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On a Possibility of Aberration Determination for the 
Electrostatic Lenses with the Help of Resistance Network

The transformation of the electron trajectory equation for the electrostatic field with a rotational symmetry is given, allo­
wing the numerical calculation of the nonparaxial trajectory based on the potential distribution U0(z) measured along the 
symmetry axis of the system. The positions of the foci, focal lengths, principal planes and the constants of the spherical Cipi, , 
and chromatic Cr/,r aberrations as well as distortion Q  are determined for the immersion lenses of two types. The results 
prsented in the form of tables and graphs are compared with those given by other authors. It is pointed out that the typical 
resistance network makes it possible to determine some aberrations of the electron-optical systems.

I. Introduction

A complete description of a nonrelativistic electro­
static electron-optical system with a rotational 
symmetry requires the solving of a nonlinear diffe­
rential equation

The reason seems to lie in a common opinion that 
the errors due to discretization (unavoidable in any 
network) do not allow the trajectory determination 
with the accuracy sufficient for the aberration exami­
nation.

r „ _  1 + (Q 2 \  W j z . r )  _ r , d U (z , r y | _  Q 
2U{z,r) L dr dz j

where
z — coordinate along the symmetry axis,
r — radial coordinate
U(z,r) — potential distribution function.

The symbol' denotes differentiation with respect to 
the z coordinate.

The analytical solution of equation Π) is known 
for a few special cases only which in general are of 
no practical importance. The reason for that is not 
only the impossibility of solving the trajectory equ­
ation but also the lack of an analytical form of the 
actual potential distribution U(z,r),  the conse­
quence of the difficulties appearing when solving 
analytically the boundary problems of the Laplace 
type.

The research centres working on optical electronics 
are usually equipped with the resistance networks, 
however the research done with the help of these 
networks concerns mainly the electrostatic field 
distribution rather than the trajectory determination. 
In the available literature no paper has been found 
by the author treating of the aberration determi­
nation on the base of a typical resistance network.

II. Numerical method of the electron tra­
jectory determination applicable for the 
case of discrete potential distribution in 

the resistance network

Assuming the Gaussian optics approximation the 
trajectory equation may be written in the form of 
the Busch equation

4£/or " + 2 t / ; r ;+ i / 'o r o =  0, (2)

r0 Φ 0, Uq φ  0

where U0 — U0(z) denotes the potential distribution 
along the symmetry axis, 

r0 =  r0(z) is the radial coordinate of the
paraxial trajectory.

In the earlier papers [5] and [6] was given transfor­
mation, which reduces the Busch equation to the 
form

«' =  - ( u 2+/>2), (3)

where the auxiliary function u = u{z) and the para­
meter p are determined by the following relations

M I L
Ϊ  t/o

(4)

*) G. Mulak, Instytut Fizyki Technicznej Politechniki 
Wroclawskiej, Wroclaw, Wybrzeze Wyspianskiego 27, Poland.

P 4 U0 ' (5)

Optica Applicata II, 1 35



Form (3) of the equation is particulary convenient 
for numerical calculations when applying the resi­
stance network.

The method of the auxiliary function may be ge­
neralized in such a way that the nonparaxial cases 
can be also treated. Expending both the potential 
function and its derivatives into series we may reduce 
the general trajectory equation (1) to the form

V  + 2  υ 0 + r u o+r 2 -  U0 + r  3 U0+ -

<«)

by neglecting the terms of the order greater than the 
second. It may be easily noticed that the first three 
terms in equation (6) are identical with the right hand 
side of the Busch equation, and thus equation (6) 
may be rewritten in the form

where
4i/0r " + 2 i / ; r '+ [ / " r + d  =  0,

3- 2(γ',+τΙ)(τ£'“+',4

(7)

may be considered as a correction term. Conse­
quently r may be replaced by its paraxial approxi­
mation r0.

From the Busch equation

r o U o + j U o ~ - 2 U 0r",

thus

A = ~ 4U°r° ( r '02+t4 l l ) ·  (8)

When transforming the Busch equation into the 
form u' =  — (u2-\-p2) the equation was divided by 
4U0iQ, hence the correction term has also to be de- 
vided by that expression. Then equation (7) takes 
the form

u' =  — (u2+p2)+a,  (9)
where:

The aberration correction term ak (where k numbers 
the network knots along the symmetry axis, the index 
o being ommited for the sake of simplicity) may be 
determined from the differential expression

aL = r k + \ - rfc—i ~ 2rJ
[(r*+r ~rkY +

+  C/fc_ , - 2 U J  
W k .

( 10)

The differential form of (10) has been derived 
from the forward differences by assuming the elemen­
tary mesh-length Δz to be equal to 1 (square mesh). 
The knowledge of the potential distribution t/0(z) 
along the symmetry axis enables the calculation of 
the value of the paraxial ray r0k as well as of the 
correction term ak . The correction terms ak render 
possible to determine the new values of the function 
uk according to equation (9) and thus the new values 
of the trajectory coordinates rk and the local trajec­
tory inclinations r'k .

The numerical method based on the relations (3) 
and (9) may be applied to determining some aberration 
characteristics and aberration constants. In parti­
cular the constants of spherical (Csph), chromatic 
(CcAr) and distortion (Cd) aberrations can be evaluated.

ΠΓ. Error estimation of the u(z) method

The increase of the function m(z) resulting from the 
corresponding increase Δz of the variable z is equal to

Δ χ\ι =  — (ul+ ρ ^ Δ ζ , ( 11)

Representing the w(z) function by the first three 
terms of its expansion into series

ιι(ζ0+Δζ)  «  η(ζ0) + κ'(ζ0) ζ1ζ-γ
u"(zo) , ,-Jz2 ( 12)

2 !

we get, according to ( 11), the following expressions 
for the absolute error of the function w(z)

x  u" ^ a 2ou «  ---------- Δζ . (13)

Applying a similar approximate representation of 
the function U0(z) we obtain

£/"(z0)
<5t/0 ss —-----Δζ. (14)

Hence

Since

then

s ν ϊδ ϋ ό  V73 U'0'(z0)
op X ---------S i --------------zlz.

4 U0 8 U0

' = ί λ \ υλ - { υ Δ 2Λ 
4 l l /o  \ U o l  J*

P =

u, 4 16 ,
, ,  -7 = P'+— P2,U0 3

(15)

δρ x  ( - i p '+  ~^βΡ21 Δ ζ ·
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From (4) it is clear that

Substituting into the last equation (13) and (16), 
we obtain the following expression for the local 
error

however, to this limit by an unlimited number of 
steps Az. This is one of the sources of the error 
independently of the errors resulting from the ap­
plication of the numerical method based on the 
knowledge of the function w(z). Even if the exact 
values of the function w(z) are used, the application 
of the numerical method in the case when

δ
u”(z)

2
Δ z2- y  Ρ Ί Δ ζ · (17)

To estimate the total error it is necessary to divide 
the local error by Δζ  and integrate it over the region 
[0,z], For the case Az  =  1 we have

The determination of the error Δ | —j is thus reduced

to the substitution of the limiting values of u' and 
p, followed by the evaluation of the integral in (18). 
An approximate estimation of the integral may be 
easily performed by summing up the values p 2 ap­
preciated during the trajectory determination with the 
help of the function m(z).

On the base of the relation

r

we can estimate the difference of the relative errors 
of r and τ' .

The separation of both errors requires a more 
complex calculation. However, it has to be noticed 

Δ r'
that, in practice — -  is usually much greater than

Ar
—  so that the right hand side of (19) gives an ap­

r
Ar'

proximate evaluation of — —.

Some considerable relative errors occur when the 
m(z) method is used in the region closest to the axis. 

r' p
In that case — >  —— and equation (3) takes the 

r y/3

form u' = —u2 with the solution u ----------- The
Z — z „

trajectory is then described by the equation r =  
= A ( z —z0), where Λ is a constant.

Being estimated numerically the function w(z) never 
reaches the value oo at the point z =  z0, it tends,

results in negative values of the radius r already in 
the second step, while in the next steps an oscilation 
about the z-axis appears. This part of the calculation 
has no physical meaning. To avoid it the calculation 
should be interrupted within this region and the region 
should be overjumped e.g. by way of the linear 
extrapolation.

To check the accuracy of the u(z) method the tra­
jectories for several potential distributions have been 
determined for the cases when the analytical solutions 
of the track are known (see [2], [7]). These trajectories 
have been calculated for a relatively gross discreti­
zation, by dividing the examined segment of the track 
into ten parts. The errors evaluated in this way may 
be considered as the upper value estimation of the 
error because the discretization applied is usually 
much better (20 to 50 steps).

Table 1
Illustrates the results obtained

uf
v t

r't - 1
rf

< 0.01 <  0.25%
< 2 < 0.1 <  1.5% (except 

the case of expo­
nential distribu­

tion)

< 5 < 0.01 < 0.25%
< 0.1 < 5%

< 10 < 0.1 < 15%

where: t/, — initial potential,
Uf — final potential,
r'j — initial inclination of the trajectory, 
r/ — final inclination of the trajectory.

The initial value of the radius r, has been assumed 
to be equal to 1, while the initial inclination in all 
the cases has been assumed r- >  0. The potential 
distribution U0(z) was an increasing function. The

• uf  'error rose with the increase of the ratio —  and rt .
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For the exponential distribution a very great error 
Ar,
— -  =  344% was established. In that case the end 

rf
of the track was very close to the focus and this great 
value was connected with the very small value of 
rf  (compare the assumption r #  0 and U0 Φ 0 in eq. 
(2)). A testing was also made in the opposite direction 
(when the distribution U0{z) along the track was 
diminishing and r[ <  0). The relative error of r in 
the opposite direction was on average 1.5 times 
greater than in the original direction. The relative 
inclination error was on average several times greater 
that the relative error of the radius r (about 5 times 
in the normal and about 2.5 times in the opposite 
direction). It can be concluded that the relative error 
of inclination in the opposite direction is on average 
about 1.3 times less than that for the original direction.

When calculating the said average error ratios some 
limiting cases were not taken into account.

IV. Examples of both the parameters and 
aberrations determination for electrostatic 

lenses

The exact estimation of the location errors of the 
foci, principal planes, focal lengths, aberration con­
stants CipH, Cchr and Cd is difficult as the separation 

Ar’ Ar .
of the errors — and is then required. The 

r' r
purpose of the testing was to evaluate the errors of 
the numerical method suggested above and it may 
be considered as a basis for some qualitative state­
ments. The total error of the calculated magnitude 
consist of 1 ) the error of the k ( z )  method, 2 )  the 
error of the discretization introduced by the resistance 
network and 3) the error of the potential measure­
ment.

Unfortunately, in the available literature no esti­
mation procedure has been found, which could be 
used for the accuracy evaluation of the result obtained 
by the author. In this situation it has been decided 
to compare the author’s own result with those of the 
other authors. For this purpose two kinds of lenses, 
thoroughly examined in the literature (see [1], [3], 
[4], [8]), have been chosen. These are the immersion 
two-tube lenses with the radia satisfying the condition
R2 r 2

=  1 or ----=  1.5 and of several different
Ri

vol-
Rx
tages ratio.

The measurements of the voltage distribution U0(z) 
in the examined lenses were made with the help of 
resistance network, which are the property of the

Institute of Electronic Technology Wroclaw, Technical 
University (Poland). The number of loops in the 
measuring part of the network was equal to 20 in 
the radial direction and 50 in the direction of the 
symmetry axis, respectively. The network is made 
of the composition resistors (the resistance accuracy 
is 2 per cent). An average error of the potential 
distribution measurements for testing the network 
with the help of a plane condenser amounts to 0.05 
per cent, while the accuracy of the testing with 
a cylindric condenser is 0.15 per cent. The voltage 
measurement is a relative one. A four decade vol­
tage divider was used with the accuracy of 0.01 
per cent.

Figures 1-4 present the location of the foci and the 
focal lengths of the immersion lenses depending on 
the potential ratio on the electrodes. The results 
happen to be in accordance with those obtained by 
other authors. It can be seen in table 2 where the 
corresponding results both numerical and experi­
mental are shown.

To perform the graphs of the longitudinal spherical
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aberration (see Figs 5-8) the calculation of the non­
paraxial trajectory for different initial values r, of 
the ray were used. The curves in Fig. 5, 6 and 8 are 
almost parallel to one other. The curve given by 
Motz and Klanfer [4] (see Fig. 6) was calculated 
numerically from the exact equation (1) of the elec­
tron trajectory basing on potential distribution 
evaluated by the relaxation method, while the com­
pared curve was estimated by means of the u(z)

τ χ

Fig. 3
o ---- o ARDENNE ------------  KIELM AN *----- * M ULAK

o

0,25 0,2 0,15 0,1

Fig. 4
o A RDENNE .  KIELM AN «

Λ
o,

x M ULAK

method. In the last case the aberration correction was 
made by means of the potential distribution measured 
along the axis of the system simulated on the resistance 
network. When comparing both curves it is clear 
that as far as the third-order aberrations are concer­
ned the accuracy is sufficiently good. The almost 
parallel shift of the curves means that a systematic 
error was introduced mainly by the numerical method 
used to determine the trajectory.

T a b le  2

U2
Author 2Έ, Z H, Z F; z h2

Maloff, Epstein -43.2 -17 ,6 40.0 -26 .4
Spangenberg, Field -43.36 - 36.22 —
Klanfer, Motz

6 numer., paraxial. -37.12 -12.74 44.0 -24.02
r0 = 4h nonparaxial. 38.50

Ardenne -43 .2 -16 .0 39.3 -26 .3
Mulak numer., paraxial. -45.61 -16 .0 42.62 -22.28

r0 = 4h nonparaxial. 37.2
4 Ardenne 60 95

Mulak 68 93.85

h — mesh length
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The comparison of all the curves in Figs. 5, 6 and 
7 confirms the property described earlier in the litera­
ture (comp. [3]), that the spherical aberration of the 
descelerating lenses is greater than that of the same 
lenses applied in the accelerating direction. Figs. 9-11 
illustrate the dependence of the constant spherical 
aberration on the focal length. The constant Csph is 
then determined in the following way

Δ zF
Csph = (20)

rf

Fig. 6
MOTZ, KLA N FER x ^ x  M ULAK

° o to cal point according to ARDENNEGO *----- * M ULAK

where Δ ζ Γ —difference of the paraxial and non­
paraxial ray focus position.

The calculated values Csph coincided with the 
straight lines Csph(f)  given by Ardenne [1] and 
Zvorykin [8],

In Figs 12 and 13 a comparison of the calculated 
values of the chromatic aberration constants

C,hr —
Δ zF
m T0’

0~o

(21)

where ΔzF — denotes the difference in the foci given 
by the solution of the trajectory
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equation corresponding to the distributions U0(z) 
and U0(z)+AU0(z)

υ0 = Ui+Ui
2

being the average potential

of the electrode, is given.
The conformity with the results given by Zvorykin 

[8] is in general good with the exception of the cases
U2

of great values of the ratio —  and in the case of
(Λ

U3
-  ~  2. The constancy of Cchr2 in that region is 

difficult to explain.
Because of the lack of the complete data the di­

stortion constant

Q  =
Δ Μ

(22)

-'2 U2the lens with —  =  1 and
*1

where M  — linear magnification, was determined for
Ry . .

=  5 for the object
(Λ

position zobJ =  160. Then Cd «  0.0134 and its small 
changes in the region 0 <  r, <  0.3 R mean that in 
this range the deciding role is played by the aber­
rations of the third order. The constant values of 
Csph and Cchr behave similarly by 1 per cent change 
of the average potential of the electrod.

V. Other application of the u(z) method

In the literature no data concerning the electron­
-optical aberration of different types have been found. 
Because of the lack of information the aberrations 
are usually assumed to be independent and the total 
aberration is calculated from the r.m.s. of the com­
ponent aberrations. The trajectory method based on 
the function u(z) allows us to examine the mutual 
interdependence and rules of superposition of par­
ticular aberrations. The spherical and chromatic 
aberrations for not too great values r, and Δ U add 
to each other. For instance the double-tube lens
r 2—  =  1.5for Δ υ  =  8 W(U2 =  200 V, U2 =  1200 V)
R i
and rt =  3h the total aberration is about 5 per cent 
greater than the sum of component aberrations, while 
the combining according to r.m.s. gives the estimation 
with the error exceeding 50 per cent. The method 
u(z) may be applied also to determine the diver­
gence of the electron bearnthe aberration unknown 
in optics of light bundles. To estimate the accuracy
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of our numerical method the results have been com­
pared with those obtained from the integral of di­
vergence in a drift space. The relative deviations 
Ar
—  for a parallel beam occurred to be equal +0.064 
r

per cent and —0.96 per cent for the perveance values 
10“ 8 P and 10—6 P, respectively. The method of di­
rect numerical intergrating of the trajectory equation

4U0r " + 2 U y + ( U i ' + - ) r  =  0, 
«0

(23)

values ot parameters of the examined lenses are 
usually contained in the results (both experimental 
and numerical) given by other authors. The relative 
deviations (calculated with respect to the results 
given by other authors) for the determination of the 
principal planes, foci and focal length oscillate on 
average within the limits from a few to several per 
cent while in the case of constants Csph anC* Cchr they 
amount up to 30 per cent.

The numerical method based on formulas (3) and 
(9) with the correction term (10) can not be used 
without limitations. For determining the track of the 
rays, passing considerably far from the axis for lenses

where ρ — space charge density, results in errors 
greater by one order.

VI. Conclusions

In the face of the divergency of the data given by 
other authors it seems to be clear on the base of the 
analysis of the tables and graphs presented in this 
paper, that the results obtained by the author are 
sufficiently accurate for practical purposes. The

U2
with great ratio — , the further terms in the ex­

pansion of the potential and its derivatives into series 
have to be taken into account or some of the con­
stant coefficient methods [5] have to be applied. 
There is also a possibility of further generalization 
of the w(z) method.

For some types of single lenses greater errors (than 
those for immersial lenses) may be expected as a result 
of the fact that the electron trajectory may intersect 
the symmetry axis twice. As the assumption r Φ 0
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is no more satisfied, the passage through the axis 
has to be done by an extrapolation procedure. This 
step results in an additional error.

Nevertheless, the method may compete successfully 
with the tedious, expensive and not too accurate 
experimental methods as well as with some numerical 
methods. To measure the potential distribution 
a typical resistance network has been used and typical 
simulation methods applied. The most obvious nume­
rical method, consisting in the calculation of the deri­
vatives from the forward differences, has been used 
for solving the trajectory equation with the corres­
ponding correction terms; the equation being trans­
formed with the help of the m ( z )  function.

Thus, in spite of the common opinion it has been 
pointed out, that the typical resistance network may 
be used for the aberration determination. The main 
advantage of this method is not so much the value 
of the trajectory error (being determined among 
others by the discretization errors of the typical 
resistance network) as its stability by passing to the 
neighbouring trajectories.

Sur les possibilites de determination de certaines 
aberrations des lentilles electrostatiques a l’aide d’un 

reseau de resistance

Nous avons etabli une transformation de l’equation de la 
trajectoire de l’electron dans un champ electrique de symetrie 
axiale qui permet de calculer numeriquement la trajectoire 
non paraxiale en utilisant la distribution du potentiel l/0(z) 
suivant l’axe de symetrie du systfeme modele a un reseau de 
resistance. On a calcule les positions des foyers et des plans 
principaux, les longueurs focals et aussi les constantes des 
aberrations: spherique Csf ,  chromatique Cc/,r et de la distorsion 
Cj pour les lentilles a immersion de deux types. Les resultats 
obtenus sont compares avec les donnees des autres auteurs. 
On a demontrd que le reseau de resistance typique permet 
de determiner certaines aberrations des systemes electrono- 
optiqu es.

B o 3 m o 3k h o c h » o n p e a e j i e n m i  Η β κ ο τ ο ρ Μ χ  a f i e p p a u n n  
OJieKTpOCTaTHHeCKHX JIHH3 C nOM Oim >IO pe3HCTHBHOH 

c eT H

Πρηβολητολ npeo6pa30BaHue ypaBHeima TpaeKTopmi aneK- 
TpoHa b  ajieKTpmecKOM nojie c BpaiuaTeJibHoft CHMMeTpHeft, 
no3BOJiHK)mee pacHHTaTb HenapaKcnajibHyio TpaeKTopHio, 
ormpaacb Ha pacnpeaejieHHe noTeHimaJia £/0(r), « μτογο Ha 
OCH CHMMeTpHH CHCTeMbI, CAejiaHHOft Ha pe3HCTHBHOft ceTH. 
OnpeaeneHbi nojioxceHHH Φο^ οοβ, Kap^HHajibHbix njiocKo- 
CTeii, φο^ΟΗοϋ wiHHbi, a Taxxce nocToaHHbie οφβρΗΜβοκοΙί 
abeppaitHH Csf ,  xpoMaTHnecKoit Cc/,r hhctopchh Cj  ajvt 
HMMepCHOHHblX J1HH3 HByX ΤΗΠΟΒ. ConocraBJieHbi nOJTyMeH- 
Hbie pe3yjibTaTbi c cooTBeiCTByiomHMH naHHbiMH flpyrnx 
aeTopoB. yCTaHOBueHo, mto THnoBaa pe3HCTHBHaa ceTb no3- 
BOJiaeT onpeaejiHTb Ηεκοτορωβ a6eppauHH 3ΛεκτροΗθοπτκ- 
HeCKHX CHCTeM.
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