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The optical gradient force distributions in focal plane of cosh-Gaussian beams with sine-azimuthal
variation wavefront and half space phase modulation were investigated. Results show that optical
gradient force distributions can be affected considerably by the phase retardation of half-space
phase modulation, of a phase parameter that indicates the phase change frequency on an increasing
azimuthal angle, and beam parameters in cosh terms of the incident beams. Many gradient force
patterns occur, including cross-shape, multiple optical trap arrays, multiple-trap wheel, and many
kinds of gradient force lines and curves. Symmetry of the whole gradient force pattern can also be
altered remarkably. Above results may find wide applications in optical trapping systems.
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1. Introduction

Optical gradient force plays an important role in some systems, especially in the optical
trapping technique [1–3]. Optical trapping systems have accelerated many major
advances in numerous areas of science [4–7], including force detection measure-
ment [8], micro-machine and micro-component [9], microscopy [10], in life science,
optical tweezers can offer a very convenient, noninvasive, and non-contact access to
processes at the microscopic scale [11]. In optical trapping systems, it is usually
deemed that the forces exerted on the particle in the light field consist of two kinds of
forces. One is the optical gradient force, which plays a crucial role in constructing
an optical trap and its intensity is proportional to the optical intensity gradient;
the other kind of force is the scattering force, which usually has complex forms because
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this kind of force is related to the properties of the trapped particles, and whose intensity
is proportional to the optical intensity [12]. The optical gradient force is necessary for
optical trapping, therefore, the construction of tunable gradient force patterns is very
important and attracts many researchers [13–16]. Recently, the optical gradient force
has also been used in a tunable optical coupler [17].

On the other hand, cosh-Gaussian beams have attracted much attention because
their profiles can be altered by choosing the suitable decentered parameters in cosh
parts [18, 19], and their propagation and focusing properties have become the object
of many works [20–23]. In addition, self-focusing of cosh-Gaussian beams has also
been investigated [24, 25]. Recently, an optical vortex has also been introduced in
cosh-Gausain beams, and corresponding focusing properties have been investigated
theoretically [26–30]. However, to our knowledge, the gradient force patterns of
sine-azimuthal wavefront-modulated cosh-Gaussian beams by half-space phase modu-
lation have not been investigated to date, so, this article focuses on the gradient force
patterns. The principle of the gradient force patterns of cosh-Gaussian beams is given
in Section 2. And Section 3 shows the simulation results and discussions. The conclu-
sions are summarized in Section 4.

2. Gradient force calculation of the focusing system 
In the system we investigated, the gradient force can be expressed as [12]

(1)

where r is the radius of particles, nb is the refraction index of the surrounding medium.
And the parameter T, the relative index of refraction, is equal to the ratio of the re-
fraction index of the particle np to the refraction index of the surrounding medium nb.
Gradient force Fgrad points in the direction of the gradient of the light intensity if
the diffractive index of particles is bigger than that of surrounding medium, i.e.,
np > nb. In the next section, the gradient force pattern is investigated numerically bas-
ing on Eq. (5), and the gradient forces patterns are illustrated to show their promising
applications in constructing a tunable optical trap. E(ρ, ψ, z) is the electric field in
the focal region. According to the vector diffraction theory [31, 32], the amplitude of
electric field in the focal region can be written as,
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and   α = asin(NA), where NA is the numerical aperture of
the optical focusing system. Vectors x, y, and z are the unit vectors in the x, y, and
z directions, respectively. It is clear that there are three components (Ei, Ej and Ek)
in x, y, and z directions, respectively. The variables ρ, ψ, and z are the cylindrical
coordinates of an observation point in the focal region. E(θ, ϕ ) is the amplitude of
electric field of the sine-azimuthal wavefront-modulated cosh-Gaussian beam in radial
coordinates by half-space phase modulation, and can be expressed as,

(3)

where A0 is a constant, and 

while m is the phase factor of the wavefront phase modulation, w = ω0 /rp is called as
the relative waist width, ω0 is the waist width (defined as radius) of the incident
cosh-Gaussian beam, and rp is the radius of the optical aperture. The parameters βx
and βy are called the decentered parameters of the cosh-Gaussian beam, and the phase
change induced by the phase plate is,

(4)

where δ is half-space phase retardation of the kind of cosh-Gaussian beams. It is
assumed that the cosh-Gaussian beam is linearly polarized along the x axis. By
substituting Eq. (3) into Eq. (2), the electric field in the focal region is rewritten as,

(5)

Therefore, substituting Eq. (5) into Eq. (1), we can obtain the optical gradient force
pattern in the focal plane of the kind of cosh-Gaussian beams by calculating numeri-
cally Eq. (1).
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3. Numerical results and discussions

It should be noted that the distance unit in all figures is the wavelength of an incident
beam in vacuum, and the arrows in figures indicate the direction of the optical gradient
force. Firstly, the optical gradient force patterns under condition of lower numerical
aperture were investigated. Without the loss of generalization and validity, the numer-
ical aperture is chosen as NA = 0.4, and β = βx = βy = 1. Figure 1 illustrates the gra-

dient force patterns under condition of m = 1 and different phase retardation δ  of
the half-space phase modulation. It can be seen that there are one main circular optical
trap and one weak crescent-shape optical trap for the case of δ = 0. On increasing δ,
the whole gradient force pattern shifts along y axis, and the main circular trap weakens
and the weak crescent-shape optical trap gets stronger and stronger, as shown in
Fig. 1b. When the value of phase retardation δ  increases up to π, the previous circular
optical trap becomes very weak. Simultaneously, the crescent-shape optical trap has
evolved into one main circular optical trap, as given in Fig. 1c. From above gradient
force pattern evolution process, we can see that the effect of the phase retardation δ
on the gradient force pattern in the focal plane is very considerable, and the position
and shape of the gradient force pattern can be altered by δ. 

Figure 2 gives the gradient force distributions for the case of m = 2 and other
parameters are the same in Fig. 1. When the phase factor increases from 1 to 2,
the whole gradient force pattern changes remarkably by comparing Fig. 2 with Fig. 1.

Fig. 1. Gradient force distributions under condition of NA = 0.4, β = 1, m = 1, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 2. Gradient force distributions under condition of NA = 0.4, β = 1, m = 2, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Under condition of δ = 0, there is one cross-shape gradient force pattern with four
optical traps between those branches of the center cross-shape gradient force pattern,
and the main trap locates at the center point, as shown in Fig. 2a. On increasing
the phase retardation δ, the gradient force in the negative half-space of the y axis
weakens considerably, and at the same evolution process, the whole gradient force
pattern shifts along y axis. When δ  increases up to π, the whole gradient force pattern
changes back to symmetrical about x and y axis, and one center main trap with four
outside overlapping traps comes into being, as illustrated in Fig. 2c. It can be seen that
the effect of the phase factor on the gradient force pattern is also considerable. 

Now, we increase the value of m continuously, and the gradient force pattern turns
on Y shape for the case of δ = 0 and m = 3, as shown in Fig. 3a. There is one main
circular optical trap at the center point, and three trap lines also come into being outside
the radial direction. The whole gradient force pattern is like a triangle shape. On
increasing δ, the whole gradient force pattern shifts along y axis, and the outside three
trap lines weaken considerably. When the value of the phase retardation δ equals π,
there remains only one main circular optical trap, as shown in Fig. 3c. 

Here, the optical gradient force distributions in the focal plane under condition of
m = 4 are given in Fig. 4. The gradient force pattern is very symmetric for the case
of δ = 0, there is one center main trap, and also eight circular weak traps and eight
circular weak trap lines appear outside, which turn on the trap’s wheel. On increasing
the value of δ, the gradient force patterns of this kind change very remarkably, and
the symmetry about y axis is disturbed, as shown in Fig. 4b. At the same evolution

Fig. 3. Gradient force distributions under condition of NA = 0.4, β = 1, m = 3, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 4. Gradient force distributions under condition of NA = 0.4, β = 1, m = 4, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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process, the center circular gradient force pattern also distorts very considerably. When
δ increases up to π, two distorted optical traps come into being with many weak traps
outside, as illustrated in Fig. 4c. 

In order to get a deep insight into the optical gradient force evolution, the value of
a phase factor was increased up to m = 5, and some gradient force patterns are shown
in Fig. 5. The gradient force pattern turns on one center circular trap with five branches
outside the radial direction under condition of δ = 0, as shown in Fig. 5a. On increas-
ing δ , the whole gradient force pattern changes, especially the part in the negative side
of y axis. Namely, the gradient force below the main gradient force trap weakens very
considerably, and symmetry of the whole gradient force pattern also distorts. When
the value of δ  increases up to π, the gradient force pattern becomes symmetric only
about y axis, and the center trap distorts in y coordinate direction, as given in Fig. 5c. 

From the above gradient force pattern evolution, we can see that the effect of
the phase retardation and the phase factor on the optical gradient force is very
considerable. And the symmetry of the gradient force pattern also changes remarkably
in the same evolution process. In addition, the symmetry is related closely to the phase
factor, though, the whole gradient force pattern turns on a star-shape with different
branches in the radial direction, when the phase factor is an odd number, and
the number of branches equals the phase factor. When the phase factor is an even
number, the number of branches is two times the phase factor, and higher phase
retardation will distort considerably this kind of symmetry properties. 

Here, we investigate the effect of higher decentered parameters on the gradient
force pattern evolution. The gradient force is calculated under condition of β = βx =

Fig. 5. Gradient force distributions under condition of NA = 0.4, β = 1, m = 5, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 6. Gradient force distributions under condition of NA = 0.4, β = 5, m = 1, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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= βy = 5. Figure 6 illustrates the gradient force distributions for the case of m = 1, and
it can be seen from this figure that there is one main trap with a weak rhombus force
line outside when the phase retardation is zero. On increasing δ, the main force pattern
evolution process is very similar, though the force distributions outside differ slightly,
by comparing Fig. 5 with Fig. 1. When δ  increases up to π, there are two force traps
locating along y axis, which shows that the effect of higher β  is still obvious.

When the value of the phase factor is chosen as 2, the gradient force is also
calculated and shown in Fig. 7. It can be seen by comparing Fig. 7 with Fig. 2 that
the effect of the phase factor is very considerable. The gradient force pattern changes
remarkably. Under condition of δ = 0, there is a force trap array that consists of nine
traps, as shown in Fig. 7a, and the difference between Fig. 7a and Fig. 2a is very
distinct. On increasing δ, the whole gradient force distribution shifts along y axis, and
the lower trap row weakens sharply. When δ  equals π, the lower trap row disappears,
and only two trap rows remain. Namely, there are six force traps, and the whole gradient
force distribution comes back to be symmetric about x and y axis, as shown in Fig. 7c.
From this gradient force evolution, we can find that the effect degree of the phase
factor on gradient force distribution differs for different m, which should be noted
when the tunable gradient force is used in practice in optical systems.

Figure 8 illustrates gradient force distributions for case of m = 3. It can be seen
that the gradient force distribution is more complex than that shown in Fig. 3, which
indicates that higher β leads to gradient force pattern splitting. Many gradient force
traps appear and shift along y axis on increasing phase retardation δ. And even
when δ  increases up to π there are still several obvious gradient force traps in the focal

Fig. 7. Gradient force distributions under condition of NA = 0.4, β = 5, m = 2, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 8. Gradient force distributions under condition of NA = 0.4, β = 5, m = 3, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).

5

0

–5
–5 0 5x

y
a b c5

0

–5
–5 0 5x

y

5

0

–5
–5 0 5x

y



726 RUI FU et al.

plane, as shown in Fig. 8c, by comparing Fig. 8 with Fig. 3. Multiple tunable optical
traps may come into being under this kind of condition.

We increase the phase factor m continuously up to 4, and the gradient force
distributions were calculated and shown in Fig. 9. By comparing Fig. 9 with Fig. 4,
we can see that the whole gradient force distributions turn on the force wheel with one
center circular gradient force trap under condition of δ = 0. However, for higher β,
the gradient force traps outside are more obvious than those in Fig. 4a. On increasing
the phase retardation δ, the whole gradient force wheel still shifts along y axis, and
shrinks in y coordinate direction, and when the value of δ  equals π, there remain ten
obvious force traps. No obvious gradient force trap disappears in this force pattern
evolution. 

Now the value of the phase factor is chosen as 5, gradient force distributions were
calculated and shown in Fig. 10. By comparing Fig. 10 with Fig. 5, we can see that
there is a very considerable difference between them. Though the whole gradient force
pattern still shows pentagon to a certain degree, the strength of those gradient force
lines in the negative half-space of y axis become very weak. On increasing the phase
retardation δ, the whole gradient force distribution shifts along y axis, and the strength
of different gradient force traps fluctuates remarkably. From the above gradient force
pattern evolution, higher β  may distort the symmetry of gradient force distributions. 

From now, the higher numerical aperture condition is considered because the num-
erical aperture may be higher in some practice optical systems. Here, the numerical

Fig. 9. Gradient force distributions under condition of NA = 0.4, β = 5, m = 4, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 10. Gradient force distributions under condition of NA = 0.4, β = 5, m = 5, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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aperture is chosen as 0.95. Figure 11 illustrates gradient force distributions under
condition of NA = 0.95, β = 5, and m = 1. By comparing Fig. 11 with Fig. 6, it can be
seen that the whole gradient force pattern evolution on increasing phase retardation is
very similar, and the main difference is that the gradient force shrinks more consid-
erably in y coordinate direction. 

When the phase factor increases up to 2, the gradient force is given in Fig. 12.
There occurs a remarkable difference between Fig. 12 and Fig. 7. Higher numerical
aperture makes the gradient force patterns shrinking in y coordinate direction very
evidently, and previous circular gradient force traps change into elliptical shapes with
one weak side. 

Figures 13 and 14 illustrate the gradient force patterns under condition of m = 3
and m = 4, respectively. It is also very obvious that higher numerical aperture

Fig. 11. Gradient force distributions under condition of NA = 0.95, β = 5, m = 1, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 12. Gradient force distributions under condition of NA = 0.95, β = 5, m = 2, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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Fig. 13. Gradient force distributions under condition of NA = 0.95, β = 5, m = 3, and δ = 0 (a), δ = π/2 (b)
and δ = π (c).
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compresses the whole gradient force pattern, and some circular force traps distort, so
that many scattered force lines come into being.

4. Conclusions
The optical gradient force plays an important role in many optical systems, so the gradient
force distributions in the focal plane of cosh-Gaussian beams with sine-azimuthal
variation wavefront and half-space phase modulation were investigated in this article.
Simulation results show that optical gradient force patterns can be altered considerably
by the phase retardation of half-space phase modulation, the phase parameter of
azimuthal phase wavefront, beam parameters in cosh terms of the incident beams, and
numerical aperture. Some interesting and novel gradient force patterns come into
being, including cross-shape, multiple optical trap arrays, multiple-trap wheels, and
many kinds of gradient force lines and curves. Symmetry of the whole gradient force
pattern can also be changed remarkably.
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