
Influence of Acoustical Nonlinearities on Stimulated
Brillouin Scattering

A  stationary theory for stimulated Brillouin scattering in isotropic media is given for cases in which the 
generation of acoustical second harmonic due to elastic nonlinearities must be taken into account. On the base of 
measuring the coefficient of quadratic acoustical nonlinearity at hypersound frequencies by investigation of Bril­
louin scattering is shown.

1. Introduction

In experimental investigations of Stimulated 
Brillouin Scattering (SBS) the used intensities 
are often so high that the amplitudes of the 
participating acoustical waves lie beyond the 
range of validity for the linear stress-strain- 
-relations, which is true not only for solids hut 
even for fluids and gases. Qualitatively it is 
well known that the acoustical nonlinearity 
has a certain influence on the character of the 
scattered wave and, because of the generation 
of the acoustical second harmonic, gives a 
kind of additional acoustical absorption.

The investigation of acoustical nonlineari­
ties is also of interest from the viewpoint of 
fluid theories, because its results may give 
some new insight in the structural behaviour 
of materials. Observations on fluids were made 
under static conditions and at frequencies limi­
ted to ultra sound.

In this paper a stationary theory of SBS for 
isotropic materials is given for the case in which 
the acoustical second harmonic is generated due 
to an acoustical nonlinearity. After a brief 
consideration of the nonlinear p-p-relation (sec­
tion II) the system of coupled differential equa­
tions is developed (III). An approximative 
solution by means of an iterative method is 
found in IV. In section V the way is shown, in 
which a second process of Brillouin scattering 
can be used to observe the very weak acoustical
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second harmonic. Thus, a possibility is given 
for measuring the coefficient of acoustical non­
linearity by means of SBS investigations. A 
numerical example gives some insight in the 
order of magnitude of the effect (VI).

2. Nonlinearity of p-p-relation

Let us consider the relation between pressure 
and density for isotropic materials, especially 
for fluids. It is well known, that this relation, 
taken exactly, is not linear. "With density p and 
specific entropy 3 assumed as independent 
variables, and p ., p„, 3, considered as equili­
brium values and with

P =  P. +  P*

P =  Po +  P?

3 =  3 . +  3,

one can be use under static conditions a 
Taylor-series for the environment of the equili­
brium point:

In the past years several papers were con­
cerned with the nonlinear terms of this equation, 
both from theoretical and experimental points of 
view [1], [2], [3], [4].
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For adiabatic sound propagation, equation 3. Stationary theory —  the ansatz 
(1) may be simplified to

p(p) =
dp
dp So

1
2 ! W / s

( 2 )

where

JL -  -  2
P. W , ,

Here v, means the velocity of sound in equili­
brium state.

It is possible to derive the following equation 
by thermodynamical considerations [1]:

6
% 2pô o +  2?'.Tj3

1
(3 )

(with  ̂ volume expansion coefficient and 
Cp specific heat at constant pressure). Hence, 
it follows that the nonlinearity-coefficient 
&/a can be evaluated by measurements of the 
pressure- and the temperature-dependences of 
sound velocity.

But one has to be expect, that the relation 
between p and p will be noninstantaneous 
(and probably non-local too). This means that 
formula (1) is correct only for the static case 
or for a plane sound wave with a definite 
frequency and definite wave vector; the non­
linearity coefficients are functions of frequency. 
Therefore, it will be of interest to find the values 
of the coefficients of acoustical anharmonicity 
for several different frequencies. It is quite 
clear that acoustical anharmonicity will be 
observable only at very strong sound amplitudes. 
Within the range of hypersound this can be 
realized in the process oí 8B8.

BREWER [5] reported on this fact and its 
experimental observation as early as about ten 
years ago. He has observed the generation of 
acoustical second harmonic in 8B8, thus pro­
ving the existence of acoustical nonlinearity. 
Other authors [6], [7], [8] remarked that 
this generation of 8H due to acoustical non­
linearity appears as an additional damping of 
the sound (ground ) wave in the scattering 
process. In the following sections a quantitative 
treatment of the generation of acoustical 8H in 
8B8 will be given for the stationary case. This 
will allow us to determine the nonlinearity 
coefficient &/% by means of 8BS measurements.

At present 8B8 has been observed mostly in 
backward-scattering, where the incident laser 
wave and the generated sound wave propagate 
forward and the scattered Stokes wave runs in 
the opposite direction. We identify the laser 
wave direction with the %-axis. Thus the problem 
will be spatially one-dimensional. Further we 
assume that the electromagnetic waves are 
linearly polarized in æ-direction : F  =  Æ - æ. Then 
the linearized hydrodynamical basic equation 
(Newton's law with mass conservation) and 
the Maxwell equation take the form

da
p(2, %)-

ds
da" *)'

w ds d
p„ d;?2

y' ds 
8K d^

(F2), (4)

ds
dF

f ) - ds
R / d%3

/  ds
%2p„ d f

(Fp) (5)

(^-coupling coefficient). Here, the optical 
absorption is neglected and only the viscous 
part of acoustical damping is regarded, represen­
ted by an effective viscosity ??, which is given 
from bulk and shear viscosity by

?7 =  % +  ^.A-

We look for solutions of the coupled system 
(2), (4), (5) in the form of plane waves with 
amplitudes changing slowly in space. For this 
reason we make an ansatz in the usual form, 
but taking account of an acoustical second 
harmonic wave too:

F ( o J  -  r c .c .} ,

F (w J  =  ^ { ^ ( ^ e ^ ^ + ^  +  c .c .},

p ( ^ )  -  P. =  H P c ( 2 ) e " " '^  +  c .c .}, (g)

p(^u) -  Pu =  HPH(2)e''<^-*"*> +  c.c.}

with
a) =  a) r — a;s?

( 7 )
-
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The condition of slowly varying amplitudes
means

1 dF^ 
Fy da

1 dF ,

1 dpo
Py; d2

F , da
1 dpyy

Pyy da
A;yy.

( 8 )

Substituting (6) into (4) and (5), and neglecting 
some terms because of (8) we get the system

F^ — (9a)
.Eg — FF^p^, (9b)

Po +  Cp. =  F F ^  +  Fpyyp*e"^ % (9c)

Pn +  Fp„ =  E p^e^- (9d)
with

A7i — 2 ^

The coefficients in (9) have the following 
meaning

y'Ar
f - =  —fl^4l,

F  =  f

C =

4u.2p.

4u^p.

Ĝ*̂ Ĝ

=  ¿l-BI,

2po*?'G

327trd

F

F  =  - f

. (Âyy —Ag;)̂
U,

,2 — ^ ¡F [,

fl^l,

( 10 )

'G 8pô iG

F

F  =  F

üm2o%rr
^  2 =  ¡F j,
2{?o?hr

A-2"G
ctyy 8p,%;yf =  ^ F I-

For the sake of brevity we use the following 
abbreviations

%ci  =  — !FI',07C

87Ï

64x^
/i = ---------%2(?3

FF
"Ë *

FFF^
FC'

= Idi,

-  IAj.

( 11 )

Both the values of (7 and F  for special substance 
and the type of solutions, which will be found 
in next section, justify a further neglecting of 
the terms p̂  and pjy in (9c) and (9d). Thus the

problem is reduced to solving a nonlinear system 
of only two differential equations of first order 
and two algebraic equations.

4 . Iterative solution

In solving the remaining system of equations 
we begin with a 2 independent "zeroth" approxi­
mation of Fy, which we call F^ =  F^*. Of 
course it is identical with the value measur­
able at the input window of the scattering cell.

Since there is no reasonable assumption of 
a "zeroth" approximation for Fg, we make the 
first step of iteration in the form (the bars 
are omitted):

Fl' =  ytF^pi,
Fy =  FFlpi*,

PG

Pn

F
C
F

=
1̂ 3

Fj, =  ^ F ^ e -!pl4z +  F F ° ( 12)

-"1)2Fî =  Fc^'F" e
71 0̂

-  / i „  "  A';/-' , , .  "

From the boundary condition it follows 
that F  = 1  — The second constant of
integration (Fe^j cannot be determined. Its 
meaning is obviously the amplitude conversion 
ratio at 2 =  0 in this step of approximation.

The second step of iteration gives

K !"  =

Pn =
F
F

IlSiAAzPG  ̂ )
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5. Proposais for experimental observation

The intensity of the acoustic second harmo­
nic will be very weak. As shown by BREWER [5], 
it may be, however, observed. For this purpose 
the scattering volume has to be irradiated with 
the second harmonic of the laser wave. This 
process may be also considered theoretically. 
At first we assume no dispersion for both 
optical and acoustical waves. Then the acoustic 
second harmonic has exactly the right frequency 
for phase-matched 180°-Brillouin-scattering of 
the optical second harmonic of the laser wave. 
The differential equation for the amplitude of 
the scattered wave is

-̂ <2s — -82^ 2/, (?n (14)
with

F (2o„) ^  Bg„

B (2nqJ =  Bg  ̂ =  B°^ =  const,

Bg 33 2B.

We take $g (2) from the second step of the i t e r ­
ation process and get for 2 =  0

-̂ 2s(0) 33 e¿2 9? 87U
wt

(15)

This relation gives a possibility of determin­
ing the coefficient of acoustical nonlinearity by 
measurement of the scattering intensity in the 
neighbourhood of the optical second harmonic. 
Generally, the relative dispersion of optical 
waves will be different from that for acoustical 
ones. Then one may correct the phase-mismatch 
by oblique incidence of the optical second 
harmonic. But this gives a diminished and 
undetermined volume of interaction.

An other possibility could be the using of a 
Brillouin-scattered Stokes wave of the optical 
second harmonic. In this case, however, the 
scattering material should be chosen so that 
phase match be achieved.

6. Numerical example

We consider the situation for toluene. For 
this fluid we have y" =  1.60 and &/a =  8.93 
(at low frequencies). The values for the other 
needed material quantities being known we get 
for ruby laser frequency

¡AI 33 ¡BI = 2 .8  ms/g, 

G =  1 .88-10'  nr*, 

ID I =  0.22 s'/nF,

¡Bl =  35 ms/g,

F =  7.52-10' nr*, 

¡Gl =  17.5 ms/g.

For a 10 cm cell length, a 10*° W/cnF laser 
intensity and conversion ratio of intensity 
B ' =  1/9, the quotient of scattered and incident 
intensity of the optical harmonic will be

B.2s

B.2n
2.2-10*

This demonstrates that the effect is small but 
still measurable.

For many other fluids the & /% ratio is similar 
(33 10 for organic fluids, 33 5 for water). There­
fore, we can expect to get a quantitative know­
ledge of acoustical anharmonicities at hyper­
sound frequencies in the proposed way.

L 'in flu en ce des non-linéarités acoustiques sur la  
dispersion stim ulée de B rillouin

On a présenté la théorie stationnaire de la dis­
persion stimulée de Brillouin dans les milieux isotropes, 
en sonsidérant les cas où, vu les non-linéarités acousti­
ques, il faut tenir compte de la deuxième harmonique 
acoustique. On a montré qu' en partant de l'analyse 
de la dispersion de Brillouin, il est possible de mesurer, 
pour les fréquences ultra-sonores, le coefficient de non- 
linéarité acoustique quadratique.
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Влияние акустических нелинейностей 
на стимулированное рассеяние Бриллюэна

Представлена стационарная теория стимулируемого 
рассеяния Бриллюэна в изотропной среде для тех случаев, 
в которых из-за акустической нелинейности нужно прини­
мать во внимание генерацию второй акустической гармо­
нической. Показана возможность измерения коэффициента 
квадратной акустической нелинейности для сверхзвуковых 
частот на основе анализа рассеяния Бриллюэна.
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