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In this paper, we study dispersion properties in a two- dimensional metallo-dielectric nanophotonic
crystal that contains dielectric rods with metallic shell in air background with two-type structures:
triangular and honeycomb, based on the modified plane wave expansion method. First, the eigen-
value equations for E polarization (TM modes) and H polarization (TE modes) are derived. We
draw dispersion curves and compare them with a traditional photonic crystal. Then, the effects of
different thicknesses of the metallic shell are analysed on the photonic band gap. Several metals
have been studied and their influence on the band gap width is investigated. Our results show that
we have large photonic band gap in TM mode when we use a metallic shell on the dielectric rod
compared with a traditional photonic crystal in both structures. Also, we have large photonic band
gap in TE mode in the honeycomb structure. Moreover, there is very thin photonic band gap in
TE mode in the triangular structure. For both structures, the band gap width will be increased by
the enhancement of thickness of the metallic shell. This enhancement in TM mode is higher than
TE mode. In addition, flat bands are discovered in two-dimensional metallo-dielectric photonic
band structures. All of our calculations have been done by using the Drude model of metal.

Keywords: two-dimensional metallic photonic crystal, photonic band gaps, modified plane wave
expansion method.

1. Introduction
Photonic crystals (PCs) are periodically structured media with different dielectric
constants. PCs can be divided into one-dimensional (1D), two-dimensional (2D) and
three-dimensional (3D) structures. The 2D PC is periodic along two x and y axes, and
homogeneous along the z axis [1–8]. Photonic band gap (PBG) is a range of frequency
in which light cannot propagate through the structure. Also, most applications of PCs
are because of its PBG. Many important applications of PCs depend on the existence
of a wide frequency PBG, so it is essential to find what shape can generate the largest
absolute PBG in a given structure. The structure and the shape of it play very important
roles in band gap width (BGW). In the last decade, scientists have investigated
the PBG of 2D PCs consisting of various structures with different shapes, e.g.,
triangular and honeycomb structures [9, 10]. They have found that these structures can
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generate the largest PBG. Here we study these structures with three refractive indices:
dielectric, metallic and air. Recently a great interest has been dedicated to the study
of metallo-dielectric PCs (MDPCs) [11–15]. MDPCs are defined as PCs consisting of
dielectric and metal elements. Compared with traditional PCs, the MDPCs have some
interesting properties. There is a wide PBG between zero and the cut-off frequency in
TM mode. This is explained that TM mode can couple to longitudinal oscillations of
charge along the length of the rods [1]. The inclusion of metallic components can
enlarge the size of the gaps and produce flat bands [1, 11, 12, 15]. Another interesting
property of MDPC is the appearance of surface plasmon polaritons (SPP). If we con-
sider a flat interface between a metal and a dielectric material, surface waves localized
on the interface appear. These waves are referred to as SPP [1]. These structures are
interesting for different applications such as a practical filter [1, 2, 11], polarizer [11],
antenna [16] or waveguide [11, 17], in which the dimensions of metallic PCs are
smaller than the minimum dimensions of a typical dielectric PC. The modelling
with more than two materials in a unit cell has been reported recently [18–21]. Here,
the PBG formation in 2D MDPCs with three materials is investigated. The photonic
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Fig. 1. Schematic structures of 2D MDPCs which contain dielectric central rods with metallic outer shell.
Triangular structure (a), honeycomb structure (b), irreducible Brillouin zone of the triangular struc-
ture (c), and irreducible Brillouin zone of the honeycomb structure (d). Both structures are arranged in
air background. The structure of a unit cell is indicated by a dashed line. The black, gray and white area
represent metal, dielectric and air, respectively.
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structure of such 2D MDPC is composed of the elements that have three indexes of
refraction, i.e., the background material is air with the dielectric constant εa and
the central rods are dielectric with the dielectric constant εd. We assume that the third
component is included as a thick cladding shell covering the central rods, this shell is
metal with the dielectric constant εm. We calculate the photonic dispersion and analyse
the effects of the metallic shell on the BGW. We have found that the existence of
the metallic shell could be advantageous and cause larger PBGs.

Figure 1 shows the two types of structures, where (a) is a triangular structure of
dielectric central rods and outer metallic shell and (b) is a honeycomb structure of di-
electric central rods and outer metallic shell. The parameters εd , εm and εa are dielectric
constants of the dielectric central rod, metallic shell and background, respectively.
Parameters R and d are radius of central rods and thickness of the shell, respectively.
The parameter a is the distance between the centres of two nearest neighbour rods. For
the triangular structure, the lattice constant is equal to a, whereas for the honeycomb
structure, the lattice constant is equal to  The photonic band structure calculations
were performed along the Γ–X–M–Γ  edges of the irreducible Brillouin zone (Figs. 1c
and 1d).

The rest of the paper is organized as follows. The theory which can modify plane
wave expansion method (PWEM) for both modes has been presented in Section 2. Next,
the dispersion curves and the influence of thickness and different metals on the PBG
for two structures have been investigated in Section 3. Finally, the conclusions are
given in Section 4. 

2. Theoretical model
Dielectric constants of metals are frequency dependent. We have used the Drude model
to describe the dielectric constant of metal as follows

(1)

where ωp and γ  are the plasma frequency and damping constant, respectively [22]. In
Eq. (1), if ω > ωp , the real part of the dielectric constant is positive and the medium
is transparent. On the other hand, if ω < ωp , the real part of the dielectric constant is
negative, and the metal becomes a mirror and light cannot be transmitted. A conse-
quence of this subject is increasing the size of the gaps and produce flat bands.

PWEM in 2D PCs is the most popular technique. In this paper, we will modify
the PWEM to a standard one that is capable of analysing the 2D MDPC.

Using Maxwell’s equations, we can obtain an equation in 2D PC for TM and
TE modes as follows

for TM mode (2) 

3a.

εm 1
ωp

2

ω ω iγ+( )
--------------------------------–=

∇ ∇× E r( )× ω 2

c2
-------------ε r( )E r( )=
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for TE mode (3)

where ω is the wave frequency, c is the speed of light in vacuum, E(r) and H(r) are
the electric and magnetic fields, respectively, and ε (r) is the dielectric function.
The dielectric function can be expanded in the following Fourier series, TM and
TE modes as:

for TM mode (4)

for TE mode (5)

where G is the reciprocal vector; κTM(G) and κTE(G) are the Fourier coefficient of
the dielectric constant for TM and TE modes. Using Bloch’s theorem, E(r) and H(r)
can be expressed as

(6)

and

(7)

where k is the 2D wave vector. Substituting Eqs. (6), (7) into Eqs. (2), (3), we obtain
the following eigenvalue equations for the expansion coefficients

for TM mode (8)

for TE mode 
(9)

where Ez, k(G) and Hz, k(G) are the Fourier coefficients of the electric and magnetic
field, respectively.

First, we derive the Fourier coefficients κTM(G) and κTE(G) which we can obtain
through integration over the primitive unit cell by using Eqs. (4) and (5) for TM and
TE modes, respectively. In the honeycomb structure, we have two rods in one unit cell
but in the triangular structure we have one rod in one unit cell, so the Fourier coef-
ficients of the honeycomb structure should be modified. We modified them, intro-
ducing new parameters: P(G) = cos(G(a/2)) for the honeycomb structure and P(G) = 1
for the triangular structure. Therefore, we can obtain Fourier coefficients as follows:

∇ 1
ε r( )

----------------∇× H r( )× ω 2

c2
-------------H r( )=

ε r( ) κTM G( ) iG r⋅( )exp
G
∑=

1
ε r( )

---------------- κTE G( ) iG r⋅( )exp
G
∑=

E r( ) Ek G( ) i k G+( ) r⋅{ }exp
G
∑=

H r( ) Hk G( ) i k G+( ) r⋅{ }exp
G
∑=

k G+ 2Ez k, G( ) ω2

c2
------------- κTM G G'–( )Ez k, G'( )

G'
∑=

κTE G G'–( ) k G+ k G'+ Hz k, G'( )
G'
∑

ω2

c2
-------------Hz k, G( )=
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(10)

(11)

parameters f(R + d ) and fR are  and  in the triangular
structure, and  and  in the honeycomb structure,
respectively.

If  Equation (10) is substituted into Eq. (8) to make the transposition, the eigenvalue
equation of TM mode can be obtained

(12)

The complete solution of Eq. (12) is obtained by solving the eigenvalue equation
by diagonalization of the matrix, whose eigenvalues are ω /c. For different wave
vectors k, one can obtain a series of eigenfrequencies ω, which form the band structures
of 2D MDPC for TM mode. This matrix is

(13)

where the elements of the matrices ATM, BTM and CTM are given by

(14a)

κTM G( )

εm εa–( )2fR d+
J1 G R d+( )( )

G R d+( )
---------------------------------------P G( ) +

εd εm–( )2fR
J1 GR( )

GR
-----------------------P G( )+ if G G'≠

εm εa–( )fR d+ εd εm–( )fR εa+ + if G G'=⎩
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎧

=

κTE G( )

1
εm

--------- 1
εa

--------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2fR d+
J1 G R d+( )( )

G R d+( )
---------------------------------------P G( ) +

1
εd

-------- 1
εm

---------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

2fR
J1 GR( )

GR
-----------------------P G( )+ if G G'≠

1
εm

--------- 1
εa

--------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

fR d+
1
εd

-------- 1
εm

---------–
⎝ ⎠
⎜ ⎟
⎛ ⎞

fR
1
εa

--------+ + if G G'=

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎧

=

2π R d+( )2 3a2⁄ 2πR2 3a2⁄
4π 3 R d+( )2 9a2⁄ 4π 3R2 9a2⁄

ω 3

c3
------------– ATM

ω2

c2
----------– BTM

ω
c

--------- CTM+ +⎝ ⎠
⎛ ⎞Ez k, G'( )

G'
∑ 0=

0 I 0
0 ATM– I

CTM BTM 0

ATM
iγ
c

----------I=
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(14b)

(14c)

(14d)

(14e)

(14f)

Like the TM mode, we can write the eigenvalue equation of TE mode as follows,

(15)

The complete solution of Eq. (15) is obtained by solving the eigenvalues of
the following matrix and by the diagonalization of this matrix. The eigenvalues of
this matrix are ω /c. We can obtain a series of eigenfrequencies ω for different wave
vectors k, which form the band structures of 2D MDPC for TE mode. This matrix is

(16)

where the elements of the matrices ATE, BTE, CTE and DTE are: 

(17a)

BTM N 1– M=

CTM N 1– iγ
c

---------- k G+ 2=

M

ωp
2

c2
-----------2fR d+

J1 G G'– R d+( )( )
G G'– R d+( )

-------------------------------------------------------P G G'–( ) +

ωp
2

c2
-----------2fR

J1 G G'– R( )
G G'– R

----------------------------------------P G G'–( )– if G G'≠

k G+ 2 fR d+ fR–( )
ωp

2

c2
-----------+ if G G'=

⎩
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎧

=

N

1 εa–( )2fR d+
J1 G G'– R d+( )( )

G G'– R d+( )
-------------------------------------------------------P G G'–( ) +

εd 1–( )2fR
J1 G G'– R( )

G G '– R
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⎪
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I δG G',=

ω 4

c4
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ω 3

c3
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ω
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(17b)

(17c)

(17d)

3. Results and discussion

In this section, in order to compare our results with traditional PCs for both structures,
we calculate the dispersion curves for two thicknesses, with and without a shell, i.e.,
d = 0.2a, and d = 0. Traditional PCs have been studied theoretically for both structures
as in Ref. [3, 10, 23].

In this paper, the dielectric rod is taken to be alumina in which the dielectric
constant is εd = 8.9 [2] and metallic shell is silver (Ag) with the plasma frequency and

BTE

1 1
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damping constant, ωp = 2π×2.175×1015 rad/s and γ = 2π×4.35×1012 rad/s, respective-
ly [24]. For both structures, the background is air with the dielectric constant εa = 1
and a = 500 nm. The situation for TM mode was different from TE mode. A finite
cut-off frequency was observed for TM mode. These cut-off frequencies for both struc-
tures are 0.53(ωa /2πc) that is equivalent to 3.18×1014 Hz. However, for the case of
both modes, when the thickness of metal coating is thick, the convergence of calcu-
lation is slow with an increasing number of plane waves because of the existence of
surface plasmon modes. In this paper, a total of 441 plane waves are used to obtain
the results for TM and TE modes [25, 26]. For these modes, we should note that there
exist several flat bands in the band structure of 2D MDPCs.The spectral region of flat
bands for triangular and honeycomb lattices in both modes can be observed in Figs. 2a,
3a, 4a and 5a, respectively (red color). Those bands with extremely flat dispersion that
originates from the two SPPs are located in this frequency range. We give the ranges
of PBGs for TM and TE modes in tringular and honeycomb structures, in Tabs. 1 and 2,
respectively. 

3.1. Dispersion curves

We draw dispersion curves of TM and TE modes by calculating photonic bands by
solving Eqs. (12) and (15). As the solution of Eqs. (12) and (15) is very difficult,
the Matlab program cannot solve it. We guess the matrices (13) and (16) as their
eigenvalues are the answers to Eqs. (12) and (15), respectively, [12, 27]. Now, by
using the Matlab program, we obtain the eigenvalues of matrices (13) and (16) which
are ω /c. We can obtain a series of eigenfrequencies ω  for different wave vectors k,
which form the band structures.

Figure 2 has shown dispersion curves with different thicknesses of the metallic
shell for TM mode in the triangular structure. The thickness of the metallic shell and
the radius of the central rod in Figs. 2a and 2b are d = 0.2a, R = 0.2a and d = 0,
R = 0.4a, respectively. The structure in Fig. 2a leads to five flat bands and four large
PBGs; TM0-1 (the gap between the zero frequency and the cut-off frequency), TM1-2,
TM2-3 and TM3-4. In Figure 2b, when in Eq. (10) we substitute d = 0, the structure

T a b l e 1. The BGR in TM and TE modes for the triangular structure in a unit of ωa /2πc.

BGR TM0-1 TM1-2 TM2-3 TM3-4 TE13-14

Triangular structure 0–0.53 0.53–0.85 0.85–1.16 1.16–1.25 0.72–0.75

T a b l e 2. The BGR in TM and TE modes for the honeycomb structure in a unit of ωa /2πc. 

BGR TM0-1 TM2-3 TM4-5 TM11-12 TE3-4

Honeycomb structure 0–0.53 0.55–0.87 0.868–1.14 1.33–1.48 0.22–0.335
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becomes PC containing an alumina rod with the radius R = 0.4a that arranges in air
with the triangular structure.

Figure 3 is the same as Fig. 2 but in the honeycomb structure. In Figure 3a,
the structure leads to seven flat bands and four large PBGs; TM0-1, TM2-3, TM4-5
and TM11-12. In Figure 3b, when in Eq. (10) we substitute d = 0, the structure becomes
PCs containing an alumina rod with the radius R = 0.4a that arranges in air with
the honeycomb structure.

Figures 4 and 5 have shown dispersion curves with different thicknesses of
the metallic shell for TE mode in the triangular and honeycomb structures, respec-
tively. The thickness of the metallic shell and the radius of an alumina rod are: d = 0.2a,
R = 0.2a (Figs. 4a and 5a) and d = 0, R = 0.4a (Figs. 4b and 5b). 

In Figures 4b and 5b, when in Eq. (11) we substitute d = 0, the structure becomes
an alumina rod with the radius R = 0.4a that arranges in air background with the tri-
angular and honeycomb structures, respectively. When this alumina rod with the radius
R = 0.2a in the triangular structure has been cladded by silver with d = 0.2a, the struc-
ture has very thin PBG (TE13-14) and one flat band in TE mode (Fig. 4a). But, the silver
shell leads to one large PBG (TE3-4) and two flat bands in the honeycomb structure
(Fig. 5a). The range of TE3-4 is (0.22–0.335(ωa /2πc)) .

We give the ranges of BGs (BGR) in TM and TE modes in the tringular and
honeycomb structures, in Tables 1 and 2, respectively.

3.2. The effect of the thickness of the metallic shell on BGW 

The gap maps in Figs. 6a and 6b have shown the effect of different thicknesses of
the metallic shell on the PBG for both modes in the triangular and honeycomb
structures, respectively. As the thickness of the metallic shell increases, the BGW
becomes larger, for both modes and in both structures.This increasing in TM mode is
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Fig. 6. Gap maps for 2D MDPCs in triangular (a) and honeycomb (b) structure. Radius of an alumina
rod is R = 0.2a, where a is 500 nm, dielectric constant of an alumina rod and air background are εd = 8.9
and εa = 1, respectively.
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higher than in TE mode. The PBGs in TM mode shift towards higher frequency but in
TE mode they shift towards lower frequency. In Figure 6 the black, cross sign (red
color) and grey areas represent the PBG for TM, TE and both modes, respectively.

3.3. The effect of different metals on BGW

In this work, we use silver as a metal for the shell. Now, copper, gold and aluminium
with the plasma frequency ωp = 2π×1.914×1015, 2π×2.18×1015, 2π×3.57×1015 rad/s
and the damping constant γ = 2π×8.34×1012, 2π×6.5×1012, 2π×19.4×1012 rad/s, res-
pectively [24], have been used in both structures.

We give the BGWs for both modes in the tringular and honeycomb structures with
different metallic shells in Tabs. 3 and 4, respectively. In all cases, the radius of
an alumina rod is R = 0.2a, where a is 500 nm, the dielectric constant of an alumina
rod and air background are εd = 8.9 and εa = 1, respectively. Large PBGs would be
obtained for aluminium because the plasma frequency of aluminium is higher than in
other metals. This can be explained by considering the skin depth in plasma. The skin
depth for static modes in plasma is given by δ = c /ωp [22], where c is the speed of light
in vacuum. As ωp becomes larger, the skin depth becomes smaller and the coupling
between dielectrics becomes weaker, so large PBG appears. But aluminium has a big
loss and is not recommended for photonic crystals [24]; silver and gold are acceptable
among the above mentioned metals because they have large PBG and a small loss. 

4. Conclusions

In this paper, different dispersion properties of 2D MDPC in two structures, triangular
and honeycomb, are studied with the use modified PWEM. Results have shown that
when we use a metallic shell on the dielectric rod instead of any other shells, PBGs in
the triangular structure become larger in TM mode and there is a very thin PBG in
TE mode, and PBGs in the honeycomb structure become larger in TM and TE modes.

T a b l e 3. The BGW for different metallic shells in the triangular structure in a unit of ωa /2πc. 

Metallic shell TM0-1 TM1-2 TM2-3 TM3-4 TE13-14

Copper 0.52 0.32 0.30 0.08 0.032
Gold 0.53 0.3264 0.31 0.082 0.032
Aluminium 0.568 0.3414 0.3156 0.092 0.0324

T a b l e 4. The BGW for different metallic shells in the honeycomb structure in a unit of ωa /2πc. 

Metallic shell TM0-1 TM2-3 TM4-5 TM11-12 TE3-4

Copper 0.52 0.3162 0.263 0.117 0.11
Gold 0.532 0.3205 0.26 0.146 0.145
Aluminium 0.5649 0.3224 0.2657 0.154 0.16
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It is worth noting that larger gaps for TM mode will appear for both structures while
larger gaps for TE mode will appear for the honeycomb structure than in the triangular
structure, when other parameters are the same. In addition, the flat bands are discovered
in 2D MD photonic band structures. For both modes, bands in the honeycomb lattice
are more flat than the triangular lattice. By comparing our results with other
[3, 10, 23, 26], we can discover that when we consider a thick metallic shell, damping
constant and honeycomb lattices, then the flat bands and PBG are much better than in
previous publications.

For both structures, the BGW will be increased by the enhancement of the thickness
of a metallic shell, but this enhancement in TM mode is higher than in TE mode. Also,
it has been observed that the PBGs in the TM mode shift towards higher frequencies
and for TE mode shift towards lower frequencies when the thickness of a metallic shell
in both structures increases. Comparing the results for different metals, we have found
that silver and gold are acceptable in all cases for PCs. Therefore, by carefully selecting
the thickness and kind of metallic shells for the two structures of 2D MDPC, moderate
PBG structures can be obtained. These results may provide theoretical instructions for
designing new PC devices using metallic-dielectric structures.
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