𝑥2 = 𝑛𝑛 has a solution if and only if in 
every prime number in the decomposition of the number 𝑛𝑛 into prime factors 
occurs an even number of times. Zero is a square because 0 = 0 × 0. One is 
a square because 1 = 1 × 1, two is not a square, neither is three, but four is 
because 4 = 2 × 2. The number 36 is because 36 = 22 × 32, and so on. If 𝐺𝐺 
is a semigroup of rational numbers ℚ with the operation of addition, each 
rational number 𝑎𝑎 ∈ ℚ  is a square, because 𝑎𝑎 = 1

2
𝑎𝑎 + 1

2
𝑎𝑎, thus the number 

𝑥𝑥 = 1
2
𝑎𝑎  is the solution. If 𝐺𝐺 is a semigroup of ℚ  with the operation of mul-

tiplication, then the answer to the question of which rational numbers are 
squares is more complex. The irreducible fraction 𝑚𝑚

𝑛𝑛
, where 𝑚𝑚,𝑛𝑛 ∈ ℕ is 

a square if and only if both the numerator and denominator are squares of 
natural numbers. The fraction 4

25
 is a square, however 12

25
 is not. Of course, 

numbers smaller than zero are not squares, but 0 is a square. If the semigroup 
𝐺𝐺 is a set of real numbers ℝ with addition, then similarly as in semigroup ℚ 
each number is a square. If this semigroup is considered with the operation 
of multiplication, then any non-negative number 𝑎𝑎 is a square because 
𝑎𝑎 = √𝑎𝑎√𝑎𝑎, and negative numbers are not squares. In semigroup 𝑍𝑍3 = {0,1,2} 
of residues modulo 3 with addition, each element is a square because 
0 = 0 + 0, 1 = 2 + 2, 2 = 1 + 1. The same set with the operation of multi-
plication has other squares: 0 = 0 × 0, 1 = 1 × 1 = 2 × 2, but 2 is not 
a square. 

If the semigroup 𝐺𝐺 is a set of real polynomials Pol (F) with the operation 
of superposition, then in the semigroup squares are polynomials of degree 
zero, each monomial of the form 𝑓𝑓(𝑥𝑥) = 𝑎𝑎𝑎𝑎 + 𝑏𝑏 , where 𝑎𝑎 ≥ 0 is a square. 
The prerequisite for a polynomial to be a square, is for its degree to be a square 
in a semigroup of natural numbers with multiplication. 
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3. Generalizations 

Theoretically, the semigroup of words 𝑊𝑊(𝑋𝑋) in the alphabet 𝑋𝑋 is im-
portant. The product of the word 𝑆𝑆 = 𝑥𝑥𝑥𝑥 and 𝑇𝑇 = 𝑎𝑎𝑎𝑎 is a word 𝑆𝑆𝑆𝑆 = 𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥. 
The empty word denoted by 0 is a neutral element: 0𝑆𝑆 = 𝑆𝑆0 = 𝑆𝑆. The word 
𝑆𝑆 is a square if and only if 𝑆𝑆 = 𝑇𝑇𝑇𝑇. The prerequisite of being a square is the 
appearance of each letter in the word an even number of times. The word 
𝑇𝑇 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 satisfies a necessary condition but it is not a square, and the word 
𝑆𝑆 = 𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 satisfies a necessary condition and is a square, 𝑆𝑆 = 𝑇𝑇𝑇𝑇, 
where 𝑇𝑇 = 𝑏𝑏𝑏𝑏𝑏𝑏. The equation 𝑇𝑇2 = 𝑆𝑆 is easily solved; there is always one 
solution or the equation is contradictory. 

A quadratic equation can be generalized. Let 𝑚𝑚, 𝑛𝑛 ∈ ℕ and 𝑎𝑎 ∈ 𝐺𝐺. One 
looks for element 𝑥𝑥 that in semigroup 𝐺𝐺 satisfies the condition 𝑥𝑥𝑚𝑚 = 𝑎𝑎𝑛𝑛. 
A special case of this equation is the equation 𝑥𝑥2 = 𝑎𝑎. The solution of this 
equation in some cases, as in the above examples, is almost trivial. If the 
semigroup 𝐺𝐺 is a set of functions defined in the domain 𝑋𝑋 transforming 𝑋𝑋 into 
itself and the operation in this group is function composition, then the solution 
to a quadratic equation becomes a difficult problem. If the set 𝐺𝐺 is a set of 
permutations, this equation 𝑥𝑥2 = 𝜎𝜎 does not have solutions when 𝜎𝜎 is an odd 
permutation, i.e. when its character is number −1; setting any permutation 
with each other always gives an even permutation. The answer to the qu- 
estion: for which permutations this equation has a solution, is not obvious. 

What is existence in mathematics? This is a declaration that a certain ob-
ject exists, i.e. the axiom of existence. Generally, we can say that in the set 𝔸𝔸 
there is an object that satisfies the predicate 𝜑𝜑, if the given below logical sen-
tence is true: 

∃(𝑎𝑎 ∈ 𝔸𝔸) ∧ 𝜑𝜑(𝑎𝑎). 
An absolute axiom of existence is considered to be true if its adoption 

does not lead to a conflict of theory. Theorems of existence, as the one above, 
are conditional in nature: if the axioms are true, then the resulting theorems 
are also true. 

In a semigroup of real functions of one variable with the submission as 
the operation, the equation 𝑓𝑓2(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) where the function 𝑔𝑔(𝑥𝑥) is given, 
can have an infinite number of solutions, and may not have a solution at all. 
For example, there might be an indefinite number of solutions to equation 
𝑓𝑓2(𝑥𝑥) = 𝑥𝑥, i.e. involution. Involution is the identity function, function 
𝑓𝑓(𝑥𝑥) = −𝑥𝑥, hyperbole 𝑓𝑓(𝑥𝑥) = 𝑥𝑥−1 for 𝑥𝑥 ≠ 0, and 0 for 𝑥𝑥 = 0 but also func-
tions like function 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 + 1 for 𝑥𝑥 ∈ (0,1], 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 − 1, for 𝑥𝑥 ∈ (1,2] 



 Arkadiusz Maciuk, Antoni Smoluk 
  

 

42 

and 𝑓𝑓(𝑥𝑥) = 𝑥𝑥 the remaining arguments. In contrast, the solution of equation 
𝑓𝑓2(𝑥𝑥) = 𝑥𝑥−1does not exist [Kuczma 1969]. Bödewart [Bödewart 1944; by 
Zhang 1997] showed that if function 𝑔𝑔: 𝐼𝐼 = [𝑎𝑎, 𝑏𝑏] → 𝐼𝐼 is continuous and 
strictly increasing, then for any integer 𝑛𝑛 > 1 and 𝐴𝐴,𝐵𝐵 ∈ (𝑎𝑎, 𝑏𝑏) with 𝐴𝐴 < 𝐵𝐵 
equation 𝑓𝑓𝑛𝑛(𝑥𝑥) = 𝑔𝑔(𝑥𝑥) has a continuous and strictly increasing solution 𝑓𝑓 on 
I satisfying 𝑔𝑔(𝑎𝑎) ≤ 𝑓𝑓(𝐴𝐴) < 𝑓𝑓(𝐵𝐵) ≤ 𝑔𝑔(𝑏𝑏). It is easy to show that this solution 
is unambiguous [Iga]. Hence equations such as 𝑓𝑓2(𝑥𝑥) = 𝑒𝑒𝑥𝑥 or 𝑓𝑓2(𝑥𝑥) = ln (𝑥𝑥) 
have a clear unambiguous solution, which is a continuous and strictly increas-
ing function. In 1950 for the first time a method for solving the equation 
𝑓𝑓2(𝑥𝑥) = 𝑒𝑒𝑥𝑥 was proposed [Kneser 1950], and to this day this equation has 
lived to see several different methods of solution [Paulsen 2016]. 

4. Breakdown method 

Our goal is to solve the equation 𝑓𝑓�𝑓𝑓(𝑥𝑥)� = ln (𝑥𝑥) which we will further 
refer to as the Kopociński equation, from the author of the question of whether 
the natural logarithm in analytic functions’ semigroup is a square and what 
its analytical range is. 

The result is the well-known fact that the functional square root of func-
tion 𝑒𝑒𝑥𝑥 − 1 is an analytic function in the neighborhood of zero [see Paulsen 
2016]. Hence the functional square root of function ln (1 + 𝑥𝑥), as an inverse 
function of this function, is also an analytic function in the neighborhood of 
zero. To find its analytical sequence, we can use one of several methods.  
Examination of the function 𝑔𝑔(𝑥𝑥) = ln (1 + 𝑥𝑥) instead of the function ln (𝑥𝑥) 
is beneficial due to the fact that in its point 0 this function takes the value 0. 
The function develops into the power series 

𝑔𝑔(𝑥𝑥) = �𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛,
∞ 

𝑛𝑛=0

 

where 𝑎𝑎𝑛𝑛 = 𝑔𝑔(𝑛𝑛)(0)
𝑛𝑛!

 . Because, 𝑔𝑔(0)(0) = 0 and 𝑔𝑔(𝑛𝑛+1)(0) = (−1)𝑛𝑛𝑛𝑛!, so 

𝑔𝑔(𝑥𝑥) = ∑ (−1)𝑛𝑛

𝑛𝑛+1
𝑥𝑥𝑛𝑛+1∞ 

𝑛𝑛=0  hence 𝑔𝑔(𝑥𝑥) = 𝑥𝑥 − 1
2
𝑥𝑥2 + 1

3
𝑥𝑥3 − ⋯ , for |𝑥𝑥| < 1. 

One looks for a function 𝑓𝑓(𝑥𝑥) = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + ⋯ analytic in the neighborhood 
of zero and satisfying the equation 𝑓𝑓�𝑓𝑓(𝑥𝑥)� = 𝑥𝑥 − 1

2
𝑥𝑥2 + 1

3
𝑥𝑥3 − ⋯. The 

composition of real analytic functions is a real analytic function to solve 
a quadratic equation to calculate the coefficients 𝑏𝑏𝑛𝑛 ∈ ℝ of the function 𝑔𝑔. 
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Symbol 𝕂𝕂 indicates a semigroup of power series with operation of function 
composition. This semigroup includes analytic functions at zero, in particular 
function 𝑔𝑔(𝑥𝑥) = ln (1 + 𝑥𝑥). 

Lemma. If the power series satisfies a quadratic equation in semi-
group 𝕂𝕂, then coefficient 𝑏𝑏0 = 0. 

Evidence. Le ℎ = 𝑓𝑓o𝑓𝑓, where 𝑓𝑓 meets the quadratic equation in semi-
group 𝕂𝕂. Of course ℎ(0) = 0, because 𝑔𝑔(0) = 0. It follows that ℎ(0) =
𝑓𝑓(𝑏𝑏0) = 0. Zero is thus a fixed point function ℎ; also 𝑏𝑏0 a fixed point of func-
tion ℎ for ℎ(𝑏𝑏0) = 𝑓𝑓�𝑓𝑓(𝑏𝑏0)� = 𝑓𝑓(0) = 𝑏𝑏0. This function 𝑔𝑔 has exactly one 
fixed point, hence  𝑏𝑏0 = 0 because ℎ  here is the same as 𝑔𝑔, which completes 
the proof. 

We have 
𝑓𝑓�𝑓𝑓(𝑥𝑥)� = 𝑏𝑏0 + 𝑏𝑏1(𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ ) + 

𝑏𝑏2(𝑏𝑏0 + 𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ )2 + ⋯ = �
(−1)𝑛𝑛

𝑛𝑛 + 1
𝑥𝑥𝑛𝑛+1

∞ 

𝑛𝑛=0

 

The lemma shows that 

ℎ(𝑥𝑥) = 𝑏𝑏1(𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ ) + 𝑏𝑏2(𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ )2 + 

𝑏𝑏3(𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ )3 + ⋯ = 𝑥𝑥 −
1
2
𝑥𝑥2 +

1
3
𝑥𝑥3 + ⋯, 

so  𝑏𝑏12 = 1 because 𝑓𝑓′(0) = 1. Hence 𝑏𝑏1 = 1or 𝑏𝑏1 = −1. If 𝑏𝑏1 = 1 then 
ℎ(𝑥𝑥) = 𝑥𝑥 +  𝑏𝑏2𝑥𝑥2 + ⋯+ 𝑏𝑏2(𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ )2 + ⋯ = 𝑥𝑥 − 1

2
𝑥𝑥2 + 1

3
𝑥𝑥3 + ⋯; 

we obtain equality 𝑏𝑏2 + 𝑏𝑏2 = −1
2
, that is 𝑏𝑏 2 = −1

4
. If the above equality 𝑏𝑏1 had 

the value of −1 then ℎ(𝑥𝑥) = 𝑥𝑥 − 𝑏𝑏2𝑥𝑥2 − ⋯+ 𝑏𝑏2(−𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯ )2 + ⋯ =
𝑥𝑥 − 1

2
𝑥𝑥2 + 1

3
𝑥𝑥3 − ⋯, that is 0 = −𝑏𝑏2 + 𝑏𝑏2 = −1

2
, which is contradictory. 

Other factors are calculated recursively. 
The expression (𝑏𝑏1𝑥𝑥 + 𝑏𝑏2𝑥𝑥2 + ⋯+ 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛 + ⋯ )𝑛𝑛  is a polynomial 

wherein the value of the 𝑘𝑘-th power of the variable 𝑥𝑥, for 𝑘𝑘 ≥ 𝑛𝑛, depends on 
the number of possible breakdowns of the number 𝑘𝑘 into 𝑛𝑛 numbers. The 
breakdown of a of a natural number 𝑘𝑘 ≥ 1 is a finite sequence of natural num-
bers different from zero summing up to 𝑘𝑘. Number 1 has one breakdown (1), 
number 2 has two ( 1,1) and (2). Number 3 has four breakdowns 
(1,1,1), (1,2), (2,1) and (3), and so on. 
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Each of these breakdowns corresponds to 𝑛𝑛-th element permutation with 
number repetitions whose sum is 𝑘𝑘. For example, for = 4 and 𝑘𝑘 = 8 there are 
five possibilities: (1 1 1 5), (1 1 2 4), (1 1 3 3), (1 2 2 3) and (2 2 2 2). The 
breakdown (1 1 1 5) occurs 4 times, breakdown (1 1 3 3) 6 times, 
(1 1 2 4) and (1 2 2 3) 12 times, and the breakdown (2 2 2 2) occurs once. 
Hence, after expanding �∑ 𝑏𝑏𝑖𝑖𝑥𝑥𝑖𝑖  ∞

𝑖𝑖=1 �
4
 the coefficient 𝑥𝑥8 of is equal 4𝑏𝑏13𝑏𝑏5 +

12𝑏𝑏12𝑏𝑏2𝑏𝑏4 + 6𝑏𝑏12𝑏𝑏32 + 12𝑏𝑏1𝑏𝑏22𝑏𝑏3 + 𝑏𝑏24 . 
In order to determine the formula for the coefficient at the 𝑘𝑘-th power of 

function 𝑓𝑓 it is sufficient to consider all the possible breakdowns of the num-
ber 𝑘𝑘, whereas the coefficient determined by a one-element breakdown is 
multiplied by 𝑏𝑏1, the coefficient determined by a two-element breakdown is 
multiplied by 𝑏𝑏2, and so on. For example, the number 2 can be represented as 
a breakdown composed of a single element 2 or in the form of (1,1) it is the 
coefficient at 𝑥𝑥2 and has the form of 𝑏𝑏1𝑏𝑏2 + 𝑏𝑏2𝑏𝑏12. Breakdown 3 is respec-
tively 3, (1,2), (1,1,1) which means that the coefficient at 𝑥𝑥3is equal to 
𝑏𝑏1(𝑏𝑏3) + 𝑏𝑏2(2𝑏𝑏1𝑏𝑏2) + 𝑏𝑏3(𝑏𝑏13) = 𝑏𝑏1𝑏𝑏3(1 + 𝑏𝑏12) + 2𝑏𝑏1𝑏𝑏22; 4 is 4, (1,3), (2,2), 
(1,1,2), (1,1,1,1), hence the coefficient at 𝑥𝑥4 is 𝑏𝑏1(𝑏𝑏4) + 𝑏𝑏2(2𝑏𝑏1𝑏𝑏3 + 𝑏𝑏22) +
𝑏𝑏3(𝑏𝑏12𝑏𝑏2) + 𝑏𝑏4(𝑏𝑏14) = 𝑏𝑏1𝑏𝑏4(1 + 𝑏𝑏13) + 2𝑏𝑏1𝑏𝑏2𝑏𝑏3 + 𝑏𝑏23 + 𝑏𝑏12𝑏𝑏2𝑏𝑏3. And so on, 
comparing the thus obtained polynomial of coefficients 𝑏𝑏𝑖𝑖 to the correspond-
ing values of the expansion of the Maclaurin series of the function ln (1 + 𝑥𝑥) 
one obtains: 

(𝑏𝑏1 + 𝑏𝑏12)𝑏𝑏2 = −
1
2

2𝑏𝑏1𝑏𝑏2
2 + (𝑏𝑏1 + 𝑏𝑏13)𝑏𝑏3 =

1
3

𝑏𝑏2
3 + 2𝑏𝑏1𝑏𝑏2𝑏𝑏3 + 3𝑏𝑏1

2𝑏𝑏2𝑏𝑏3 + (𝑏𝑏1 + 𝑏𝑏14)𝑏𝑏4 = −
1
4

2𝑏𝑏2
2𝑏𝑏3 + 3𝑏𝑏1𝑏𝑏2

2𝑏𝑏3 + 3𝑏𝑏1
2𝑏𝑏3

2 + 2𝑏𝑏1𝑏𝑏2𝑏𝑏4 + 4𝑏𝑏1
3𝑏𝑏2𝑏𝑏4 + (𝑏𝑏1 + 𝑏𝑏15)𝑏𝑏5 =

1
5

.
⋮

 

This system is solved recursively: 

𝑏𝑏1 = 1,   𝑏𝑏2 = −1
4
,   𝑏𝑏3 = 1

𝑏𝑏1+𝑏𝑏12
�1
3
− 𝜙𝜙2(𝑏𝑏1,𝑏𝑏2)� = 1

2
�1
3
− 1

8
� = 5

48
; 

𝑏𝑏4 = 1
𝑏𝑏1+𝑏𝑏1

3 �−
1
4

+ 𝜙𝜙3(𝑏𝑏1,𝑏𝑏2, 𝑏𝑏3)� = 1
2
�− 1

4
+ 7

48
� = − 5

96
; 

𝑏𝑏5 = 1
𝑏𝑏1+𝑏𝑏14

�1
5
− 𝜙𝜙4(𝑏𝑏1, 𝑏𝑏2, 𝑏𝑏3, 𝑏𝑏4)� = 1

2
�1
5
− 55

384
� = 109

3840
 . 
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Generally we have: 𝑏𝑏1 = 1, 𝑏𝑏𝑛𝑛+1 = 1
2
�(−1)𝑛𝑛

𝑛𝑛+1
− 𝜙𝜙𝑛𝑛(𝑏𝑏2, 𝑏𝑏3, … , 𝑏𝑏𝑛𝑛)�. These cal-

culations show that: 

𝑓𝑓(𝑥𝑥) = 𝑥𝑥 −
𝑥𝑥2

4
+

5𝑥𝑥3

48
−

5𝑥𝑥4

96
+

109𝑥𝑥5

3840
−

497𝑥𝑥6

30720
+

127𝑥𝑥7

13440
−

11569𝑥𝑥8

2064384

+
312757𝑥𝑥9

92897280
−

1219255𝑥𝑥10

594542592
+

165677473𝑥𝑥11

130799370240

−
885730939𝑥𝑥12

1121137459200
+

20163875141𝑥𝑥13

40809403514880

−
252312616027𝑥𝑥14

816188070297600
+

9565074633871𝑥𝑥15

48971284217856000

−
691138954263097𝑥𝑥16

5484783832399872000
+

5061676927076641𝑥𝑥17

62160883433865216000

−
95993669516238563𝑥𝑥18

1918107260244983808000

+
1245671625068799013𝑥𝑥19

41650329079605362688000

−
903291663542261320331𝑥𝑥20

40817322498013255434240000
+ ⋯ ≈ 

  𝑥𝑥 − 0.25 𝑥𝑥2 + 0.104167 𝑥𝑥3 − 0.0520833 𝑥𝑥4 + 0.0283854 𝑥𝑥5
− 0.0161784 𝑥𝑥6 + 0.0094494 𝑥𝑥7 − 0.00560409 𝑥𝑥8
+ 0.0033667 𝑥𝑥9 − 0.00205074 𝑥𝑥10 + 0.00126665 𝑥𝑥11
− 0.000790029 𝑥𝑥12 + 0.000494099 𝑥𝑥13
− 0.000309135 𝑥𝑥14 + 0.00019532 𝑥𝑥15 − 0.00012601 𝑥𝑥16
+ 0.0000814287 𝑥𝑥17 − 0.000050046 𝑥𝑥18
+ 0.0000299078 𝑥𝑥19 − 0.0000221301 𝑥𝑥20. 

Figure 1 shows a polynomial 𝑓𝑓20(𝑥𝑥) which is the sum of the first twenty terms 
of a power series f together with functions ln (1 + 𝑥𝑥) and function 𝑓𝑓203 (𝑥𝑥) =
ln�1 + 𝑓𝑓20(𝑥𝑥)� for the open interval (−1,1). 

 
 

 

 

 
 



 Arkadiusz Maciuk, Antoni Smoluk 
  

 

46 

 

Fig. 1. Selection of function graphs f(x)represented by a polynomial f20(x), 
function ln(1 + x) and function ln(1 + f20(x)) 

Source: own elaboration. 

 
Fig. 1. Selection of function graphs  

Source: own elaboration. 
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5. Matrix method 

Definition. Let 𝕂𝕂0 represent a subsemigroup of a semigroup 𝕂𝕂 of the 
power series for which 𝑏𝑏0 = 0 and 𝑏𝑏1 = 1. 

Semigroup 𝕂𝕂0 contains all the power series of the form 
𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + ⋯. 

Note. If function 𝑓𝑓 is odd and satisfies a quadratic equation, then also 
function −𝑓𝑓 satisfies it too. If 𝑓𝑓(𝑓𝑓) = 𝑔𝑔 then also �−𝑓𝑓(−𝑓𝑓)� = 𝑔𝑔. This no-
tice is a simple consequence of the definition of parity. 

Theorem on uniqueness. The Kopociński equation in semigroup 𝕂𝕂0 has 
a uniquely determined solution. 

Evidence. This theorem means that there is always one and only one so-
lution. We shall give below an alternative method of calculating the coeffi-
cient of an analytic function with relation to the method referring to the par-
tition described above. Both methods differ only in the way of deriving equa-
tions – the equations are the same. Consider the auxiliary matrix 𝐴𝐴 with an 
infinite number of elements 

�

𝑎𝑎11 𝑎𝑎12 𝑎𝑎13
𝑎𝑎21 𝑎𝑎22 𝑎𝑎23
𝑎𝑎31 𝑎𝑎32 𝑎𝑎33

…
…
…

⋮    ⋮     ⋮ ⋱

�, 

where 𝑎𝑎1 1 = 1, 𝑎𝑎1 𝑛𝑛 = 𝑏𝑏𝑛𝑛 for 𝑛𝑛 ≥ 2, 𝑎𝑎𝑛𝑛 𝑖𝑖 = 0 for 𝑖𝑖 < 𝑛𝑛, 𝑎𝑎𝑘𝑘 𝑛𝑛+1 =
𝜙𝜙𝑘𝑘 𝑛𝑛(𝑏𝑏1, … , 𝑏𝑏𝑛𝑛) for 1 < 𝑘𝑘 < 𝑛𝑛. The function 𝜙𝜙𝑘𝑘 𝑛𝑛 is a unequivocally defined 
polynomial; its arguments are coefficients calculated before. Enumerating the 
coefficients of these polynomials is not easy. This 𝑛𝑛–th column of the matrix 
is used to calculate the coefficient 𝑏𝑏𝑛𝑛. In that column the coefficient 𝑏𝑏𝑛𝑛 occurs 
twice, and the remaining terms are well known and depend on the coefficients 
calculated previously. This column is thus a sequence: 

(𝑏𝑏𝑛𝑛,𝜙𝜙2 𝑛𝑛(𝑏𝑏1, . . , 𝑏𝑏𝑛𝑛−1), … ,𝜙𝜙𝑛𝑛−1 𝑛𝑛(𝑏𝑏1, . . , 𝑏𝑏𝑛𝑛−1),𝑏𝑏𝑛𝑛, 0,0, … ). 
Hence 𝑎𝑎1 𝑛𝑛 = 𝑎𝑎𝑛𝑛 𝑛𝑛 = 𝑏𝑏𝑛𝑛, this means that to calculate the coefficient 

𝑏𝑏𝑛𝑛 we have linear equations in  the form of 2𝑏𝑏𝑛𝑛 = 𝑐𝑐𝑛𝑛 where the size 𝑐𝑐𝑛𝑛 is 
determined by coefficients calculated in advance and free terms. This means 
that, firstly, a solution exists, and secondly, that there is only one which was 
to be proved. Of course, the Kopociński equation in semigroup 𝕂𝕂0 has a so-
lution for any analytic function, and not only for the function ln(1 + 𝑥𝑥). 
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There is a third possible way of calculating the coefficients 𝑏𝑏𝑛𝑛 which also 
proves the theorem; it stems from the formula for the derivative of function 
composition. Just remember that the power series 𝑘𝑘-th derivative is equal  
to 𝑘𝑘! 𝑏𝑏𝑘𝑘. 

In the quadratic equation there naturally appears the product of Cauchy’s 
sequences; if we multiply the power strings, their coefficient sequences are 
multiplied according to Cauchy’s product. So if 𝑎𝑎 = {𝑎𝑎𝑛𝑛}, 𝑏𝑏 = {𝑏𝑏𝑛𝑛} then the 
Cauchy product is equal 

�𝑎𝑎𝑛𝑛−𝑖𝑖𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=0

. 

If so, 𝑓𝑓(𝑥𝑥) = ∑ 𝑎𝑎𝑛𝑛𝑥𝑥𝑛𝑛∞
𝑛𝑛=0 ,𝑔𝑔(𝑥𝑥) = ∑ 𝑏𝑏𝑛𝑛𝑥𝑥𝑛𝑛∞

𝑛𝑛=0 , then 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑥𝑥) = ∑ 𝑐𝑐𝑛𝑛𝑥𝑥𝑛𝑛∞
𝑛𝑛=0 , 

where  

𝑐𝑐𝑛𝑛 = ∑ 𝑎𝑎𝑛𝑛−𝑖𝑖𝑏𝑏𝑖𝑖𝑛𝑛
𝑖𝑖=0 . 

Let 𝑏𝑏 = (𝑏𝑏0, 𝑏𝑏1,𝑏𝑏2, … ) and let 𝑤𝑤𝑛𝑛 mean the n-th row of the ma-
trix 𝐴𝐴 shifted to the right by one place, that is 𝑤𝑤𝑛𝑛 = (0,𝑎𝑎𝑛𝑛 1,𝑎𝑎𝑛𝑛 2, … ). Of 
course 𝑤𝑤𝑛𝑛 = 𝑏𝑏𝑛𝑛𝑏𝑏𝑛𝑛, where 𝑟𝑟𝑒𝑒 = 𝑏𝑏𝑛𝑛𝑏𝑏𝑛𝑛 is the n-th power of Cachy’s series b.   
If,  𝑏𝑏𝑛𝑛 = (𝑏𝑏𝑛𝑛0, 𝑏𝑏𝑛𝑛1, 𝑏𝑏𝑛𝑛2, … ), then  𝑔𝑔𝑛𝑛(𝑥𝑥) = ∑ 𝑏𝑏𝑛𝑛𝑛𝑛𝑥𝑥𝑘𝑘∞

𝑘𝑘=𝑛𝑛 . Hence: 

ℎ(𝑥𝑥) = 𝑔𝑔o𝑔𝑔(𝑥𝑥) = �𝑏𝑏𝑘𝑘𝑔𝑔𝑘𝑘(𝑥𝑥)
∞

𝑘𝑘=1

; 

so we have an equation 𝑎𝑎𝑘𝑘 = ∑ 𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖 𝑘𝑘𝑘𝑘
𝑖𝑖=1  where 𝑎𝑎𝑛𝑛 is the n-th coefficient of 

expansion of a function ln (1 + 𝑥𝑥) into series. So we have a recursive patterns 
in the form of: 𝑏𝑏1 𝑘𝑘 = 𝑏𝑏𝑘𝑘, 𝑏𝑏𝑛𝑛+1 𝑘𝑘 = ∑ 𝑏𝑏𝑛𝑛 𝑖𝑖𝑏𝑏𝑘𝑘−𝑖𝑖𝑘𝑘

𝑖𝑖=0 , where 𝑘𝑘 ∈ ℕ  and  𝑏𝑏𝑛𝑛 𝑛𝑛+1 =
𝑏𝑏𝑛𝑛+1. Eventually 𝑎𝑎𝑛𝑛 𝑘𝑘 = 𝑏𝑏𝑛𝑛𝑏𝑏𝑛𝑛 𝑘𝑘. The equation for the 𝑏𝑏𝑘𝑘 coefficient has the 
form of  2𝑏𝑏𝑘𝑘 = 𝑎𝑎𝑘𝑘 − ∑ 𝑎𝑎𝑖𝑖 𝑘𝑘𝑘𝑘−1

𝑖𝑖=1 . 

6. Abstraction and identical objects 

Functions 𝑓𝑓1:𝑋𝑋1 → 𝑌𝑌1 and 𝑓𝑓2:𝑋𝑋2 → 𝑌𝑌2 are equivalent, if there are isomor-
phisms 𝜑𝜑1:𝑋𝑋1 → 𝑋𝑋2 and 𝜑𝜑2:𝑌𝑌1 → 𝑌𝑌2 such that, 𝜑𝜑2 ∘ 𝑓𝑓1 = 𝑓𝑓2 ∘ 𝜑𝜑1 , when  
𝑓𝑓1 = 𝜑𝜑2−1 ∘ 𝑓𝑓2 ∘ 𝜑𝜑1. Equivalent functions work the same way in isomorphic 
collection. There is no difference whether we permute letters or if we permute 
numbers. If we talk about continuous functions, the isomorphisms are home-
omorphisms of topological spaces. Functions ln(𝑥𝑥) and ln(1 + 𝑥𝑥) are  
equivalent. 
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Let 𝜏𝜏 mean translation; 𝜏𝜏(𝑥𝑥) = 𝑥𝑥 + 1; naturally, each translation is 
a square in the group of translations, for 𝜎𝜎(𝜎𝜎) = 𝜏𝜏, where 𝜎𝜎(𝑥𝑥) = 𝑥𝑥 + 1

2
.      

We solved the Kopociński equation in the form of 𝑔𝑔 ∘ 𝑔𝑔 = ln ∘ 𝜏𝜏 which is 
equivalent to form ∘ 𝜏𝜏−1 ∘ 𝜏𝜏 ∘ 𝑔𝑔 ∘ 𝜏𝜏−1 = ln. Introducing determination 
𝑓𝑓1 = 𝑔𝑔 ∘ 𝜏𝜏−1 we obtain 𝑓𝑓1 ∘ 𝜏𝜏 ∘ 𝑓𝑓1 = ln. If one changes the operation in 
a semigroup we obtain the exact equation in the form 𝑓𝑓1 ∗ 𝑓𝑓1 = ln, where ∗ is 
the new operation defined by the formula  𝑓𝑓 ∗ 𝑔𝑔 = 𝑓𝑓 ∘ 𝜏𝜏 ∘ 𝑔𝑔. In a semigroup 
with the new operation with unity there is a translation 𝜏𝜏−1 because  𝜏𝜏−1 ∗
𝑔𝑔 = 𝑔𝑔. 

The law of one-and-a-half logarithm in the zero position, that is, after 
translation 𝜏𝜏  means that on the random variable function 𝑔𝑔 ∘ ln ∘ 𝜏𝜏 is applied. 
While the law of the one-and-a-half logarithm in neutral position, that is with-
out moving, means that on the random variable function 𝜏𝜏−1 ∘ 𝑔𝑔 ∘ ln ∘ 𝜏𝜏  
applied. 

Hypothesis. Let 𝕂𝕂𝑎𝑎mean a semigroup of power series with a positive 
radius of convergence; each series represents an analytic function, hence  it 
is 𝕂𝕂𝑎𝑎 ⊂ 𝕂𝕂0. If 𝑔𝑔 ∈ 𝕂𝕂0 is the solution for the Kopociński equation, then the 
question arises whether g is an analytic function, so if 𝑔𝑔 ∈ 𝕂𝕂𝑎𝑎. This is a dif-
ficult problem in the field of analytic functions and power series. For if 
𝑔𝑔 ∉ 𝕂𝕂𝑎𝑎, then the equality  𝑔𝑔 o 𝑔𝑔 = 𝑓𝑓 seems paradoxical. An analytic function 
is obtained from the series composition of zero-convergence. The nature of 
coefficients 𝑏𝑏𝑛𝑛 of function 𝑔𝑔 is unknown. They arise from the algebraic sum 
of very large numbers, so they can be themselves very large. This means that 
the radius of convergence of this series can be zero. This is the content of our 
assumptions. There is a full analogy to the equation 𝑥𝑥2 = −1 that has no so-
lution in a multiplicative semigroups of real numbers, and has two solutions 
in a multiplicative semigroups of complex numbers. Mathematics knows 
many examples of contradictory equations that after the expansion of permis-
sible objects have obtained generalized solutions. 

We suppose that the natural logarithm without shift is not a square in the 
set of analytic functions with real coefficients. The argument in favor of this 
hypothesis is the following remark. If the areas of these features are the same, 
then there appears a contradiction. ln(1) = 0 and, 𝑔𝑔�𝑔𝑔(𝑥𝑥)� = ln (𝑥𝑥), so 
𝑔𝑔(1) = 𝛼𝛼, where 𝛼𝛼 > 0, because it cannot be 𝛼𝛼 ≤ 0. But 𝑔𝑔(𝛼𝛼) = 0, 
so 𝑔𝑔�𝑔𝑔(𝛼𝛼)� = 𝑔𝑔(0), hence the contradiction. 
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A more general assertion. In semigroup 𝕂𝕂0 the generalized Kopociński 
equation has a unique solution. If the solution is not an analytic function, then 
there is a solution in the set 𝕂𝕂0 – a generalized solution. 

The proof of this theorem – mutatis mutandis – is a repetition of the proof 
of the theorem about the existence of the equation 𝑔𝑔 ∘ 𝑔𝑔 = 𝑓𝑓. If the function 𝑔𝑔 
satisfies the equation 𝑔𝑔𝑚𝑚 = 𝑓𝑓𝑛𝑛, then also for any 𝑘𝑘 ∈ ℕ the equality 
𝑔𝑔𝑘𝑘𝑘𝑘 = 𝑓𝑓𝑘𝑘𝑘𝑘 is true. This means that in the semigroup 𝕂𝕂0 fraction 1/3 is equal 
to the fraction 7/21. So it is enough to solve equations of form 𝑔𝑔𝑚𝑚 = 𝑓𝑓𝑛𝑛 
for numbers 𝑛𝑛 and 𝑚𝑚 that are relatively prime. 

The aforementioned G semigroup of positive rational numbers with the 
operation of multiplication is in fact a commutative group – Abelian. This 
group is isomorphic to the group of M sequences of integers with a finite 
number of terms different from zero. The isomorphism identifying the two 
groups is formed from the extension of a function associating to the first num-
ber ‘n’ a sequence that at the n-th location has number one, and zeros other-
wise. M is essentially a module of such sequences above the ring of integers. 
So the prime number 2 has the number zero and the assigned string (1,0,0, …). 
Number 3 has the number 1, so it is assigned to a string(0,1,0,0, … ); prime 
number 5 has number 2, so it corresponds to the string (0,0,1,0,0, … ), and so 
on. Prime numbers are, in fact, a base for module M. The number 4 is identi-
fied with a string 2(1,0,0, … ) = (2,0,0, … ), number 6 is in this convention is 
a sum of a series of strings for 2 and 3, that is (1,1,0,0, … ). Rational number 15/8 
is a string: −3(1,0,0, . . ) + (0,1,0,0, … ) + (0,0,1,0,0, . . ) = (−3,1,1,0,0, … ) 
This isomorphism identifies strings of integers of the specified property with 
the rational numbers. Multiplication of rational numbers is adding these 
strings; division on the other hand is subtraction. The index of integer num-
ber 𝑛𝑛 is what the sum of terms within its string is called. If so, 𝑛𝑛 = 24 = 23 ∙ 3 
then its index is the number four – the sum of the exponents of primes occur-
ring in the factorization of this number. If the integer n is the k-th power of 
another integer its index is divisible by k. The index 125 is divisible by 3 
because 125 = 53. 

The concept of the index allows the hypothesis, which, if true, includes 
as a special case Fermat’s Last Theorem. Fermat’s Last Theorem says that if 
n is greater than or equal 3, there are natural numbers different from 0 satis-
fying the equation 𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛 = 𝑧𝑧𝑛𝑛. In other words, if 𝐹𝐹𝑛𝑛 ⊂ ℕ denotes the set 
of natural numbers different from zero which are in the form 𝑘𝑘𝑛𝑛, where 
𝑛𝑛 ∈ ℕ, then if ≥ 3 and 𝑎𝑎, 𝑏𝑏 ∈ 𝐹𝐹𝑛𝑛 then 𝑎𝑎 + 𝑏𝑏 ∉ 𝐹𝐹𝑛𝑛.  
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The multiplicative semigroup ℕ∗of natural numbers different from zero 
is isomorphic to the commutative semigroup of words in an infinite alphabet, 
in which there are prime numbers. In this semigroup, the uniqueness of fac-
torization of natural numbers into prime factors is an obvious fact. The de-
fined above index of an integer is equal to the length of the word that repre-
sents this number. Thus, each prime number is an index of 1, the product of 
two primes has an index of 2, and so on. The number 0 does not have an 
index, and the number 1 has the index 0.  

The generalized hypothesis. If n is greater than equal to 3 and x and y are 
natural numbers different from zero, then the index of number 𝑥𝑥𝑛𝑛 + 𝑦𝑦𝑛𝑛 is not 
divisible by n. If this generalized hypothesis is true, then it naturally follows 
Fermat’s Theorem. 

7. Concluding remarks 

Mapping 𝜙𝜙:𝕂𝕂0 → 𝕂𝕂0 described by the pattern 𝜙𝜙(𝑔𝑔) = 𝑔𝑔 ∘ 𝑓𝑓, as men-
tioned above, covers the semigroup 𝕂𝕂0, that is, each element of the semigroup 
is a square. At the same time we have to stress that semigroup elements may 
have different radiuses of convergence and the radius of composition conver-
gence of such series is dependent on factors – and it may vary. 

The functions presented here can be looked at from a purely formal per-
spective. These are new non-elementary features that enhance the mathematical 
arsenal. On this occasion, we would like to recall a flat pseudo-mathematical 
joke. – I found a new smooth function. –Yes? And what did you do with it? 
 – I differentiated it. Secondly, speaking about the probability theory we can 
discuss not only the logarithmic-normal disintegration, but also about disin-
tegrations such as semi-logarithmic-normal, half-logarithmic-normal and so 
on. The one-and-a-half logarithm is the 𝑔𝑔3 function. Furthermore, the article 
is a pictorial representation of a method of indefinite coefficients very useful 
in solving function equations. 
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