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Neural network model for phase-height relationship
of each image pixel in 3D shape measurement
by machine vision
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In a three-dimensional measurement system based on a digital light processing projector and
a camera, a height estimating function is very important. Sinusoidal fringe patterns of the projector
are projected onto the object, and the phase of the measuring point is calculated from the camera
image. Then, the height of the measuring point is inferred by the phase. The phase-to-height
relationship is unique at each image point. However it is nonlinearly different according to
the image coordinates. It is also difficult to obtain the geometrical model because of lens distortion.
Even though some studies have been performed on neural network models to find the height from
the phase and the related coordinates, the results are not good because of the complex relationship.
Therefore, this paper proposes a hybrid method that combines a geometric analysis and a neural
network model. The proposed method first finds the phase-to-height relationship from a geometric
analysis for each image pixel, and then uses a neural network model to find the related parameters
for the relationship. The experimental results show that the proposed method is superior to previous
neural network methods.

Keywords: machine vision, shape measurement, fringe pattern projection, phase-height relationship,
neural network.

1. Introduction

Three-dimensional (3D) measurement by using optical sensors has been extensively
studied for applications because of the intrinsic noncontact nature of the measurement
and its high speed [1]. A typical 3D measurement system based on a fringe pattern
projection (FPP) system [2—6] is constructed by using a white light projector and
a charge-coupled device (CCD) camera. The projector projects sinusoidal fringe pat-
terns onto the object, and the CCD camera acquires the patterns that are deformed by
the object’s shape. The height information of the object is encoded into the deformed
fringe pattern recorded by the CCD camera. In this measurement system, it is very im-
portant to obtain the phase-to-height relationship. There are various calibration meth-
ods to find the phase-to-height relationship [7]. The first method uses a simple look-up
table (LUT) containing the relationship between phase values and heights for each
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camera pixel [8]. The second method is based on measuring geometric parameters. This
method relies on a certain measurement setup in which the geometric parameters and
other parameters must be precisely determined in advance [9—-11]. The third method
is based on applying a least squares method to determine the phase-to-height relation-
ship by using several standard gauge blocks [12—14]. Another possibility is the use of
an artificial neural network (NN) to estimate the depth maps from the recovered phase
distributions [15—18]. A NN has the advantages of high-speed parallel calculative ac-
tivity, a powerful ability of function approximation, and resistance to noise.

Cuevas et al. used a radial basis function (RBF) based NN to calculate the height
of an object from the demonstrated phase [15]. Because CUEVAS ef al. used the training
planes with only three different heights (0, 30, 60 mm), the structure of the NN model
is simple, but the modeling error is somewhat large. They proposed another multi-layer
NN to obtain the relationship between the samples of the fringe pattern and the height
directional gradients of the measured object [16]. Using this method, the height of
the object can be recovered by integrating the height directional gradients measured
by the network. However, it is very difficult to find the training sets because they used
the fringe pattern irradiance instead of the phase value, and the modeling error is still
as large as 0.8 mm. GANOTRA et al. followed Cuevas and used a RBF NN and multi-
-layer NN to measure the height of the object [17]. The difference is the method to
find the phase value. Because the methods cannot measure a free-form surface object,
YAN et al. presented a method using a three-layer NN to measure the free-form surface
object under the condition of fringe projection [ 18]. Their NN model was used to obtain
only the phase value from the deformed fringe pattern. It was possible to measure
a free-form surface object because they used the geometric parameter measuring
method to obtain the height. Therefore, this paper suggests a new NN model based on
a mathematical equation driven by a geometric analysis. This method uses a geometric
equation for the phase-to-height relationship in each image pixel, and the related
parameters are inferred by using the neural network model. In this case, the training
set and the NN model are simple because the NN model uses two input variables for
the image coordinates. Thus, better modeling results can be obtained.

2. Conventional multi-layer neural network
for phase-to-height relationship

2.1. Geometric analysis

Figure 1 illustrates a typical setup of the generalized FPP system [12], wherein the ref-
erence plane Oxy, the camera imaging plane O'x'y’, and the projection plane O"x"y"
are arbitrarily arranged. In the figure, P represents an arbitrary point on the object; B in-
dicates the imaging point of P; D indicates the original fringe point projected at P;
and 4 and C denote the lens centers of the camera and the projector, respectively. For
convenience and clarification, the coordinates of a point in a coordinate system are
denoted by the corresponding coordinate symbols, and the symbol of the point is
chosen as the subscript. For example, point P is denoted as (x,, y,, z,), (X5 Vp> Z5)s
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Fig. 1. Generalized FPP system based on the least squares method.

and (X5 Vps2,) in coordinate systems Oxyz, O'x'y'z’, and O"x"y"z", respectively.
Considering the coordinate relations among points P, 4, and B in the system Oxyz, we
obtain

Yp~ X4 _ YPTV4 _ ZpTZ4

Xp—Xy Yp—=JX4g Zp—Zy

(1

A typical coordinate transformation of point B from system O'x'y'z’ to system Oxyz
can be described as follows:

Xp Xoy Xp
yB = yO’ + I'Ot(Z, 7/) rOt(ys ﬂ) rot(x, 0[) yl; (2)
Zp Zo Zp

where rot(z, y), rot(y, ) and rot(x, ) are the coordinate transformation matrices, and
a, [, and y are the rotation angles of the x', ', and z' axes based on the reference co-
ordinate system Oxyz, respectively. Finally, the height of the object based on the least
squares method is as follows [12]:

, = cot @+ (cyteyd)xpt(cytcesd)yy 3)
P dytd¢ +(dy+ds@)xp+(dy+ds@)yp

where coefficients ¢, to ¢5 and d|) to ds are constants determined by geometric infor-
mation such as the position and direction of the camera and the projector. The coeffi-
cients in the equation can be determined by using a nonlinear least squares algorithm
such as the Levenberg—Marquardt method [12, 20], and a conventional linear algo-
rithm can be used as well after the nonlinear least squares error is converted into a linear
format. It is important to note that in addition to the reference plane of height zero,
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using a single gauge object with a uniform height would produce indeterminate solu-
tions for the nonlinear system of equations.

2.2. Multi-layer neural network

A multi-layer neural network (MLNN) is composed of several layers of inter-connect-
ed artificial neurons. Figure 2 shows the structure of a four layer neural network for
the phase-to-height relationship. The first layer (the input layer) is used only to dis-
tribute three inputs for the u-v coordinates and the phase value to the neurons in the next
layer. Hidden layers 1 and 2 are composed of R and R, sigmoid neurons, respectively.
The output layer has one sigmoid neuron and gives the height value as the output of
the neural network. Each input is multiplied by a corresponding weight. The neuron’s
output is obtained by adding all weighted inputs and passing them through a non-linear
activation function F. In general F'is a sigmoid function. In many cases it is desirable
to provide each neuron with a trainable bias. When the training process is executed,
the weights are adjusted to minimize the squared error between the target output and
the neural network output. To accomplish the training process, a training set S is nec-
essary. The training set S is formed by training pair vectors. In the phase-to-height re-
lationship described by Eq. (3), 3D points are used as the training vectors.

Hidden Hidden
layer 1 layer 2

Fig. 2. Four-layer NN model for three inputs (, v, ¢) and one output (z,,).

Cugvas et al. proposed a NN model with one hidden layer [15]. They used 75 ra-
dial-basis functions instead of sigmoid functions. Because they assumed that the phase-
-to-height relationship is linear within the given image coordinates, they trained for
three different heights (0, 30, 60 mm). When they measured a small pyramid with an area
0f 90x90 mm and a height of 48 mm, the error of volume is 2.6% and the average error
for height is 0.88 mm [16]. The error is too large to use the NN model in the 3D mea-
surement system. In order to find the reason, we trained a NN model using three dif-
ferent heights (=25, 0, 25 mm). Then, Figure 3 shows the result that the error was as
small as 0.2 mm for the trained heights but the error was as large as 2 mm for the other
heights (z ==10 mm). Therefore, to reduce the error, the training set needs to use
more various heights for the train of NN model. If the measuring range is set to
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Fig. 3. Modeling result of plane z=0 (a) and z= 10 mm (b) for the conventional NN model using
3 different heights.

100x100x50 mm for the x-y-z axis, the training point vectors must be able to represent
the entire volume.

The view of the camera must be set in order to fully measure an area of 100x100 mm
in the x-y plane. A height depth larger than 50 mm cannot be measured because the focal
depth of the z-axis is relatively more sensitive than the x- and y-axes. To significantly
reduce the error, we used 21 different heights (every 2.5 mm from —25 to +25 mm) for
the z-axis and 127 different positions (every 10 pixels from 10 to 1270) for the u-axis.
On the other hand, we used only nine different positions (every 100 pixels from 100
to 900) for the v-axis. The reason is as follows: if the fringe pattern of the projector is
placed parallel to the v-axis of the camera, the phase value is almost the same with
respect to the v-axis, except for the slight difference made by lens distortion. Therefore,
the number of the training set S is 24003 (21 x 127 x 9). Both the inputs and output
of the network were pre- and post-processed to the range from —1 to +1 for better train-
ing of the network. Using each target point, each weight was adjusted to minimize
the error between the target height z and the neural network output z,. However, it takes
too much time to train the NN model if the training pair vectors are numerous.

It is very important to determine the number of hidden layers and the number of
nodes in each hidden layer in order to find an optimal MLNN model. Table 1 shows
the modeling results for various MLNNs according to the number of hidden layers.
The average error is the average of the NN modeling errors for 5000 equally spaced
points on the z = 0 plane. First, we used a NN model with one hidden layer. The average
error after the training is reduced to 0.73, 0.46, and 0.43 mm when the number of nodes
is increased to 100, 200, and 300, respectively. However, the error is reduced no more,
even when the number of nodes is increased above 300. In this case, we need 1501 mem-
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Table 1. Average error according to hidden layers, nodes, and memory for conventional NN model
(three inputs and one output).

Number Number Memory Average error
of hidden layers of node [mm]
100 501 (3 x 100 + 100 x 1 + 101) 0.73
1 200 1001 (3 x 200 +200 x 1 +201) 0.46
300 1501 (3 x 300 + 300 x 1 + 301) 0.43
) 5+5=10 56 3x5+5x5+5x1+11) 0.45
10+10=20 161 3 x10+10 x 10 + 10 + 21) 0.33

ories because the number of weighting factors between two nodes is 1200 and the number
of neuron biases in each node is 301. Next, we used a NN model with two hidden layers.
The average error after the training is reduced to 0.45 mm when the number of nodes
in the first hidden layer and the second hidden layer is 5 and 5, respectively. The av-
erage error is reduced to 0.33 mm when the number of nodes is 10 + 10. For 10 + 10
hidden layers, we only used 161 memories for 140 weighting factors and 21 neuron
biases. However, the error is not reduced further, even when the number of nodes is
increased above 20 (10 + 10). For three hidden layers, we cannot obtain any NN model
because the modeling error is not reduced using the back-propagation algorithm. In
conclusion, the optimal NN model is the four-layer NN model with two hidden layers
and 10 + 10 nodes. Figure 4 shows the modeling errors of the four-layer NN model of
which the average error is 0.33 mm. The error of the z = 10 plane is similar to that of
the z = 0 plane because the height of z =10 is included in the training set. Although
the errors are small in the center area, they are as large as =1 mm elsewhere. The model-
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Fig. 4. Modeling result of plane z = 0 (a) and z = 10 mm (b) for the conventional NN model using 21 dif-
ferent heights.
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ing results are better than Cuevas’ results because the NN model used more height
training vectors and more hidden-layers.

3. Proposed neural network for phase-to-height relationship

Equation (3) is the most general expression for the phase-to-height relationship.
The equation has three inputs such as the image coordinates (xz, y;) and the phase
value ¢. However, a NN model with three inputs needs a 3D complex training set,
and this makes it difficult to train the NN model. Therefore, we propose a simplified
NN model that reduces the number of the inputs in the phase-to-height relationship.
If the image coordinates are constant in Eq. (3), the equation is simplified by

2y = et < @
dy+d|¢ a+¢

where ' = c{/d|, a' = dj/d{, and b' = (cy—c|dy/d|)/d|. Consider the physical
meaning of #’, a’, and b'. If the fringe patterns set to be parallel to the v-axis of the image
plane, Fig. 1 can be expressed in the x-z plane because the phase value is constant for
the v-axis. Figure 5 shows the x-z plane including the image coordinates (1 = xz) for
any v-coordinate (v = yj) in the measurement system of Fig. 1. The points C and P
are the optical center of the image lens and the optical center of the projection lens,
respectively. The height of the object is obtained by finding the intersection point of
the projection line and image line. If H is the height of the light source from the ref-

Light plane
source

cenjér line

[
>
X

(0, 0) Reference plane

Fig. 5. Plane analysis for phase-to-height relationship.
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erence plane, the equation of projection line PG with angle 8 about the z-axis can be
easily obtained. The equation of image line CD can also be obtained when the coor-
dinate of the camera focus is (x(, zy) and the angle of the image line about the z-axis
is (a+ ). The height of an intersection point of two lines PG and CD can be obtained
by [19]

, = H+ Xg— (H—-zy)tan(ax+ y)
p tan(a+ w) — tan(8)

)
Then, the relationship between the real phase € and the fringe phase ¢ is as follows:

A _ k(9= 9y

tan(#) = —r = % = Nn(9— ) (6)

where k, 77 and ¢, are constant. When the height of the object is measured from
the specific image coordinates (xz, y3), itis determined only by @ because tan(a + y)
is constant. Then, in order to compare Eq. (5) with Eq. (4), it can be rewritten as

e (H-zy)tan(x+ ¥) —x, o b

_ = _ 7
“ @n(a+ ) - (- o) A ¢ @
where
H=hn' ®)
a = 7ar — tal’l(a+ l//) + ¢0 (9)
n
b= b = (H—zy)tan(a+ y) X (10)

n n

Therefore, /' is the height of the light source from the reference plane, and a' and b’
are variables determined by the image coordinates (x5, yp). If the fringe phase mea-
sured from an image coordinates is known, the height of the object can be obtained.
Because the height is the z-coordinate, the x- and y-coordinates can be calculated by
using a coordinate transformation equation such as Eq. (2). The variables a and b in
Eq. (7) can be obtained if the corresponding phase values are measured for the given
heights in each image pixel. The values a and b are obtained by using a least squares
method for three more different heights. Figure 6 shows the proposed NN model.
The input of the NN model is comprised of x- and y-coordinates of the image pixel,
and the output is the coefficients of Eq. (7). When a phase value in a specific image
pixel is measured, the height can be estimated because the NN model gives the coef-
ficients. The proposed NN model used only 1143 (127 x 9) training members because
the model needs a 2D training set. Fewer training members result in a faster training
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Fig. 6. Neural network model for two inputs (u, v) and two outputs (a,,, b,,,).

time. Therefore, the training speed is about 20 times faster than that of the case using
a 3D training set.

Table 2 shows the modeling results for various MLNN according to the number of
hidden layers for the proposed model. Similar to previous experiments, the average
error is the average of NN modeling errors for 5000 equally spaced points on the z =0
plane. First, a NN model for one hidden layer was trained. When the number of nodes
from 20 to 100 was increased, the average error after the training was reduced from
0.11 to 0.05 mm. Although the number of nodes was increased above 100, the error
was not reduced. In this case, 502 memories are needed because the number of weight-
ing factors is 400 and the number of neuron biases is 102. Next, a NN model with two
hidden layers was trained. When the number of nodes from 10 (5 + 5) to 40 (20 + 20)
was increased, the average error after the training was reduced from 0.28 to 0.05 mm.
The error was not reduced further even when the number of nodes was increased
above 40522 memories are needed for 480 weighting factors and 42 neuron biases. In
conclusion, it is possible to reduce the average error to 0.05 mm if the memory of
the training weights is increased regardless of the number of hidden layers in the pro-

Table 2. Average error according to hidden layers, nodes, and memory for the proposed NN model
(two inputs and two outputs).

Nurr}ber Number Memory Average error
of hidden layers of node [mm]
20 102 (2 x 20 +20 x 2 +22) 0.11
1 50 252 (2 x50 + 50 x 2+ 52) 0.08
100 502 (2 x 100 + 100 x 2 + 102) 0.05
5+5=10 57T(2x5+5%x5+5x2+12) 0.28
5 10 +10=20 162 (140 +22) 0.13
15+15=30 317 (285 +32) 0.07

20+20=40 522 (480 + 42) 0.05
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Fig. 7. Modeling result of plane z = 0 (a) and z = 10 mm (b) using the proposed NN model.

posed NN model. Figure 7 shows modeling errors for the z = 0 and z = 10 planes, and
the average error is 0.05 mm when the three-layer NN model used one hidden layer
with 100 nodes. The results show that the errors are very small at the border area as
well as in the center area.

4. Experiments

Figure 8 shows 3D measurement equipment using cameras and a beam projector.
The equipment consists of black and white CCD cameras (AOS MPX1350,
1280%1024 pixels, and 8-bit data depth), a digital light processing (DLP) projector
(LG HS200G, 800x600 pixels), a personal computer for image processing, and a three-
-axis stage for camera calibration. The stage has a repeatability accuracy of 0.001 mm,
and the z-axis is only used to obtain focuses of the projector and camera during

Fig. 8. 3D measurement equipment using the camera and projection
Moire.
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the calibration for 3D measurement. In the experiments, the basic period of the fringe
pattern was set to eight pixels, and the eight-bucket algorithm with eight different phas-
es was used in the phase shift method. Because the horizontal resolution of the projector
is 800 pixels, the gray code patterns of seven bits were necessary to distinguish 100 dif-
ferent periods. The measuring range was set to 100x100x50 mm for the x-y-z axis be-
cause the focal depth of the z-axis is relatively sensitive to the x- and y-axes.

The h—@ relationships for 21 different heights (every 2.5 mm from —25 to +25 mm)
are used to find the three unknown constants (a, b, H) in Eq. (9). From the calibration,
H was found to be 275 mm regardless of the image coordinates. This means that
the focus of the projector lens was 275 mm from the reference plane. The variables a
and » must be found for every image pixel. Figure 9 shows the experimental results
for the coefficients a and b for the horizontal line of v =500 in the image plane of
the camera with 1280x1024 pixels. As the position of image pixel u increases, the value
of a also decrases from 500 to —200, whereas the value of b decreases from 160000 to
90000. Thus, the graph for b is plotted as 5/100 to adjust the scale, as shown in Fig. 9.

1500 [~~~

o _\_‘"u-‘__\_

- 1000 - S
s 1000 Experimental b/100
o - - - -+ NN modeling b/100
S 500 |- Experimental a
© e NN modeling a
> T

0 T
"‘_ﬂ*—w,
0 200 400 600 800 1000 1200
Image pixel

Fig. 9. Comparison between experimental values and NN model for a and b.

When the experimental values of a and b are obtained for each pixel, two million
memories for 1280x1024 pixels are necessary. However, only 500 memories are
enough if we train a 2x2 NN model as shown in Table 2. All of the network weights
and neuron biases must be set to initial values before training starts. It is common prac-
tice with a NN to randomize the weights to small numbers. All inputs, outputs, weights,
and biases are normalized. We used 1143 (127x9) 2D vectors as a training set because
the 2x2 NN model has two inputs. It took 25 min for the training of 100000 iterations.
As shown in Fig. 9, the blue dashed line represents modeling results for coefficient b,
and the black chain line represents modeling results for coefficient a. We know that
the two modeling lines are nearly equal to the experimental lines, respectively. Next,
the other heights are measured using the modeling coefficients a and b in Eq. (9). Al-
though Fig. 7 shows the modeling errors for the z = 0 and z = 10 planes, the errors are
very large at the extreme border area. However, the border area is excluded in the mea-
surement system because of lens distortion. The error is greatly reduced if 90% of
the total image area is considered except the extreme border area. Figure 10 shows
the modeling errors for the z = 20 and z = —20 planes when the image area is 1180x%900.
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Fig. 10. Modeling result of plane z = 20 mm (a) and z = -20 mm (b) using the proposed 2x2 NN model.

The error shapes are similar to those of Fig. 7 except the extreme border area. The mod-
eling errors in both planes are smaller than 0.01 mm.

5. Conclusions

A conventional NN model for the phase-to-height relationship has three inputs and one
output in 3D shape measurement. The model needs a 3D training set to train the overall
measuring volume. It is very difficult to train the NN model if the training members
are too many. Therefore, this paper proposes a two-stage analysis method to obtain
the phase-to-height relationship. After obtaining the phase-to-height relationship in each
image pixel, the corresponding coefficients of the relationship are trained by the pro-
posed NN model. The proposed NN model has two inputs and two outputs instead of
three inputs and one output. The merit of a NN model with two inputs is that it is pos-
sible to use a 2D training set. The training time is faster and the accuracy is improved
when 2D training members are used. Above all, the modeling error is significantly re-
duced from 0.33 to 0.05 mm. In conclusion, until now, it has been difficult to use
the conventional NN model because of large modeling errors. Because the proposed
NN model is based on accurate phase-to-height relationships and a short training time,
it is possible to measure the accurate height of an object in 3D measurement.
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