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On Numerical Evaluation of the Direct Reconstruction
Matrices for Incoherent Diffraction Limited Systems
Operating without any a Priori Information

The goal of this paper was to give a numericai method of the reconstruction matrix catenation for the case when both the observ-
ing and imaging systems are diffraction timited and there is no a priori information about the object avaitabte.

The respective atgorithm has been found for programming the computation. The method apptied permits to considerabty shorten
the catenation time for each etement 7?2, of the reconstruction matrices. It is worth noting that the case under study is a naturat
come-out stage for investigating the opticat aberration influence on the reconstruction procedure.

1. Introduction

The direct recovery problem for incoherent imag-
ing without any a priori information about the
object was discussed in the papers [1] — [3]. The
basic idea consists in recovery of the image intensity
distribution (obtained with a known optica! system
from the unknown optical object) from the corresp-
onding sampled measurement representation; the re-
presentation being obtained by scanning discretely
the image with an observing system¥**). If the partial
coherence, which is introduced to the image by the
imaging system, can be neglected we have to do with
the so called incoherent approximation [3]. Within
this approximation the image is considered to be
absolutely incoherent, the assumption being particu-
larly well fulfilled by the diffraction limited systems.
An analysis of the latter case seems to be of conside-
rable importance as the diffraction limited systems
create a natural reference to what can be best achiev-
ed in practice. Therefore, the hereafter consideration
will be devoted to some numerical aspects of the upper
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***) The observing system is here meant as a setup consist-
ing of another imaging system supplied with an element, which
integrates the whole incident signal. As a particular case the
observing system may be reduced to the integrating element, only.
The observing system is being shifted step-wisely across the
image plane generating a sampled measurement representation
of the image.
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and lower bound reconstruction matrices evaluation
for this reference situation. The reconstruction matrices
have been defined in [3] but for the sake of conve-
nience the definition will be remined below.

As shown in [2] the relationship between the sam-
pled measurement representation x(0o”") and the
image intensity distribution is of the form

H<?A)=1J 1)

where /i*(p, <) is the sought image intensity distribu-
tion and .Mi7" ~) denote the values of the observed
image points taken at the A positions
1 ...,A of the observing system and 0(p—

?—") is the so called instrumental function (see [1]).
As it is clear that this relationship is by no means
unique the problem is to recover the class of functions

<), which would be consistent with the given
measurement representation generated by the given
experiment. For the purpose of the reconstruction
error estimation it is suibcient to find the two extreme
intensity distributions consistent with the given
sampled values x(a“., XY, which would determine
the maximum and minimum possible a posteriori
values of /;m(p, <). The procedure proposed in [3]
reduces the problem of reconstruction to solving two
sets of linear equations. These are

n ?
=1
for the upper bound recovery, generating the respec-
tive maximal values 77" (o”,”) by the formula
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for the lower bound recovery, generating the respective
minimal values by the formula

\"
NAA)ENA(N) AAS )

Here, ¢, and ¢j are the respective solutions of (2) and
4)- 7, (»)) A 6")denotes the value of the intensity
at the scanning points (0"6") and coming from
a point-sources located at (u,./f,) in the object plane
with intensity normalized to unity.

The matrices

{A = Jfi,\]A 9" " QA9- M) 'IpAj (6)
and

IMNA = Iy, 90 /P-9) M (p-aA L 9-M) " pA] ()

are called the upper and lower bound reconstruction
matrices, respectively, and will be the subject of our
further analytical considerations.

2. Analytic Form
of the Reconstruction Matrices

Hereafter, the analytical properties of the recon-
struction matrices for the diffraction limited systems
of rotational symmetry will be considered. From the
mathematical viewpoint we have to estimate the con-
volution integrals (20) with the spread function
<P(a,j,)(P<?) and the instrumental function 0 (p—0",
&6, specified accordingly.

2.1. EVALUATION OF THE INTENSITY SPREAD
FUNCTION 2Y,.A)P, 9)

From the assumption that the systems are diffrac-
tion limited we readily specify the spread function
generated by an object-point located on the optical
axis of the imaging system in the well known form

T(P, 9, ~il =7(Ip'+9',3f,)(8)

(see [4]), where
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2 — wavelength of the light used,
— f-number of the imaging system,
N — Bessel function of the first kind and first

order.
Because of the rapid convergence of the spread
function ‘/(F/F + rMA')) to zero with increasing

FP"+9” 't has been assumed that the function is
practically equal to zero outside the second even-
tually third minimum; the location of the latter with
respect to the middle point of the spread function
will be denoted by r/, = r/(Ajl. Independently, it
will be also assumed that the imaging system is space
invariant, which means that the shape of the inten-
sity spread function is identical all over the image
plane with that generated by the axial object point.
For the numerical purposes it is convenient to expand
the Bessel function into the potential series of the form

Yoi).? V;;-T.(}'LiyAy' )

=0 S+

Substituting the representation (9) of the Bessel
function into the defining equation (8) results in

T'ApA9IN NI
NANELST!
- {id A(EF-FA)T= 00 MR Rty T+
/=0 =0
+ 2 NOF+NM+T . (10)
t=0j=/i
Defining
24 + ~*.3 for even ? (it)
T 2 for add
where
2h
i(with ~ ~ _ denoting the ent-
I=mex(0, i—w) L
ire function) we can put (H) in the form (10)
H
9=Arc,. N (M+N)! (10a)
;=0
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after a respective rearrangement. This form appeared
to be convenient for numericat estimation of fP.

2.2 EVALUATION OF THE INSTRUMENTAL
FUNCTION <P(p-~..</

The instrumenta) function is by definition equa) to

=jpn, NM(a, 112)
(see ())) where (a, r) is the intensity spread
function of the imaging part of the observing func-
tion whiie A denotes the integrating element. For
the sake of simplicity we assume for the moment
that ny = = 0, which is permissible, because
fp(p—a, <P) is shift-invariant. (The last fact being the
consequence of the spatial stationarity of the imaging
part of the observing system assumed earlier.) If the
intensity spread function in (12) is also of diffrac-
tion limited type we can use the representation (8)
with A2 replaced by

where — is the ratio of the aperture diameter to
the image distances, and (p, <) changed into (at).
Thus
an
gA ') =9 A A

;=0

XA (tr+ 10

Consequently the instrumental function appears in
the form

P(t (p-o”r-Fby-P)", ¢ X)

= ] J N

Dfr, /=!

where D denotes the common region of the integrating

element of radius e and the domain of the non-zero

existence of the y(a, r) function (see Fig. 1),

r =1 (p—a™+ ()" —denotes the distance between

the middle point of the integrating element (a, P) and

the point in the image plane, which generates the

actual spread function (a, r) of the observing
system. After some rearrangements we get

i-r™'ar/r (13)

0(lI'(p-a)-~(<7-b)- ;e,IC))

2m <..
iF 2607
| |f_ ¢ 7 'Alarrr. (14)
;=0 j=.0 ‘D(r.f)
The integral
D(r.c)
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has to be analyzed separately. In the light of the said
assumptions it is clear that the region D may be either
a circle or a common part of two circles shifted by
r with respect to each other (see Fig. 1).

Fig. 1 integration region D(r, €) as determined by the position
of the integrating eiement with respect to the y(p-,,, (G
function

Formally it can be written down as

(15)
{(@ NIM—r)-+ tr~ C} for [~ —c
{(a, 1) cCu' [/
—Ine" —(a—rn)" rs, —(Uu—r)Mu
D(r,c)
{(@ tYT sya ™ r/2, -
— —an < r< 1r7M
for r> <2
where
;= ot "2 = 7/("2)
is to be determined by solving the set of two equations
ni+ t3 ,
(u—)2+ iF = (16)
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in the first case i.e. for 2 we have readily

J'j*
r+e te2 —iM—rj2
= J* I M
—lc3—fM—rj2
2
Aoyt MM+2Mr + (e —

a7
In the second case i.e. for /*>1/2"" we obtain

i | W +
A R

2K

M2-"2Mr+(eN —r2))N'< &< +
2/+1 ( )

(18)

The last integrals (17) and (18) may be calculated

exactly on the base of the following recurrence for-

mulae. Let R(M)=CM"+AM-)-a, d=40c—  than:
1

J*M"YR(M)2"+'

M~ IR(M)M '3
(w+2/+2)c

(w—Il)a

U ALRIMIM<TM,
(w+2/+2)c”

FURM)N+ 6M

20u+7?M L
agj+nye RO+
2/-fid

+ 8(/+ijr (19)

J"FR(M )™

40

3.

. &M 1 ~ 2cM+~
| o = —*77=arcsin ---— (forc< 0, d < 0),
I"Rtu) t"h-c /-d
4,

j" MARfu)ANI M

IR(M)

2y+3)c IR(M)N+' 1M

2c

When applying these formulae to (17) and (18) the
following relationships may be obtained

1 For the integral (17) R(u) ——MM“)-2(M+
+ (cA—"), d = —4c™ and consequently
r+c
r
]
A2w+2y+ N A
M™™ /R (U)N'+" AV
W+2/+2
. (w—)(cr—r") F e
" N Ag!
(W+2/+2) J R(M)"+
"+

i" I'R(u)@r+l iH

AL S T r-
2A1)" )

M

I ARy ™ ™

M= r J* ;d?(M)"+'
r-c

J*
r-f

2. The first term of the integrals (18) may be
put in the form

"R (M)27+ijM

_2wH+2/+1 J* — N+
W+2/+2
w-l)(e'-r?

( )( ) J* M"-AR(M)"'+" U
W+2/+2
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M'+2/+2

= LIRIRRLN
711 +

+ArtL ¢ f’)R(M)’\ v

2(J+D
M R r—t
=_— —arcsin----,
| yrv) 2 e
jll /\
C A - In(,)2/+3
-1 ) 2/-+3

while the second term in (18) may be further deve-
loped basing on the fact that now 7?,(n) -- —u~N+"2 -
2 = —472, which results in

\%M'tP, A

&

w— 2 ] M AP, uyN+ N+

W+2/+2

4" 1p, (U
['+2
%

Jip,

27+1
2(7+ 1)

t A 1
2((+1 Yﬁo\l_

| J—'—-2---f arcsin
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2.3. ESTIMATION OF THE MATRIX ELEMENTS P,.i

Now, as a hnal step of our analysis we show the
way of evaluating the reconstruction matrix elements
for the band limited systems of rotational symmetry
under the assumption of space stationarity of both
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the imaging and observing systems. Under these cir-
cumstances it is evident that both the integrand func-
tions y and <P appearing in the convolution integrals
[6, 7] exhibit the rotational symmetry, which allows
to simplify the general expression for P,” to the form

P.6=2JJ &(fpi +y*  -3?(/(p—"

where

NZi(PLO)IN+Z + N9+ 0} A{(p,9)IN-pF+/

AP A +i} )

and the mutual displacement of both the convolved
functions is along the p-axis only.
The said rotational symmetry of both the integrals
implies a transformation of the coordinate system
p = ,4+pcos a,
p = psina. (22)

to get a more convenient representation for further
calculations.

Hence
in
cos a —pSina - p (21a)
stnrt pcosa
and then
7?2222 | ptP(o, < X
ell
X 'I(Vpr+2pcosat+t™th A"Arlarlp=] p<P(o, e P2 X
o

x J ?(b"M+2i?cosa+24AAii)i7ailp.
0
Now, consider the case, when the domains of <and <P
are positioned with respect to each other as shown in
Fig. 2.

(22)

p. €, A}v)

X 7 (1" + 20co0sat+/U, Plrlailp ¢

0
2+ n

/
© .

The function /(0) may be expressed in the following
form (see Fig. 2): By solving the set of two equations

B0 =/,
(P =
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we have
then
cosa, —-
0
and d~r-p'-zIn

[ (p) = arccos (24)

21p

In the genera! case for any admissib!e region we have

i ptP(p, &, " ) x
0

xj y(t(p2-}-2pcosa+/P,
(o]
min”™+c, +°}

+ J o(P(p, c, ™) x

PA+2pcosa+™M A*Jr/ailp (25)
')
where
/(p) for p x-0)
I'(p) = m for o0=0 (%)
42

Let us consider the Integra!

p("pN+2$cosu+rN A*i)Ja.
I'(e)

(27)

I'(p)
From (!0a) we have

N p("P~+20cosa+”M, A*i)u
I'e)
2n
= CA'" » (p"-L/F)™*-'(2py J*cos™u”a. (28)
1=0 y=o0 'e)
But it is easy to notice that

J*cosa
cos'"Masina  _/—I(*
cos arla,
i i A
JAcosai/a = sina, JMli/a=a.

Therefore, if /, denotes ) cos'a<a
I'(e)
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Fig. 3. Piot of the instrumentai function $ versus the distance

) /F- with the integrating eiement radius as a parameter.

Part "a" represents the case of reiative aperture <?/= 1:5,
whiie part "b" shows the case of 1:15.
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Example computation of matrices A

1:5 1:15 0.005 0 4.7131 10-*°

1:5 1:16 0.005 0.005 2.6997-10-"°

1:5 1:15 001 0 7.7793 10-*°

1:5 1:15 0.01 0.005 7.1050-10-"°

1:5 1:15 0.01 0.02 2.6101-10-"
we have

t)/,_2-cos' -/'(p)sin/'(0)]:t.
Because of
d,— —d* forcy » 0
COs/'(n)
-1 forr=0
and
sin/" ()= 1 1- cos'/'(¢?)
while
sing ™ 0 qel0fl]
then

S = in

=0 -

Finally, the etements 7?2 are calculated according
to the formula (25) in such a way that the external
integrals are calculated from (28) while the internal
integrals are evaluated numerically.

Sur I'estimation numérique de la matrice de la recon-

struction immédiate pour des systemes incohérents

limités par la diffraction et fonctionnant sans aucune
information a priori

Dans ce travail on a présenté une méthode numérique
de caicui de la matrice de la reconstruction immédiate dans te
cas ou les deux systémes, l'un qui sert a i‘observation et I'autre
qui forme les images, sont limités par la diffraction et quand
il n'y a aucune information a priori concernant I'objet.

La méthode appliquée permet de diminuer considérable-
ment le temps de calcul d'un élément J2A de la matrice de recon-
struction. Le cas discuté est une étape naturelle de départ pour
I'examen de I'influence des aberrations optiques sur le procédé
de la reconstruction.

O 4NCNEHHOM OMpefesieHU MaTpuLbl NPsSMOl
PEKOHCTPYKLUMUM N1 HEKOrepeHTHbIX AUdPaKLUOHHO-
OrpaHUYeHHbIX CUCTEM, AeCTBYOWNX 6e3 KaKoi-1m6o

anpuopHoiA MHGopMaLK

B pa6oTe M3/0XeH MeTOA UWUC/EHHOro pacyeta MaTpulbl
BOCCTAHOB/IEHUS1 B CMy4ae, Korga HabniofaTenbHas U oTo6pa-
)aroulasi cucTeMbl AM(PPAKLMOHHO OrpaHUYeHbl NPU OfHOBpeE-
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