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Delocalization of the Information Stored iIn
a Holographic Memory**

By itluminating the data mask of a holographic memory "y an array of coherent point sources, the infortna
tion stored in a hologram can be delocalized, i.e. there exists a three dimensional region around the focal plane
over which the information is distributed uniformly. In consequence of the method described storage redundancy
can be achieved, and some properties of the Fourier spectrum can be, moreover, kept in the vicinity of the Fourier

plane. The calculations have been verified by a model experiment.

1. Introduction

1 8 Information stored in holographic Memory.ice does not

has the form of the Fourier spectrum of a
primary data mask, containing transparent
and opaque squares, corresponding to the bit
content. When the data mask is illuminated
by a plane or homocentric wave, then each
square gives the same amplitude distribution
in the Fourier plane, but the phase factor is
proportional to the location of the bit-square.
The Fourier spectrum of the whole data mask
is produced by the interference of the indivi-
dual bit spectra. Such a kind of spectrum will
be called a Mwi/orw spectral distribution.

For reconstruction of a bit-square from its
holographic record only the central part of the
diffraction pattern is needed, i.e. the region
defined by resolution requirements. From the
uniformity it follows consequently that for
the reconstruction of the whole data mask the
same region is needed as for an individual
bit-square. Thus, the system of a holographic
memory can be the following [1]: A block of
data is realized in the form of a data mask,
the mask is then recorded in a hologram of
finite extent, called subhologram. The whole
storage area consists of side by side subholo-
grams.

Difficulties arise, however in the realization
of the storage redundancy. A mere increase in
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the size of the subholograms allows to record
only spatial frequencies that are unimportant
for the reconstruction; the reliability of the
increase while its capacity
diminishes. A further problem is that the
Fourier spectrum appears only in the image
plane of the light source. Hence, the smallest
misalignment of the recording plane in the
direction of the light propagation leads to the
recording of the Fresnel instead of the Fraunliof-
fer diffraction. In the Fresnel diffraction pat-
tern the field scattered by the bit squares is not
distributed uniformly any more, the patterns
of the individual bits being locally shifted.
A damage of the hologram plate may lead to the
loss of some bits in the reconstructed image.

The enhancement of the region over which
the information is distributed uniformly is cal-
led delocalization. Delocalization can be achie-
ved in several ways. The simplest method is
the illumination of the data mask through
a ground glass plate. Then, however, the speckle
noise of the reconstructed field will be very
high, like in the case of rough surface objects [2].
A more advantageous procedure is the illumina-
tion of the mask through a diffraction grating
[3], since due to various orders of the diffracted
light Fraunhoffer patterns are shifted and
consequently, the spectrum is multipled.

The method investigated by us [I] can be
regarded as a generalization of the diffraction
grating method. Each bit square is illuminated
by an individual point source (Fig. 1). The
Fourier spectrum of a bit, illuminated in this
way, is the convolution of the spectrum of
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a single hit and that of the illuminating beam.
This resultant spectrum consists of an infinite
number of elementary holograms given by
a plane wave source. Thus, the resultant spec-

Fig. 1. Point matrix illumination
f —point sources, Jf —data mask: FT/ —Fourier
transform lots, 77 —hologram plane, / —focal length
of the Fourier transform lens

trum is getting blurred regularly. The coherent
point sources can be produced by using a fly's
eye optics, the distance between thelenslets being
equal to the side of the bit squares. Such method
was used for redundant recording of picture-
like information [5]. The fly's eye illumination
has also been described in [6] without detailed
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I/i; are the coordinates on the binary mask;
771, isthe size of abit; A%yisthe distance between
the bit-centres; and = 0 or 1 depending on
the content. Electric field in the hologram
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where 7 denotes the wavelength, A',the amplitu-
de of the incident light wave and / is the focal
length of the Fourier lens. Taking into account
(1) we get for the field (in the following we
neglect the proportionality factors):
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2 8 At first we shall discuss the most popular
Fourier (or quasi-Fourier) method of transpa- gand
rency transformation. A plane wave falls on
the data mask (Fig. 2) and the hologram is foy)

Fig. 2. Plane wave illumination
77 —data mask, 7<7i —Fourier transform lens,
reference beam
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registered in the focal plane of a lens. Let the
transparency of the binary mask containing A"

bits be
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= A_a(Arx + b/;)j. (5)

N@37/'Mlyy) function will be called the M
specb'dw /;/ucbow, because it describes the
spectrum of a single bit. The F(tr®, /oy) function
is called the cu/dc/d .s-prcb/rw /Mucbo/q since it
describes the spectrum of a mask on which
the bits are represented by d functions. As an
example Fig. 3 shows the content spectrum

Fig. 3. A result of the oue dimensional computer simula-
tion of the content spectrum
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function of 20 randomly selected bits of a one-
dimensional mask. It can be seen that the
content spectrum spreads over the whole holo-
gram plane, so the spectrum to be recorded
on the hologram for the reliable storage is
determined by the bit spectrum function.

For plane wave illumination the bit spectrum
function is

Kbbu- ¥n) - D" sinc ™ “"jbnch
(6)
where sinc(;r) = simr/.r.
The spectrum has appreciable values only

in the vicinity of the optical axis (.r* = 0,
2in = 0).

The spectrum described in (3), (1), (3), (6),
is recorded on the Fourier hologram of the data
mask.

In the reconstruction process the intensity
distribution at the detector gq,, y~ plane is

\o)

const} j* J

where /* is the focal length of the read out
Fourier lens, and are the coordinates
of the centre of the spectral band used for the
reconstruction and A denotes the width of the
reconstructed Fourier spectrum. The deforma-
tion of a bit of the reconstructed signal is shown
in Fig. | as a function of the reconstructed
spectral range (i.e. /;) for the case = 0,

= b-

Fig. 4. Deformation of a bit of the. reconstructed signal
as a function of the reconstructed spectral range
(calculation)
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It can be seen that the main part of the
information is contained within the spectral
range determined by A r'~ = yn
= 0; there is no reason to take larger areas for
reconstruction as the output signal increases
only slightly.

Moreover, any lateral shift of the centre of the
reconstructed area (from the origin of coordi-
nates = 0, y", = 0) will lead to higher los-
ses (Fig. 3). Therefore, from practical point

w

/7

Fig. 5. Intensity distribution in the detector plane for
several values
* = oo for the continuous curve, & = 1A//D” for the
other curves (calculation)

of view the reconstruction region of the holo-
gram can be defined by *

iyn! < )

Therefore there is also no reason to record larger
subholograms, such subholograms are not re-
dundant, and losses in the hologram vyield
information losses in the reconstructed image.

Fig. 6. Lens matrix illumination
FJ7 —lens matrix, Jf —data mask, FF —Fourier
transform lens, 7?2 —hologram plane, F —focal plane

3 8 Let now a matrix of lenses be placed in

front of the data mask (see Fig. 6) so, that the
axis of each lens intersect the data mask at the
centre of the corresponding bit square. The bits

* The limit defined in (8) is twice that requested
by the Rayleigh criterion.
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are illuminated by spherical waves

F.exp ”

where
r —denotes the distance between the focal

plane of the lens matrix and the data mask.
The field at a distance /' measured from the
Fourier lens is then

f fFm
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1Ar

) mo/(?i,}exp
1 ¢y t

9
(For simplicity we discuss only a one-dimensi-
onal case, the relations for two dimensions are
obvious.) The first factor in the integrand
in (9) describes the spherical wave, the second is
the transparency of the mask, the third describes
the focusing action of the Fourier transform
lens, and the fourth is the propagation term.
After some boring calculations for the field
diffracted by the &-th square we get

= exp{-"[(Rd"(a+y)-aTr(l+p))2 +

+Y)1 X
12 "
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where

<P(r) = Je s dt

isthe Fresnel integral, y is the defocusing factor
characterizing the misalignment of the hologram
plate, defined as

and a stands for

a 15
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The formula (10) is hardly disputable. We
shall concentrate the discussion on the role
of the parameter a containing both the defo-
cusing factor and the spherical wave illumina-
tion of the bit. If tt*-0 an assimptotic appro-
ximation is to be used [8] and [10] turns into
the Fourier transform of the square(6). The ca-
se,a = 0 buty ~ 0and r # oo, corresponds to
the realization of the Fourier transformation,
when the Fourier plane is the image plane of
the source [7]. The case r*oo and y-sO has
been discussed in §2.

A more important case is when a is a large
number, i.e. the distance y is much less than
the focal length /, but the misalignment is not
too high (y  1). The distribution remains nearly
uniform, if for the two (independent of the co-
ordinates a?,) terms (11) of the Fresnel integral
argument the following condition holds :

i.e. when the defocusing factor

a M
2K Aj; Yy 2AAN
For = 15, %= 50 and y/y = 30 the

limit of the relative misalignment is
Iyl 4 1/15 "6 % ,

which can be easily achieved.

In the absence of the lens matrix (y = 00)
the term dependent on the location of the
square will be

A'lli; ly

(see (10) and (11)), instead of

thus the accuracy of the longitudinal alignment
is facilitated by the factor yly.

The field distribution must be calculated
from Fresnel integrals. In Fig. 7 we show some
calculated distributions for some values of
y/y. As it can be expected, the witdh of the
intensity distribution curve increases with the
y/y ratio. (It is clear, that the case, when the
approximation of the geometrical optics is
valid, the illumination of the Fourier plane by
a bit between the shadow margines is constant.)
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Fig. 7. Dependence of the intensity distribution of the

bit spectrum on the focal length of the fly's eye lenses

(D~ = 019 mm, / = 300 mm, A= 6328 A) (calcula-
tion)

When the whole data, mask is illuminated by
a lens matrix, the field distribution in the holo-
gram plane is

-E(ah?) =
A

where -E*aq?) is given by (10).

The reconstructed intensity distribution in
the detector plane is

I(a??) = const] <
-A+ah

-E(.rM)e da?g] .

12,

The reconstructed intensity distribution (12)
for the case //r = 100, y = 0 was calculated

Fig. 8. Calculated intensity distribution at the detector
plane in the case of fly's eye lens illumination for se-
veral it values; =0
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numerically. Fig. 8 presents the calculated
distribution in the case of = Oforseveralvalu-
es of A Comparing Figs 4 and 8 we can see, that
a satisfactory reconstruction with plane wave
and fly's eye lens illumination methods requires
the same spectral band (A =1). The enlarge-
ment of the reconstructed area (A> 1) gives
an enlarged signal in the detector proportional
to the enlargement of the reconstructed area,
i.e. the storage redundancy is proportional to
the enlargement of the hologram size. In Fig. 9
the reconstructed intensity distribution is plot-
ted for bandwidth A = /A/71, but the centre
shifted up to = 3.75 The graph
shows no significant distortion compared with
the centred band (curve a in Fig. 9), in con-
tradiction to the case of the plane wave il-
lumination (Fig. 5) which proves the equivalence
of different parts of the spectrum.

Fig. 9. Calculated intensity distribution at the de-
tector plane for several values (It = 0.75A//ID";
-D3; = 0.19 mm;/ = 300 mm; A= 6328 A; //r = 100)

3. Experimental

84. For the sake of simplicity in the ex-
periments we have used a pinhole instead of
the fly's eye lens array. The arrangement of the
pinholes on an opaque mask was identical to
that of the bits in the binary mask. Placing
the pinhole array instead of the lens array the
bits were illuminated by the beams diffracted
from the pinholes. The distance between the
pinhole array and the binary mask was chosen
so that each bit be illuminated by light coming
only from the pinhole. It is obvious that pin-
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hole array cannot replace the fly's eye lens
array in every respect because of the loss in

light power.
The data mask used for test is shown in

Fig. 10, while Fig. It demonstrates its image
when centred stops of various diameter were
put in the focal plane of the Fourier transform

lens. For pictures a-d parallel wave and for
pictures aa-dd matrix illumination were used.
According to 8.1 no significant deviation for
symmetrical spectra is observed at both kinds
of illumination. The size /, = is satis-
factory for making fair records.

Fig. 12 is a side-band picture using stop of
diameter 2A//_D” shifted by 3/4A//7t". Fig. 12a
was taken with parallel beam, Fig. 12b with
a matrix. The difference between the two re-
cords is obvious. The further advantage of the
matrix illumination is demonstrated in Fig. 13,
showing the result of the off focal plane misalig-
nment. The image of a plane wave illuminated
mask is cut off at the corners and strongly
distorted in the sides, indicating the absence
of the uniformity, while the picture take]] with
the matrix shows no local losses in the content,
the uniformity being observed.
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lumination, a, aa : 7 = 1(A//Djt;). b,bb:A= 0.8 3 (4//cee,
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11. Intensity distribution at the detector plane: a—d: parallel wave illumination,

dd
aa-dd: matrix il-
A= 0.7(ANZ)M),d,dd :A= 0.0(4//IDjl), t» =0
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a

b

big. 12. Experimental comparison of the plane wave (a) and matrix (b) jdomination method (& = 0.75
= 0.75 (A//ID"™)).

a

b

Fig. 13. Experimental comparison of the plane wave (a) and matrix (b) illumination method (& = 1(A//D"),
II. //r = 1llll. y: II_I_II)

4. Conclusions

Calculation and experiments sliow that
a satisfactory storage redundancy can be achie-
ved when each bit of the binary mask is
illuminated separately by an identical diver-
gent beam. The use of divergent illumination
does not increase the minimal size of the
hologram, so this method does not decrease
the maximally attainable storage density.
The required storage redundancy can be achie-
ved by a proportional enlargement of the holo-
gram size. Using our method the spectrum
remains uniform for the holograms of out-of
Fourier planes just as well. Consequently,
Fourier transform lenses with large angular
aperture can be used, and the recording material
need not be matched to the curved focal
plane, because the properties of the Fourier
transform are conserved in depth.

*
Thanks are due to Mr. F. Kirhly for his active
assistance in the experiments.
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Le déplacement des informations
dans une mémoire

magasinées
holographique

Au moyen de I'éclairage de la masque contenant
des données de la mémoire holographique par un
systéme des sources de lumiére ponctuelles cohérentes
il est possible de déplacer les informations stockées
dans un hologramme; cela veut dire qu'autour du
plan focal il existe une zone de trois dimensions, sur
laquelle les informations sont disposées uniformé-
ment. En se servant de cette méthode on peut obtenir
un surplus de mémoire; en plus, certaines propriétés
du spectre de Fourier peuvent, étre préservées dans
I'entourage du plan de Fourier. Les calculs ont été
vérifiés pratiquement sur un modéle.

MepemellieHne MHBopMaLmy,
XpaHUMOW B rosorpagpuyeckoii namaTu

MyTeM OCBELLEHUS MAacKu C AaHHLIMW TOMOrPaPUuUecKom
NamsaTh CUCTEMOMN KOTEPEHTHbIX TOUYEUHbLIX UCTOUYHUKOB MOXHO
nepemeLLiaTb UHAHOPMALIMIO, XPaHUMYLO B ronorpamme. MHade
roBops: CyLIeCTBYeT TpexMepHas 30Ha BOKPYT (hoKanbHoM
MMOCKOCTY, Ha KOTOPO MH(OpMALMs OAMHAKOBO pa3mMeLleHa.
MpuMeHeHMEM OMWUCAHHOTO MEeToAa MOXHO MNOAYYUTb W36bl-
TOK MamsTW, a HeKOTopble CBOMCTBA CMEKTPOB Pypbe MOryT,
CBEPX TOr0, COXPaHWUTbCA B6MM3N NAocKocT Pypbe. PacueTb
NPOBEPEHbI IMMUPUUECKN HA MOAENMN.
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