Influence of Acoustical

Nonlinearities on Stimulated

Brillouin Scattering

A stationary theory for stimulated Brillouin scattering in isotropic media is given for cases in which the
generation of acoustical second harmonic due to elastic nonlinearities must be taken into account. On the base of
measuring the coefficient of quadratic acoustical nonlinearity at hypersound frequencies by investigation of Bril-

louin scattering is shown.

1. Introduction

In experimental investigations of Stimulated
Brillouin Scattering (SBS) the used intensities
are often so high that the amplitudes of the
participating acoustical waves lie beyond the
range of validity for the linear stress-strain-
-relations, which is true not only for solids hut
even for fluids and gases. Qualitatively it is
well known that the acoustical nonlinearity
has a certain influence on the character of the
scattered wave and, because of the generation
of the acoustical second harmonic, gives a
kind of additional acoustical absorption.

The investigation of acoustical nonlineari-
ties is also of interest from the viewpoint of
fluid theories, because its results may give
some new insight in the structural behaviour
of materials. Observations on fluids were made
under static conditions and at frequencies limi-
ted to ultra sound.

In this paper a stationary theory of SBS for
isotropic materials is given for the case in which
the acoustical second harmonic is generated due
to an acoustical nonlinearity. After a brief
consideration of the nonlinear p-p-relation (sec-
tion 11) the system of coupled differential equa-
tions is developed (Ill). An approximative
solution by means of an iterative method is
found in IV. In section V the way is shown, in
which a second process of Brillouin scattering
can be used to observe the very weak acoustical
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second harmonic. Thus, a possibility is given
for measuring the coefficient of acoustical non-
linearity by means of SBS investigations. A
numerical example gives some insight in the
order of magnitude of the effect (VI).

2. Nonlinearity of p-p-relation

Let us consider the relation between pressure
and density for isotropic materials, especially
for fluids. It is well known, that this relation,
taken exactly, is not linear. "With density p and
specific entropy 3 assumed as independent
variables, and p., p,, 3, considered as equili-
brium values and with

P=P.+P
P= Po+ P?
3= 3.+ 3,

one can be use under static conditions a
Taylor-series for the environment of the equili-
brium point:

In the past years several papers were con-
cerned with the nonlinear terms of this equation,
both from theoretical and experimental points of
view [1], [2], [3], [4].
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For adiabatic sound propagation, equation
(1) may be simplified to

dp 1
pp) = dp % 21W /s
(2)
where
JL - - 2
P. w o,

Here v, means the velocity of sound in equili-
brium state.

It is possible to derive the following equation
by thermodynamical considerations [1]:

y 2p0’0 + 27.Tj3 ! (3)
%

(with ™ volume expansion coefficient and
O specific heat at constant pressure). Hence,
it follows that the nonlinearity-coefficient
&/a can be evaluated by measurements of the
pressure- and the temperature-dependences of
sound velocity.

But one has to be expect, that the relation
between p and p will be noninstantaneous
(and probably non-local too). This means that
formula (1) is correct only for the static case
or for a plane sound wave with a definite
frequency and definite wave vector; the non-
linearity coefficients are functions of frequency.
Therefore, it will be of interest to find the values
of the coefficients of acoustical anharmonicity
for several different frequencies. It is quite
clear that acoustical anharmonicity will be
observable only at very strong sound amplitudes.
Within the range of hypersound this can be
realized in the process oi 8B8.

BREWER [5] reported on this fact and its
experimental observation as early as about ten
years ago. He has observed the generation of
acoustical second harmonic in 8B8, thus pro-
ving the existence of acoustical nonlinearity.
Other authors [6], [7], [8] remarked that
this generation of 8H due to acoustical non-
linearity appears as an additional damping of
the sound (ground ) wave in the scattering
process. In the following sections a quantitative
treatment of the generation of acoustical 8H in
8B8 will be given for the stationary case. This
will allow us to determine the nonlinearity
coefficient &% by means of 8BS measurements.
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3. Stationary theory — the ansatz

At present 8B8 has been observed mostly in
backward-scattering, where the incident laser
wave and the generated sound wave propagate
forward and the scattered Stokes wave runs in
the opposite direction. We identify the laser
wave direction with the %-axis. Thus the problem
will be spatially one-dimensional. Further we
assume that the electromagnetic waves are
linearly polarized in &e-direction: F = /-&. Then
the linearized hydrodynamical basic equation
(Newton's law with mass conservation) and
the Maxwell equation take the form

® b2, o
P e )
w ds d
p, d?22
y' ds
F2), 4
8K dn (F2) (4)
ds
f)- o
dF R/ I8
/ ds
F 5
wop, ar P ©
(~-coupling coefficient). Here, the optical

absorption is neglected and only the viscous
part of acoustical damping is regarded, represen-
ted by an effective viscosity 7, which is given
from bulk and shear viscosity by

7= %+ "A-

We look for solutions of the coupled system
(2), (4), (5) in the form of plane waves with
amplitudes changing slowly in space. For this
reason we make an ansatz in the usual form,
but taking account of an acoustical second
harmonic wave too:

F(oJd - rc.c.},
F(wJ = r{~("err+N +cc},
p(~) - P.=HPc(2)e""" +c.c.}, (9
p(“u) - Pu = HPH(2)e"<"-*"*> + c.c.}

with

d = ar—ag?
(7)
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The condition of slowly varying amplitudes
means

1 dF 1 dpo
Fy da R, d2
1 dF 1 doy (8)
' Ayy.
F, da Py da

Substituting (6) into (4) and (5), and neglecting
some terms because of (8) we get the system

(9a)
(9b)
(9c)
(9d)

FA —
By —FFAp,

Po+ Cp. = F F ™ + Fpyyp*e"™ %

Pn+ Fp, = Ep~en-
with
Ad —2n

The coefficients in (9) have the

meaning

following

y'Ar

f -
4u.2p.

= —fIndl,

F =f = 5l-
4up. J-Bl,

F =T g — iFL (10)

Ky—Arg
& 8pic
Um2o%rr
/2\{?o?ﬁr
= F % =
dyy 8pYayf

For the sake of brevity we use the following
abbreviations

TN,

= iFj,

N

. %c
i = — IFI,
oc
8l FF _
" * =Idi, (11
__ 64x™ FFFA
"TRE Fo

Both the values of (7and F for special substance
and the type of solutions, which will be found
in next section, justify a further neglecting of
the terms p™and py in (9¢) and (9d). Thus the
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problem is reduced to solving a nonlinear system
of only two differential equations of first order
and two algebraic equations.

4. lterative solution

In solving the remaining system of equations
we begin with a2 independent "zeroth" approxi-
mation of Fy, which we call F» = F™*.  Of
course it is identical with the value measur-
able at the input window of the scattering cell.

Since there is no reasonable assumption of
a "zeroth" approximation for Fg, we make the
first step of iteration in the form (the bars
are omitted):

FI' = ytF/pi,
Fy = FFlpi*,

FG

m o ™M

Pn v 3

-Ipl4z

Fj, = "Fne +FF°

)2

(12)

Fi = FchF'e
1 ®

- i, A,

From the boundary condition it follows
that F =1 — The second constant of
integration (Fe”j cannot be determined. Its
meaning is obviously the amplitude conversion
ratio at 2 = 0 in this step of approximation.

The second step of iteration gives
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5. Proposais for experimental observation

The intensity of the acoustic second harmo-
nic will be very weak. As shown by BREWER [5],
it may be, however, observed. For this purpose
the scattering volume has to be irradiated with
the second harmonic of the laser wave. This
process may be also considered theoretically.
At first we assume no dispersion for both
optical and acoustical waves. Then the acoustic
second harmonic has exactly the right frequency
for phase-matched 180°-Brillouin-scattering of
the optical second harmonic of the laser wave.
The differential equation for the amplitude of
the scattered wave is

£~ 8277, (M (14)

with
F(20,) ™ Bg,
B(2ngJ = Bg™ = B°~ = const,
Bg 3B32B.

We take $g(2) from the second step of the iter-
ation process and get for 2= 0

2B(0) 4 298U
wt

(15)

This relation gives a possibility of determin-
ing the coefficient of acoustical nonlinearity by
measurement of the scattering intensity in the
neighbourhood of the optical second harmonic.
Generally, the relative dispersion of optical
waves will be different from that for acoustical
ones. Then one may correct the phase-mismatch
by oblique incidence of the optical second
harmonic. But this gives a diminished and
undetermined volume of interaction.
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An other possibility could be the using of a
Brillouin-scattered Stokes wave of the optical
second harmonic. In this case, however, the
scattering material should be chosen so that
phase match be achieved.

6. Numerical example

We consider the situation for toluene. For
this fluid we have y" = 1.60 and &a = 8.93
(at low frequencies). The values for the other
needed material quantities being known we get
for ruby laser frequency

Al 33 Bl =2.8 ms/g,
G = 1.88-10' nr*,
IDI = 0.22 s'/nF,

Bl = 35 ms/g,
F = 7.52-10' nr*,
id = 17.5 ms/qg.

For a 10 cm cell length, a 10*° W/cnF laser

intensity and conversion ratio of intensity

B' = 1/9, the quotient of scattered and incident
intensity of the optical harmonic will be

B
Bon

2.2-10*

This demonstrates that the effect is small but
still measurable.

For many other fluids the &%ratio is similar
(33 10 for organic fluids, 35 for water). There-
fore, we can expect to get a quantitative know-
ledge of acoustical anharmonicities at hyper-
sound frequencies in the proposed way.

L'influence des non-linéarités acoustiques sur la

dispersion stimulée de Brillouin

On a présenté la théorie stationnaire de la dis-
persion stimulée de Brillouin dans les milieux isotropes,
en sonsidérant les cas ou, vu les non-linéarités acousti-
ques, il faut tenir compte de la deuxiéme harmonique
acoustique. On a montré qu' en partant de l'analyse
de la dispersion de Brillouin, il est possible de mesurer,
pour les fréquences ultra-sonores, le coefficient de non-
linéarité acoustique quadratique.
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BAnsiHne aKycTUYeCKUX HeIMHEWHOCTeNM

Ha CTMMy/MpoBaHHOe paccesiHne BpunnosHa

MpeacTaBneHa cTauvoHapHas Teopusi CTUMYJIMPYEMOro
paccesiH/s BpuoaHa B M30TPOMHOM cpefe A4/ TeX Cly4aes,
B KOTOPbIX M3-32 aKyCTUYECKOW HEIMHEHOCTM HY>KHO MpUHU-
MaTb BO BHMMaHWe reHepaluvio BTOPOl aKyCTUYecKoi rapmo-
Huueckoli. MokazaHa BO3MOXHOCTb M3MepeHust KoadduLpyeHTa
KBAZIPaTHON aKyCTUYECKOW HENMHENHOCTU A1t CBEPX3BYKOBbIX
YacToOT Ha OCHOBE aHa/mM3a paccesHus BpunniosHa.
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