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SOLVING LINEAR FRACTIONAL MULTILEVEL PROGRAMS 

The linear fractional multilevel programming (LFMP) problem has been studied and it has been 
proved that an optimal solution to this problem occurs at a boundary feasible extreme point. Hence 
the Kth-best algorithm can be proposed to solve the problem. This property can be applied to 
quasiconcave multilevel problems provided that the first (n – 1) level objective functions are explicit-
ly quasimonotonic, otherwise it cannot be proved that there exists a boundary feasible extreme point 
that solves the LFMP problem. 
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1. Introduction 

Multilevel programming involves optimization problems where the constraint re-
gion of the first level problem is implicitly determined by the second level problem 
and the constrained region of the second level problem is determined by the third level 
problem, and so on. It has been applied to decentralized planning problems involving 
a decision process with a hierarchical structure. In terms of modeling, multilevel prob-
lems are programming problems which have a subset of their variables controlled by 
the optimal solution of another level problem parameterized by the remaining varia-
bles. The second level decision maker optimizes his objective function under the given 
parameters from the first level decision maker. This one, with complete information 
on the possible reactions of the second level decision maker, selects the parameters so 
as to optimize its own objective function. 
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Multilevel programs can be formulated as: 
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where 1 2
1 2, , ..., nnn n

nx R x R x R∈ ∈ ∈ are the variables controlled by the first, second and 
the nth level decision maker, respectively. 1 2, , ..., : ,n

nf f f R R→  1 2 ... .nn n n n= + + +
nS R⊂ defines the common constraint region and 

 ( ) ( ){ }1 2 1 1 2, , ..., : , , ...,nn
n n n nS x x x x R x x x S− = ∈ ∈  

Let Sn–1 be the projection of S onto 11 2 ... .nnn nR R R −× × × Then for each (x1, x2, ..., xn–1) 
∈ Sn–1, the nth level decision maker solves the problem 
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The feasible region of the first level decision maker, called the inducible region 
represented by (IR)1, is implicitly determined by the second level optimization prob-
lem and the feasible region of the second level decision maker, represented by (IR)2, is 
implicitly determined by the third level optimization problem, and so on. Likewise, 
the feasible region of the (n – 1)th level decision maker, called the inducible region 
represented by (IR)n–1, is implicitly determined by the nth level optimization problem 

( ) ( ) ( ){ }* *
1 2 1 1 2 2 11
, , ..., : , , ...,n n nn

IR x x x x S x S x M x −−
= ∈ ∈ ∈  

where M(xn–1) denotes the set of all optimal solutions of problem (2). 
Here we assume that S is not empty and that for any decision taken by the (n – 1)th 

level decision maker, the nth level decision maker has some room to respond, i.e. 
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M(xn–1) ≠ φ. Likewise, for any decision taken by the (n – 2)th level decision maker, the 
(n – 1)th level decision maker has some room to respond, i.e. M(xn–2) ≠ φ, and so on. 
Likewise, for any decision taken by the first level decision maker, the second level 
decision maker has some room to respond, i.e. M(x1) ≠ φ.  

The above defined multilevel programming problem is a non-convex optimization 
problem and its main feature is that, unlike other general mathematical problems, the 
multilevel problem may not possess a solution, even when f1, f2, ..., fn are continuous 
and S is compact. In particular, difficulties may arise when the M(xi) are not single 
valued for all permissible xi, 1, 2, ..., 1.i n= −  

1.1. Formulation of the problem 

In this paper, the linear fractional multilevel programming (LFMP) problem is 
considered in which all the objective functions are linear fractional and S is a polyhe-
dron, which is assumed to be nonempty and bounded. Using the common notation in 
multilevel programming, the LFMP problem can be written as follows: 
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where for { }, 1, 2, ...,i j n∈ ijc and ijd are vectors of conformable dimensions and αi and 

βi are scalars, { }1, 2, ..., .i n∈ We require that 

1 1 2 2 ... 0,i i i in nd x d x d xβ + + + + ≠ { }1, 2, ..., ,i n∈ ( )1 2, , ..., .nx x x S∀ ∈  

We assume that  

{ } ( )1 1 2 2 1 2... 0, 1, 2, ..., , , , ...,i i i in n nd x d x d x i n x x x Sβ + + + + > ∈ ∀ ∈  
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If this assumption is not valid, it suffices to consider the linear fractional objective 
function 

1 1 2 2

1 1 2 2

...

...
i i i in n

i i i in n

c x c x c x
d x d x d x

α
β

+ + + +
−

+ + + +
  

Moreover, it is also assumed that M(xi) is a singleton set ( )1 2, , ..., .i ix x x S∀ ∈  
Fractional programming with only one level of decision making has received re-

markable attention in the literature [5]. It is worth mentioning that objective functions 
which are ratios are frequently used in stochastic programming problems. 

1.2. Approaches to solving linear fractional multilevel programs 

Various approaches have been proposed in the literature to make sure that the 
multilevel problem is well posed. The most common one is to assume that for each 
value of the first level variable x1 there is a unique solution to the second level prob-
lem, i.e. the set M(x1) is a singleton set 1 1.x S∀ ∈ Likewise for each value of the  
(n – 1)th variable 1,nx − there is a unique solution to the nth level problem, i.e. the set 
M(xn–1) is a singleton set ( )1 2 1 1, , ..., .n nx x x S− −∀ ∈  Other approaches focus on the way 

of selecting ( )*
1i ix M x −∈ , in order to evaluate ( )1 1 2, , ...,i if x x x−  when ( )1iM x −  is not 

a singleton. Among the rules that have been proposed, it is worth mentioning the op-
timistic or weak approach and the pessimistic or strong approach. The first one as-
sumes that the (i – 1)th level decision maker is able to influence the ith level decision 
maker so that the latter always selects the variables ix  to provide the best value of 

1.if − In the pessimistic approach the (i – 1)th level decision maker behaves as though 
the ith level decision maker always selects the optimal decision which gives the worst 
value of 1.if −  Finally, other approaches consider a local reduction of the problem. 

Several approaches have been given for solving bilevel and multilevel linear frac-
tional programming problems. In the weighted approach to the bilevel linear fractional 
programming problem, a non-dominated solution set is obtained and the objective 
functions for both levels are combined into one objective function by finding appro-
priate weights and the relative weights represent the relative importance of the objec-
tive functions [12]. A globally convergent algorithm has also been proposed to solve 
bilevel linear fractional programming problems [13]. Necessary and sufficient opti-
mality conditions have been already given for bilevel multiobjective programming 
problems [9]. 

In this paper, we give a geometrical characterization of the optimal solution to the 
LFMP problem in terms of what is called a boundary feasible extreme point. This 
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result extends the characterization proved by Liu and Hart for the linear bi-level pro-
gramming problem [10, 11]. This property is the key to concluding that the Kth-best 
algorithm can be used to solve the linear fractional bilevel programming problem [4]. 
This paper extends this work and uses the Kth-best algorithm to solve linear fractional 
multilevel programming problems. Also, we give a brief note on the quasiconcave 
multilevel problem. 

The paper is organized as follows. The next section provides the main theoretical re-
sult on optimality. Then the Kth-best algorithm is proposed to solve the problem and a 
formal proof of its correctness is given. Finally, the last section concludes the paper with 
final remarks on more general multilevel problems for which the characterization of the 
optimal solution is still valid and the Kth-best algorithm can be applied to solve them. 

2. Theoretical properties 

Before proving the main result on the optimal solution of problem (3), we list 
some preliminary definitions and results. 

Definition 1 [6]. Let f be a real-valued function defined on a convex subset D 
of Rn, then 

1. f is quasiconcave on D iff [ ]1 2, , 0, 1 ,d d D λ∈ ∈  and ( ) ( )1 2f d f d≤ ( )1f d⇒

( ) 1 21 .f d dλ λ⎡ ⎤≤ − +⎣ ⎦ The function f is quasiconvex iff  –f is quasiconcave. 

2. f is semistrictly quasiconcave on D iff ( )1 2 1 2, , , 0, 1d d D d d λ∈ ≠ ∈  and 

( ) ( )1 2f d f d< ( ) ( )1 1 21 .f d f d dλ λ⎡ ⎤⇒ < − +⎣ ⎦ The function f is semistrictly quasi- 

convex iff –f is semistrictly quasiconcave. 
3. f is explicitly quasiconcave on D iff it is quasiconcave and semistrictly 

quasiconcave on D. The function f is explicitly quasiconvex iff –f is semistrictly 
quasiconcave. 

4. f is explicitly quasimonotonic on D iff it is explicitly quasiconcave and explicit-
ly quasiconvex on D. 

Note that the linear fractional functions 
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are explicitly quasimonotonic on S if 1 1 2 2 ... 0i i i in nd x d x d xβ + + + + ≠  in S. 
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On the other hand, since f1, f2, ..., fn are quasiconcave and S is a nonempty and 
compact polyhedron, the LFMP problem is a particular case of the quasiconcave mul-
tilevel problem. Hence, 

• The feasible region of the LFMP consists of the union of connected faces of the 
polyhedron S. As a consequence, in general, the inducible region is a nonconvex set. 

• There exists an extreme point of IR, thus an extreme point of the polyhedron S, 
which is an optimal solution of the LFMP problem. 

Definition 2 [9]. A point ( ) ( )1 2 1
, , ..., n n

x x x IR
−

∈ is a boundary feasible point if 

there exists an edge E of S such that ( )1 2, , ..., nx x x  is an extreme point of E and the 

other extreme point of E is not an element of ( ) 1n
IR

−
. 

Now we characterize the optimal solution to the LFMP problem. To begin, let us 
consider the relaxed problem 
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Note that f1 is a quasiconcave function and S is a nonempty and compact polyhedron, 
so that there is an extreme point of S which solves the above problem. If this is a point of 
the induced region ( ) 1

,
n

IR
−

then it is an optimal solution to the LFMP problem. 
In general, by solving the relaxed problem we will not obtain an optimal solution 

of the multilevel problem, since decision makers usually have conflicting objectives. 
In this case, to characterize in a more precise way the geometry of the optimal solution 
to the LFMP problem, we will prove in the next theorem that it occurs at a boundary 
feasible extreme point. 

Theorem 1. If there exists an extreme point of S not in the induced region ( ) 1n
IR

−

which is an optimal solution of the relaxed problem (4), then there exists a boundary 
feasible extreme point that solves the LFMP problem. 

Proof: As previously mentioned, there exists an extreme point of S which is an 
optimal solution of the LFMP problem. Let this point be ( )1 2, , ..., .nx x x  If it is 
a boundary feasible point, the proof is complete. If this is not so, every extreme point 
adjacent to ( )1 2, , ..., nx x x is in ( )1IR  and 

 ( ) ( )1 1 2 1 1 2, , ..., , , ...,n nf x x x f x x x≤  (5) 
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for all points ( )1 2, , ..., nx x x  adjacent to ( )1 2, , ..., .nx x x Firstly, we prove that there must 

be an extreme point ( )1 2ˆ ˆ ˆ, , ..., nx x x adjacent to ( )1 2, , ..., nx x x  such that 

 ( ) ( )1 1 2 1 1 2ˆ ˆ ˆ, , ..., , , ...,n nf x x x f x x x=  (6) 

For this purpose, let us consider the relaxed problem (4). Taking into account (5), 
( )1 2, , ..., nx x x is a local extreme-minimum point of 1f  in S. Since 1f  is quasiconcave 

and explicitly quasiconvex on S, we can conclude that ( )1 2, , ..., nx x x  is a global mini-
mum of the relaxed problem (4), i.e. 

 ( ) ( ) ( )1 1 2 1 1 2 1 2, , ..., , , ..., , , , ...,n n nf x x x f x x x x x x S≤ ∀ ∈  (7) 

By hypothesis there exists an extreme point ( )1 2, , ..., ny y y S∈ but not in the in-

duced region ( )1IR  being an optimal solution of problem (4). Thus 

( ) ( )1 1 2 1 1 2, , ..., , , ...,n nf x x x f y y y=  

Notice that ( )1 2, , ..., ny y y  cannot be adjacent to ( )1 2, , ..., nx x x  as is not a bounda-
ry feasible extreme point. 

Since 1f  is continuous, quasiconvex and explicitly quasiconcave on S, the opti-
mum set of problem (4) is the convex hull of some extreme points of S, thus itself 
a polyhedron [7]. It follows that there exists an edge path in the optimum set of prob-
lem (4) from ( )1 2, , ..., nx x x  to ( )1 2, , ..., .ny y y  Hence, there must be an extreme point 

( )1 2ˆ ˆ ˆ, , ..., nx x x adjacent to ( )1 2, , ..., nx x x  belonging to the optimum set of problem (4), 
thus verifying (6). 

If ( )1 2ˆ ˆ ˆ, , ..., nx x x  is a boundary feasible extreme point, then we can say that if there 
exists an extreme point not in (IR)1 which is an optimal solution of the relaxed prob-
lem (4), then there exists a boundary feasible extreme point that solves the problem for 
the first two levels. If this is not so, we consider the extreme point ( )1 2ˆ ˆ ˆ, , ... nx x x  in-

stead of ( )1 2, , ..., nx x x  and repeat the same argument. Thus we get an extreme point 

( )1 2, , ..., nx x x� � �  adjacent to ( )1 2ˆ ˆ ˆ, , ..., nx x x  verifying (6). 
If this new point is a boundary feasible extreme point, then the proof is complete. 

Otherwise, by repeating the process, because the number of extreme points of S is 
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finite, eventually a boundary feasible extreme point will be reached in a finite number 
of steps, which solves the two level problem. 

Again, we formulate the second relaxed problem 
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By repeating this process, we can prove that if there exists an extreme point of S 
not in the induced region ( )2IR which is an optimal solution of the relaxed prob-
lem (8), then there exists a boundary feasible extreme point that solves the three level 
problem. 

By repeating the same process and after formulating the (n – 1)th relaxed problem, 
we can prove that if there exists an extreme point of S not in the induced region 
( ) 1n
IR

−
 which is an optimal solution of the (n – 1)th relaxed problem, then there exists 

a boundary feasible extreme point that solves the LFMP problem. 

Remark 1. As here we use the assumption that for each value of the first level prob-
lem there exists a unique solution to the second level problem, i.e. the set ( )1M x  is a sin-

gleton 1 1.x S∀ ∈  Likewise, ( )1nM x −  is a singleton set ( )1 2 1 1, , ..., .n nx x x S− −∀ ∈  But if 

( )1M x  is not a singleton 1 1,x S∀ ∈  then problems are caused by the existence of multiple 
optima when solving the second level problem for a given 1 1.x S∈  This means that the 
inducible region is no longer formed by the union of the faces of the polyhedron S. More-
over, the first level decision maker may not be able to reach his optimal decision while 
forcing the optimal decision of the second level decision maker to be unique. 

Let us discuss the following example of a three level LFMP problem: 
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where S is ( ){ }1 2 3 3, ,x x x R∈  with the following constraints: 

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

2 20, 12, 3 4 19
4 5, , , 0

x x x x x x x x x
x x x x x x

+ + ≤ + + ≤ − + ≤
− + ≤ ≥

 

Here, if we give some value to 1,x  e.g. 1 1,x = the second level problem has multi-
ple optima and then if we consider these multiple optima, the third level problem has 
multiple optima corresponding to these optima. 

This fact means that the inducible region does not consist of the union of the faces 
of the polyhedron S. Moreover, the optimization problem of the first level decision 
maker is not well defined. In order to completely evaluate ( )1 2 31, , ,f x x it is necessary 
to give a rule for selecting ( )2 1 .x M∈  Likewise, a rule for selecting 3x  is necessary. If 
we use the optimistic approach and start with 1 1,x = we notice that we do not get an 
extreme point of the polyhedron S and if we apply the pessimistic approach, then no 
optimal solution to the problem exists. 

Remark 2. It is well known that the Charnes and Cooper (C&C) transformation 
allows us to reformulate a linear fractional programming (LFP) problem as a linear 
programming (LP) one [5]. Hence, we consider the applicability of the C & C trans-
formation to reformulate, in a similar way, the LFMP problem as a linear multilevel 
programming problem. Having this motivation in mind, assume that  

( ){ }1 2 1 1 2 2 1 2, , ..., : ... , 0, 0n n nS x x x A x A x A x b x x= + + + ≤ ≥ ≥   

where b is a vector and 1 2, , ..., nA A A are matrices of the appropriate dimensions. 
For any fixed ( )1 2 1 1, , ..., ,n nx x x S− −∈  let  

1 11 1 12 2 1

1 and
... n n

n n n n n n

z y zx
d x d x d xβ − − − −

= =
+ + + +

 

Then the nth level decision maker has to solve the following LP problem: 
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By embedding this problem in the LFMP problem (3), we get: 
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 (9) 

Notice that the (n – 1)th level objective function contains the nonlinear terms 
1 2 1, , ..., .nx z x z x z−  In this case, it definitely makes no sense to consider 1 1n ny x z− −= as 

a single variable because 1 2 1, , ..., nx x x − are the variables controlled by the first, second, …, 
(n – 1)th level decision makers, respectively, while z is controlled by the nth level one. 
Since the reformulated problem is apparently more complicated to solve than the orig-
inal one, it does not seem very tempting to directly use the C&C transformation in the 
process of solving the LFMP problem. In the next section, we will see that it can be 
used to solve LFP problems arising in successive iterations of the Kth-best algorithm. 

The Kth-best algorithm. Bearing in mind that there is an extreme point of S 
which solves the LFMP problem, an examination of all the extreme points of the pol-
yhedron S constitutes an algorithm that will find the solution of the LFMP problem in 
a finite number of steps. This is unsatisfactory, however, since the number of extreme 
points of S is, in general, very large. Nevertheless, in light of Theorem 1, we can pro-
pose the Kth-best algorithm, a more successful enumeration scheme, for solving the 
LFMP problem. This algorithm was first proposed by Bialas and Karwan for solving 
the linear bilevel programming problem [2]. 

According to this algorithm, an optimal solution to the relaxed problem (4),
[ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  is first considered. If this is a point of IR, then it is an optimal solu-

tion of the LFMP problem. If this is not so, the set of its adjacent extreme points, 
[ ]1 ,W  is considered. Then, the extreme point in [ ]1 = W W which provides the best val-

ue of f1 is selected to test whether it is a point of IR. If it is, then the algorithm finishes. 
If this is not so, the point is eliminated from W and its adjacent extreme points with 
a worse value of f1 are added to W. The algorithm continues by selecting the best ex-
treme point in W with respect to f1 and repeating the process. 
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Algorithm 

Step 1. Let [ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  be an optimal solution to problem (4). 

Let [ ] [ ] [ ]( ){ }1 1 1
1 2, , ..., nW x x x=  and T φ= .  

Set 1.j =  
Go to Step 2. 
Step 2. Set [ ]

1 1
jx x=  and solve the second relaxed problem. 

Let ( )* * *
2 3, , ..., nx x x  be its optimal solution. 

If [ ] [ ] [ ]* * *
2 2 3 3, , ...,j j j

n nx x x x x x= = = , go to step 5; [ ] [ ] [ ]( )1 2, , ...,j j j
nx x x  is a global opti-

mum for the two level problem. 
Otherwise go to step 3. 
Step 3. Let [ ]jW  denote the set of adjacent extreme points of [ ] [ ] [ ]( )1 2, , ..., .j j j

nx x x  

Let [ ] [ ] [ ]( ){ }1 2, , ...,j j j
nT T x x x= ∪  and [ ]( ) \ .jW W W T= ∪  

Go to step 4. 
Step 4. Set 1j j= + and choose [ ] [ ] [ ]( )1 2, , ...j j j

nx x x  so that 

[ ] [ ] [ ]( ) ( ) ( ){ }1 1 2 1 1 2 1 2, , ..., min , , ..., : , , ..., .j j j
n n nf x x x f x x x x x x W= ∈  

Go to Step 2. 
Step 5. Set [ ]

1 1 ,jx x=  [ ]
2 2

jx x=  and solve the third relaxed problem. 

Let ( )** ** **
2 3, , ..., nx x x  be its optimal solution. 

If [ ] [ ] [ ]** ** **
2 2 3 3, , ...,j j j

n nx x x x x x= = = , go to step 6; [ ] [ ] [ ]( )1 2, , ...,j j j
nx x x  is a global op-

timum for the three level problem. 
Otherwise go to step 3. 
Step 6. On continuing the process, solve the (n – 1)th relaxed problem. 

Let ( )2 3, , ..., nx x x′ ′ ′  be its optimal solution. 

If [ ] ,j
n nx x′ =  go to step 5. [ ] [ ] [ ]( )1 2, , ...,j j j

nx x x  is a global optimum for LFMP problem. 

Now we give a formal proof of the correctness of this algorithm. For this purpose 
let [ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( )1 1 1 2 2 2

1 2 1 2 1 2, , ..., , , , ..., , ..., , , ...,m m m
n n nx x x x x x x x x  denote the m ordered 

extreme point solutions to the relaxed problem (4), i.e. 
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[ ] [ ] [ ]( ) [ ] [ ] [ ]( )1 1 1
1 1 2 1 1 2, , ..., , , ..., , 1, 2, ..., 1j j j j j j

n nf x x x f x x x j m+ + +≤ = −
 

We will prove that the ( j – 1)th best extreme point of S, [ ] [ ] [ ]( )1 1 1
1 2, , ...,j j j

nx x x+ + + , is 

adjacent to [ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  or [ ] [ ] [ ]( )2 2 2

1 2, , ..., , ...,nx x x or [ ] [ ] [ ]( )1 2, , ..., .j j j
nx x x Hence, the 

algorithm successively considers an ordered sequence of extreme points and it is obvi-
ous that [ ] [ ] [ ]( )1 2, , ...,k k k

nx x x  is a global optimum to the two level problem if 

{ }
[ ] [ ] [ ]( ){ }1 21, 2, ...,

min : , , ..., .j j j
nj m

k j x x x IR
∈

= ∈ Likewise, on repeating the process and con-

sidering the m ordered extreme points to the (n – 1)th relaxed problem, the algorithm 
gives the globally optimal solution of the LFMP problem. 

Theorem 2. Let ( )1 2, , ..., nx x x be an extreme point of S. There exists an edge path 

in S from ( )1 2, , ..., nx x x to [ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  such that the value of ( )1 1 2, , ..., ,nf x x x

( ) ( )2 1 2 1 2, , ..., , ..., , , ...,n n nf x x x f x x x  is non-increasing along it. 

Proof: Assume for the time being that every extreme point ( )1 2, ..., nx x x  adjacent 

to ( )1 2, , ..., nx x x satisfies 

( ) ( )
( ) ( )

( ) ( )

1 1 2 1 1 2

2 1 2 2 1 2

1 2 1 2

, , ..., , , ...,

, , ..., , , ...,
...

, , ..., , , ...,

n n

n n

n n n n

f x x x f x x x

f x x x f x x x

f x x x f x x x

≥

≥

≥

 

Hence, ( )1 2, , ..., nx x x is a local extreme-minimum point of 1 2, , ..., nf f f  in S. Since 

1 2, , ..., nf f f  are quasiconcave and explicitly quasiconvex on S, then ( )1 2, , ..., nx x x  is 
a global minimum of the (n – 1)th relaxed problem, i.e. 

( ) [ ] [ ] [ ]( )1 1 1
1 1 2 1 1 2, , ..., , , ...,n n n nf x x x f x x x− −=  

Therefore, [ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  and ( )1 2, , ..., nx x x are extreme points of the optimum set 

of the (n – 1)th relaxed problem. Since 1 2, , ..., nf f f  are continuous, quasiconvex and ex-
plicitly quasiconcave on S, this set is the convex hull of some extreme points of S. Thus 
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there exists an edge path in this polyhedron from ( )1 2, , ..., nx x x to [ ] [ ] [ ]( )1 1 1
1 2, , ..., .nx x x Since 

all the points of this edge path are from S and have the same value of 1 2 , ..., ,nf f f this is 
the edge path we are looking for. 

Suppose now that there exists at least one extreme point ( )1 2ˆ ˆ ˆ, , ..., nx x x adjacent to 

( )1 2, , ..., nx x x such that 

( ) ( )
( ) ( )

( ) ( )

1 1 2 1 1 2

2 1 2 2 1 2

1 1 2 1 1 2

ˆ ˆ ˆ, , ..., , , ...,
ˆ ˆ ˆ, , ..., , ,...,

...
ˆ ˆ ˆ, , ..., , , ...,

n n

n n

n n n n

f x x x f x x x

f x x x f x x x

f x x x f x x x− −

<

<

<

 

Let us now consider ( )1 2ˆ ˆ ˆ, , .., nx x x  instead of ( )1 2, , ..., nx x x  and repeat the former 

process. Hence, either there exists an edge path P from ( )1 2ˆ ˆ ˆ, , ..., nx x x to [ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  

for which all points have the same value of 1 2, , ..., nf f f  and ( )1 2, , ..., nx x x  

– ( )1 2ˆ ˆ ˆ, , ..., nx x x P− is the required edge path, or there exists an extreme point 

( )1 2, , ..., nx x x� � � adjacent to ( )1 2ˆ ˆ ˆ, , ..., nx x x  such that 

( ) ( )
( ) ( )

( ) ( )

1 1 2 1 1 2

2 1 2 2 1 2

1 1 2 1 1 2

ˆ ˆ ˆ, , ..., , , ...,
ˆ ˆ ˆ, , ..., , , ...,

ˆ ˆ ˆ, , ..., , , ...,

n n

n n

n n n n

f x x x f x x x
f x x x f x x x

f x x x f x x x− −

<
<

<

� � �

…  

Next, we consider ( )1 2, , ..., nx x x� � �  and repeat the process. Since the number of ex-
treme points of S is finite, eventually an edge path will be obtained, along which the 
value of 1 2, , ..., nf f f  is non-increasing. 

Theorem 3. The (k + 1)th best extreme point of S [ ] [ ] [ ]( )1 1 1
1 2, , ...,k k k

nx x x+ + +  is adja-

cent to [ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  or [ ] [ ] [ ]( )2 2 2

1 2, , ..., , ...,nx x x or [ ] [ ] [ ]( )1 2, , ..., ,k k k
nx x x .k m<  

Proof: Let [ ]jW  denote the set of adjacent extreme points of [ ] [ ] [ ]( )1 2, , ..., .j j j
nx x x  Let 

[ ] [ ] [ ]( ) [ ] [ ] [ ]( ) [ ] [ ] [ ]( ){ }1 1 1 2 2 2
1 2 1 2 1 2, , ..., , , , ..., , ..., , , ...,k k k

n n nT x x x x x x x x x=  
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and  

[ ] [ ] [ ]( )1 2 ... \kW W W W T= ∪ ∪ ∪  

Let ( )1 2, , ..., ny y y W∈ such that 

( )
( )

( ){ }
( )

( )
( ){ }

( )
( )

( ){ }

1 2

1 2

1 2

1 1 2 1 1 2, , ...,

2 1 2 2 1 2, ,...,

1 1 2 1 1 2, , ...,

, , ..., min , , ...,

, ..., min , , ...,

, ..., min , , ...,

n

n

n

n nw w w W

n nw w w W

n n n nw w w W

f y y y f w w w

f y y y f w w w

f y y y f w w w

∈

∈

− −∈

=

=

=
…

 

Let ( )1 2ˆ ˆ ˆ, , ..., nx x x  be an extreme point of S such that  

( ) [ ]
1 2

1,2,...,

ˆ ˆ ˆ, , ..., j
n

j k

x x x W
=

∉ ∪  

Taking into account the fact that any edge path in S from ( )1 2ˆ ˆ ˆ, , ..., nx x x  to 
[ ] [ ] [ ]( )1 1 1
1 2, , ..., nx x x  must contain at least one point of W as an intermediate point, and con-

sidering the edge path provided by theorem 2, there exists ( )1 2, , ..., nw w w W∈ such that 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )

1 1 2 1 1 2 1 1 2

2 1 2 2 1 2 2 1 2

1 2 1 2 1 2

ˆ ˆ ˆ, , ..., , , ..., , , ...,

ˆ ˆ ˆ, , ..., , , ..., , , ...,

ˆ ˆ ˆ, , ..., , , ..., , , ...,

n n n

n n n

n n n n n n

f x x x f w w w f y y y

f x x x f w w w f y y y

f x x x f w w w f y y y

≥ ≥

≥ ≥

≥ ≥

…
 

Since ( )1 2, , ..., ny y y  minimizes the value of 1 2, , ..., nf f f  over the set of extreme 
points of S excluding T, then  

( ) [ ] [ ] [ ]( )1 1 1
1 2 1 2, , ..., , , ...,k k k

n ny y y x x x+ + +=  

Theorem 4. The Kth-best algorithm solves the LFMP problem. 
Proof. As a consequence of theorem 3, the Kth-best extreme point of the relaxed 

problems is adjacent to either the 1st, 2nd, …, or (k – 1)th extreme point. Thus, upon 
termination, the algorithm provides the best boundary feasible extreme point, i.e. the 
optimal solution to the LFMP problem. 
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As previously was pointed out, it is worth noting that, taking into account the 
C&C transformation, only linear problems need to be solved when applying the Kth- 
-best algorithm for solving the LFMP problem [5]. 

3. Numerical example 

Now we illustrate the algorithm with the help of a numerical example. 
Let us consider 

( )

( )

( )

( )

( )

1 2

3 4

5 6 7 8

1 2 4

,
1 3 4 5

3 4

1 2 3 4 5

,
1 3 4 5

5 8

1 2 3 4 5

, , ,
1 2 3 4 5

3 4 5 6

1 3 4 5 7

1 2min
8 2 2

where ,  solve
1 2min

6 2 3
where , ...,  solve

2min
1 2

s.t. 1
2 2 0.5

x x

x x

x x x x

x x x
x x x x

x x
x x x x x

x x x x
x x

x x x x x
x x x x x

x x x x
x x x x x

+ − +
=

− − + +

+ + + − +
=

+ + + −

+ + − + +
=

− + − + +

− + + + =

− + − +

2 3 4 5 8

1
2 2 0.5 1

0, 1, 2, ..., 8i

x x x x x
x i

=

+ − − + =

≥ =

 

Solution. First, we solve the first relaxed problem and get the optimal solution  
(0, 0.75, 0, 0, 1, 0, 1.5, 0). Now we fix 01 =x  and 2 0.75x = and solve the second level 
problem. We get its optimal solution ( )3 8, ,x x… = (0, 0.5, 0, 0.5, 0, 0). The solution  
(0, 0.75, 0, 0, 1, 0, 1.5, 0)∉(IR)1 with 1 0.0192f =  but the solution (0, 0.75, 0, 0, 1, 0, 
1.5, 0) ∈ (IR)1. Now we find all the adjacent extreme points, together with the value of 
the objective function at these points. We get the following extreme points: 
(0, 0,1, 0, 2, 0, 3, 0) with 1 0.0588,f = (0, 0, 0, 0,1, 0,1.5,1.5) with 1 0.0769,f = (0.75, 
0.75, 0, 0, 1, 0, 0, 0) with 1 0.0816,f = (0, 0.9, 0, 0.6, 0.4, 0, 0, 0)  with 1 0.1226,f =
(0, 0.5, 0, 0, 0,1,1, 0) with 1 0.2.f =  

We do a second iteration, as 1(0, 0,1, 0, 2, 0, 3, 0) ( )IR∉  with 1 0.0588f = and 
search for the extreme points. We repeat the process and on the fourth iteration we get 
the optimal solution 1(0.75, 0.75, 0, 0, 1, 0, 0, 0)  ( )IR∈  with 1 0.0816.f =  
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Now we solve the second relaxed problem by fixing 1 0.75,x =  2 0.75.x =  We get 
the optimal solution 2(0.75, 0.75, 0, 0,1, 0, 0, 0) ( ) .IR∉ Now we fix 3 0,x = 4 0x =  and 
solve the third level problem. We get the solution 5 6 7 8( , , , ) (0,1, 0, 0).x x x x =  Now the 
solution 2(0.75, 0.75, 0, 0, 0, 1, 0, 0) ( ) .IR∉  Hence, we go on searching the adjacent 
extreme points by solving 

5 6

5 7

5 8

1
0.5 0.5
0.5 0.5

0, 5, 6, ..., 8i

x x
x x
x x

x i

+ =
− + = −
− + = −
≥ =

 

We get only one extreme point with positive values, which is (0.75, 0.75, 0, 0, 1, 
0, 0, 0) with 2 0.7777.f =  

4. Conclusion 

It is worth pointing out that the proof of Theorem 1 is mainly based on the fact 
that the objective functions of the first (n – 1) levels are explicitly quasimonotonic, 
otherwise we could not prove the existence of a boundary feasible extreme point. 
Hence, we can conclude that Theorem 1 is still valid for more general problems. 

Indeed, let us consider the quasiconcave multilevel programming problem, in 
which 1 2, , ..., nf f f  are continuous functions; 1f  is quasiconcave on S; 2f  is quasicon- 
cave on ( )1S x  for all 1 1, ...,x S∈ likewise nf  is quasiconcave on ( )1 2 1, , ..., .nS x x x −  S is 

a polyhedron, which is assumed to be nonempty and bounded, and the ( )iM x  are 

single-valued ( )1 2 1 1, , ..., .i ix x x S− −∀ ∈  This model includes, as important particular 
cases, a wide class of multilevel problems where the objective functions are linear, 
fractional (ratios of concave nonnegative functions and convex strictly positive func-
tions) or multiplicative (the product of a set of concave functions, each strictly posi-
tive) [8]. 

As noted previously, for this problem Calvete and Gale proved that IR is formed 
by the union of connected faces of S [3]. Hence, there exists an extreme point of the 
polyhedron S that solves it. Under the additional assumption that the objective func-
tions of the first (n – 1) levels are explicitly quasimonotonic, the proof of Theorem 3 
can be replicated step by step to show that there exists a boundary feasible extreme 
point that solves the quasiconcave problem. Notice that we do not require any addi-
tional assumption on the nth level objective function, so that this result is still valid for 
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multilevel problems in which the first level objective function is linear or linear frac-
tional and the objective functions of the other levels are linear, fractional or multipli-
cative. The same can be said with regard to the Kth-best algorithm. Under the men-
tioned assumptions, an optimal solution to the quasiconcave multilevel problem can be 
obtained by checking the best of the extreme points adjacent to all previously analyzed 
extreme points, until a feasible solution is found. 
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