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We introduce a new composite Fourier-plane binary phase-only correlation filter (BPOF). The 
filter is defined with the use of a nonquadratic energy function and is optimized numerically with 
a variant of the genetic algorithm. A possible application of the filter could include automatic 
postcode recognition. The paper also contains an introduction to composite filtering and a short 
overview of the present state of technology in the field of coherent optical correlators.

1. Introduction
In the last years the optical pattern recognition techniques are gaining new attention, 
e.g., [1] —[7]. It is sometimes expected that optical pattern recognition may replace 
in the near future the traditional electronic techniques in applications that either 
involve large quantities of data or put critical requirements on the speed of 
operation. Examples of such applications include searching through large databases 
of, e.g., fingerprints or DNA sequences, military applications including target 
tracking or conducting misssiles, examination of satellite images, robotic vision and 
many other. In fact, already with the present technology, the optical correlators 
could in principle operate at the frame-rates not reachable to electronic digital signal 
processing.

The two basic architectures of the coherent optical processors were introduced by 
V a n d e r  L u g t  [8] and W e a v e r  and G o o d m a n  [9] over thirty years ago. In the 
eighties, the popularization of spatial light modulators (SLMs) made it possible to 
operate the correlators from a computer and since then the correlators could be 
considered as specialized signal processors that might speed-up pattern recognition 
applications. Semiconductor lasers, spatial light modulators with XGA resolution 
and operating frequencies that exceed 1 kHz, and the high resolution CCD cameras 
became widely available in the last decade. In effect, it is finally possible to construct 
optical correlators that work in real-time and could be competitive to digital 
electronics. The recent paper of COLIN et al. [10] includes the comparison of 
operating speeds reached by the optical correlators constructed after 1992.

Composite filtering [1], [3] is a powerful pattern recognition technique closely 
related to techniques used in neural networks. Composite filtering extends simple 
matched filtering to complicated classification problems. It allows us to construct
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a single filter from multiple arbitrary reference objects. Recently, many approaches to 
the synthesis of composite filters have been proposed. They differ in the significance 
that is assigned to the noise robustness, discrimination capability, the shape of the 
detection signal, optical efficiency, or other criteria [11].

In this paper, we will introduce a new composite filter. We define the filter as the 
solution to an optimization problem. For this purpose we will introduce the energy 
function, select the domain of optimization and, finally, optimize the filter numerical­
ly. For the energy function we chose the ratio between the largest correlation plane 
energy for the reference objects that should be rejected and the lowest correlation 
peak for the reference objects that represent the true targets. As we will show, this 
criterion gives sufficient control over the correlation signal shape and does not 
involve the common but unnecessary degress of freedom, such as arbitrarily fixed 
phase or amplitude values corresponding to training target objects. For the domain 
of optimization we select the binary coding domain available to ferroelectric spatial 
light modulators. In the present paper, the acronym BPOF is used for any filter 
coded in this domain, and is not attributed to the classical BPOF filter of Homer 
and Leger [12]. We perform the optimization [13] numerically using a variant of the 
genetic algorithm [14].

The paper is organized as follows. In the next section, we review some basic 
information about optical pattern recognition, and overview the current state of 
technology, we compare the operating speeds of optical and electronic image 
processors, and cite some of the characteristics of the latest reported correlator 
devices. In Section 3, we introduce the basic composite filters designed for use in 
optical correlators, including the conventional SDF, MVSDF, MACE, MINACE, 
OT-SDF, EOF and MACH filters. Section 4 is a short introduction to genetic 
algorithms. In Section 5, we introduce the new filter and, in Section 6, we optimize 
the filter numerically and demonstrate its performance. Finally, Section 7 contains 
some concluding remarks for future research.

2. Optical correlation: the speed, applications, implementations

Research in the field of optical correlation is reasoned by its potentially great speed. 
The actual frequency of operation of the correlators is limited by the electronic I/O 
elements, i.e., the SLM, CCD and the rate at which the reference images are extracted 
from a mass storage, such as a hard disk.

Most correlators reported recently use the ferroelectric or twisted-nematic SLMs 
or photorefractive-crystal SLMs. The spatial resolution of most currently produced 
SLMs is in the range between 128 x 128 and 1280 x 1024 pixels. It is easy to verify 
that the calculation of a two dimensional discrete Fourier transform with use of the 
FFT algorithm for a 1024 x 1024 image, at the frequency of 1 kHz, requires the 
processing speed of about 4.2· 1010 complex multiplications per second, or almost 
1.7-1011 real multiplications per second (170 GFlops). To calculate the correlation 
between two 1024 x 1024 images at 1 kHz we would need the power of 340 GFlops. 
A similar correlation at 5 kHz would correspond to the speed of 1.7 Tflops. In
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principle, this speed could be obtained with the use of on-table optics with currently 
existing elements. Moreover, in the future, with the miniaturization of the set-up, this 
speed might be further increased, because the current limitations are technological 
and not theoretical as in the case of electronic processing.

Speed is a strong advantage of optical correlation but probably the only one. 
Optical correlators are analog devices — the accuracy of one or even several percent 
does not seem to be attractive in comparison with the floating point digital 
arithmetic. Optical correlators are also not so compact as most electronic systems. 
However, a continuous trend for miniaturization can be observed. For example, 
a 0.8 x 1.7 cm2 correlator integrating a ferroelectric SLM, two polarizers, a diffractive 
lens and a camera was presented in the OE Reports in July 1999.

The reported operating speeds of optical correlators that were actually built, or 
are commercially available are significantly lower than the 1.7 Tflops mentioned and 
in practice reach about 1010 operations per second (10 GOps). The speeds of the 
optical correlators made since 1992 in Thomson-LCR, Optical Institute of Sweden, 
Litton, Lockeed, Quantalmage, and Jet Propulsion Laboratory are compared in the 
recent paper of C o l i n  et al. [10], who report a lOGOps nonlinear JTC with 
a nonlinear BSO crystal and a single 256 x 256 ferroelectric SLM working at 1 kHz. 
A correlator of similar capabilities (256 x 256, binary, > 1 kHz with use of the 
on-board memory) is advertised on the web by Boulder Nonlinear Systems (BNS) 
[15] as a plug-in card for PC computers (there is also a newer model with a lower 
resolution of 128 x 128 pixels but with an analog modulation — perhaps the first 
correlator with analog modulation operating at over 1 kHz). It is also interesting to 
note that the correlator from the Optical Institute of Sweden [16] (reconfigurable 
JTC/Vander Lugt architecture, 256 x 256 ferroelectric SLM operating at the frequen­
cy of 220 Hz — which is the limiting speed of the CCD, total size: 21 x 28 cm) is 
made available for collaborating laboratories for operation through Internet, at the 
web address [17] (a demonstration page is available for unregistered visitors).

The newest digital signal processors are capable of calculating up to about over 
five 1024 x 1024 correlations per second. Most civil applications do not require 
greater speeds. Optics is interesting for applications that involve huge computational 
powers. Some examples are seeking through large databases with fingerprint images 
[10] or DNA sequences [18], robot vision, or the reconstruction of synthetic 
aperture radar (SAR) images [19].

Optical correlation is also interesting for military applications. An example is the 
Standard Missile (SM) optical correlator co-processor program (OCCP) sponsored 
by US Navy [20], The aim of the project is to develop an optical correlator for the 
processing of the signal from an infrared imaging seeker. The seeker is used in the 
new versions of SM-2 Surface to Air Missiles in the last seconds of flight Because of 
the extreme closing velocities it is not possible to process the incoming data by 
means of electronic DSP.

It is an open question whether in the next years the optical correlators would 
become more attractive than digital signal processing. Currently digital processors 
are widely used in various applications, and optical correlators are still considered as
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experimental or prototype devices. However, it is widely expected that at some time 
the optical technology must at least partly replace the electronics. It is also clear 
now that it will be possible to implement high-speed correlation-based pattern 
recognition methods, by some means — either optically or digitally. This justifies the 
growing interest in the development of correlation algorithms that may be observed 
in optical literature, and to which we contribute in the present paper.

3. Composite filtering
The basic problems addressed in pattern recognition are related to image detection, 
localization and classification. The factors which are considered in the design of 
algorithms are:

1. The robustness to detector noise or background clutter compromised with 
tolerance to distortions of the target object [21].

2. Invariances against image transformations [22], e.g., rotation, and scale 
invariance.

3. The hardware capabilities (computational cost at the design time and the 
possibility of efficient optical or digital implementation with existing hardware at the 
required speed).

4. The stability of the algorithm, and its robustness to assumptions (how the 
algorithm would work in other realistic situations than those assumed during the 
design time).

Correlation based pattern recognition methods may be roughly subdivided into 
simple matched filtering, and composite filtering (synthetic discriminant function 
filtering). Simple filters are matched to a particular reference object. The unknown 
location of a reference object r in the input signal s is determined by finding the 
location y that maximizes the correlation between s and a filter h (we use the popular 
discrete vector notation to represent optical signals)

where * denotes the complex correlation, and arg max(.) returns the value of y for 
which the function’s argument is maximized. The filter h contains the information 
about the reference target r — we say that it is matched to the target object In the 
simplest case of the classical matched filtering (CMF) [23], the impulse response of 
the filter is proportional to the reference object r.

Assuming one filter for every possible reference object could be very inefficient. 
Alternatively, a single composite filter can be calculated for a class of reference 
objects (or perhaps the single object distorted or transformed in various possible 
ways, or viewed from various directions). The tutorial paper of KUM AR [ 1 ]  reviews 
the classical composite filters and many related ideas. Here we will recall very briefly 
some of the most important solutions.

Suppose, we have a set of reference images {r(fl):0 = 1 ... 0maJ .  The reference 
images can be, e.g., rotated, scaled or distorted versions of a single object, or can be

y =  argmax(|cy|2), 
c =  s *h*, where h =  f(r)

(1)
(2)
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divided into subclasses, e.g., with two classes composed of the target and non-target 
objects. Filtering with a composite filter discriminates against different classes and 
should at the same time detect the location of the target object.

3.1. Synthetic discriminant function filters
Most correlation filters for pattern recognition are defined as the solution to 
a certain optimization problem. The best known composite filters are derived by 
optimization of a quadratic criterion with a linear constraint. The linear constraint 
consists of a set of underdetermined independent linear equations that define the 
correlation signal ce corresponding to every reference object r(9) (objects r(9) must be 
linearly independent and 0 ^ ,«  d, where d is the number of pixels in the images). 
There is no general method for the determination of the optimal values of ce. In 
particular, intensity detectors lose the phase-information, so the complex arguments 
of ce might be set independently for every reference r(9) or class. The synthetic 
discriminant function (SDF) filter h is found as the solution to the linear equations, 
which additionally minimizes a criterion s(h) written as a quadratic form hfAh, 
where A is a positive definite nonsingular matrix (in practice also a Toeplitz one)

e(h) =  ht-A-h, with Xt-h = c (3)

where X = [r(1),r<2), ... r<9““)].
The analytic expression for the filter h can be found with use of the Lagrange’s 

multipliers method

h =  A_1-X-(Xt-A-1 -X)_1-c. (4)

Depending on the choice of matrix A, it is possible to obtain various criteria e(h) that 
lead to filters h that strongly differ in properties. The conventional-SDF filters were 
first introduced by H e s t e r  and CASASENT [24]. Kumar introduced the minimum 
variance SDF (MVSDF) filters [25], by minimizing the mean-square-error (MSE) of 
the detection signal when the input noise is signal independent and stationary with the 
known power spectral density p. MAHALANOBIS [26] optimized the correla­
tion-plane-energy (CPE) criterion averaged over the reference objects in order to get 
high and narrow correlation peaks for all the target objects. The filters obtained in this 
way are called the minimum average correlation energy filters (MACE). Averaging can 
involve equal weights (a9 =  1), or weights that depend on the probabilities of the 
occurrence of the reference objects in the input signal (afl =  P9) — if available. The 
values of a9 may also be found iteratively, to satisfy a MINI-MAX type criterion on 
the CPEs obtained with each of the reference objects [26].

Combined optimization of MSE and average CPE is more desired in practice, 
than the optimization of just one of these criterions. For this purpose R e f r e g i e r  
[27] proposed an optimal-trade-off approach for these two criteria. Next, R a v i - 
CHANDRAN and CASASENT [28] introduced the MINACE filters.

All the filters enumerated in this subsection have the same form, given with 
Eq. (4), and only differ by the choice of matrix A. In the spectral domain matrix 
A takes the form A =  FAF_1 (where F is the matrix of the two-dimensional
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discrete Fourier transform, and the dash indicates the spectral representation). For 
the filters that we discussed A is always diagonal and takes the following forms:

A =  7 
K.k = Pt
^k.k =  ^9 a» '1 ^ 1 2
l M =  m a x (^ |^ > |2,|r<2)|Mf<3>|2. ...)

K k  =  P -Pk+~ r^Ze \? l9)\2, fiBiO, 1]
“ max

-* conventional SDF 
-► MVSDF 
-» MACE
-► MIN ACE (5)

-► OT-SDF

Finally, it is interesting to note that if only a single target object is considered, i.e., 
1, the conventional-SDF, MVCA, MASDF and OT-SDF reduce to the well 

known CMF — for white noise, CMF — for correlated noise, inverse filter (IF) and 
the optimal trade-off filters (OTF) [27], respectively.

3.1.1. Entropy optimized filters

In a different approach, Flaisher, Mahlab and Shamir [29] proposed to optimize 
composite filters in terms of the spatial entropy (considered as a heuristic criterion 
with no statistical background). The energy function e(h) which defines the entropy 
optimized filters (EOF) is equal to the difference of the normalized correlation 
entropies for objects to be rejected and objects to be detected, and is the following:

e(h)= E  S(c9) -  £  S(c®) (6)
0 e object* to r e je c t  0 e object* to detect

where S(c®) =  £c£ln(c£) and c® =

Optimization must be performed numerically with use of, e.g., simulated 
annealing or genetic algorithms. Even for the phase-only (POF) or binary 
-phase-only (BPOF) coding domains, the optimization was very time consuming, 
and the study of EOFs was not continued in later literature. However, the idea is 
worth citing, because the proposed criterion described the shape of the entire 
correlation signal, and at the same time did not impose any unnecessary constraints 
on the peak location and height, or amplitude or phase values at any point of the 
correlation signal.

3.2. Mean square error-SDF filters
A quadratic energy function that controls the correlation plane shape was proposed 
by KUM AR [30]. It is defined as the mean-square-error between the desired 
correlation shapes c® and actual correllation shapes averaged over the set of 
reference objects r®

e(b) =  E llr® *b -c® ||2. (7)
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The resulting filter is similar to other SDF filters and is called MSE-SDF. In 
particular with c® = 0, the above criterion is equivalent to the average CPE which is 
optimized with the MACE filter.

33. Maximum average correlation height filters
The design of the SDF filters, such as the MSE-SDF, includes unnecessary hard 
constraints on the correlation signal value at the origin (or other chosen points). 
MAHALANOBIS et al. [31] proposed to release these constraints and introduced the 
maximum average correlation height (MACH) filters, closely related to the 
MSE-SDF and MACE filters. The MACH filters depend only on the second order 
statistics calculated from the training images belonging to the two classes — one to 
be detected and the other to be rejected. The MACH filters maximize the ratio 
between the height of the average correlation peak for the target class |htm|2 
(where m is the average of the target class training images), to the sum (possibly 
weighted, in the optimal trade-off approach) of the average CPE for the class to 
reject IPDh and the so-called average similarity measure (ASM) IPSh of the target 
class

rflO |htm|2 
W  htSh+htDh (8)

where: m — mean image from the target class, Skk — the average power spectrum 
of the target class measured relatively to m, i.e., the mean over 0 of |f fl —m |2, 
At.* “  ^ e  average power spectrum of the class to be rejected.

Contrary to the other SDF filters, the MACH filter which optimizes (8) may be 
directly calculated in the frequency domain, without the need of matrix inversion

^  MACH mk
A.*+At,*

(9)
Minimization of the ASM in the MACH filter optimizes the correlation plane shape 
in such a way that in the MSE sense this shape varies less for all the images from the 
target class.

4. Genetic algorithms

Genetic algorithms (GA) [32] form a powerful but computationally demanding 
family of optimization methods. In the next section, we will use a variant of a genetic 
algorithm to optimize a composite correlation filter defined with an energy function 
of the form specially chosen to speed-up the implementation of the GA.

The idea of the genetic algorithms is inspired by the natural evolution, which can 
be treated as a natural optimization process. Contrary to most other optimization 
methods, with the GA, a whole population of solutions takes part in the 
optimization in parallel. Although the GA are just a class of optimization algorithms, 
traditionally a specific terminology that underlines their biological origin is used for 
their description. The optimized energy function is called the fitness, the set of
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solutions is called the population, the binary represented solutions are called 
chromosomes, their elements (usually single bits) are called genes, etc. The genetic 
algorithms have many variants, usually oriented either to solve particular kinds 
of optimization problems [14] or to model particular aspects of the natural 
evolution [32].

Scheme of the genetic algorithm

Fig. 1. Generic scheme of a genetic algorithm.

Figure 1 illustrates how a typical genetic algorithm works. The starting 
population of chromosomes is usually chosen randomly. Then, in every generation, 
with the “roulette wheel selection”, a new population is created and replaces the old 
one. The probability of keeping a chromosome in the next generation is usually 
proportional to the (normalized) fitness value that corresponds to that chromosome. 
The purpose of the selection is to leave only the best solutions from the preceding 
population. The indeterministic selection helps to keep the diversity of the 
population. New solutions are introduced in every generation by the mutation, 
cross-over or certain other so-called genetic operators.

Optimization with the GA is simple, might be easily implemented on parallel 
machines if one has such, and can be used to solve difficult problems, with 
non-convex and non-differentiable fitness functions. The main problem with the GA 
is their low speed. However, here we will be interested in a class of criteria for which 
the effect of the point mutation on the change of the value of the criterion can be 
evaluated with only a few arithmetic operations. In effect, the convergence of the 
algorithm is obtained very quickly.

5. BPOF composite filter for a classification problem with 2-classes

We will consider a detection and classification problem with two classes [13]. We 
assume that the reference objects in the two classes are the digits 0 — 4 and 5 — 9, 
respectively. These digits are written as binary images with 64 x 64 pixels (see Fig. 2). 
Digits 5 — 9 (class I) should produce a detection signal, while digits 0 — 4 (class II)
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Target objects (class I)i:

5 CD 7

00

CD

Objects that should be rejected (class II):

0 11 M 13
Fig. 2. Training objects used in the optimization process.

should be rejected. Our aim was to propose and optimize a composite filter (BPOF) 
that could discriminate objects from the class I against those from the class II. 
Automatic postcode recognition could be based on a cascade of filters optimized in 
this way. Although a simple matched filter might be used for each of the 10 digits, but 
an approach based on classification is more efficient as concerns the number of 
correlations to be calculated — 4 instead of 10. The number of reference images for 
each of the classes could be easily increased, e.g., using a database of handwritten 
numbers. However, here we will only focus on the optimization of the BPOF 
composite filter for the already defined set of reference objects that are shown 
in Fig. 2.

In the current classification problem, it is not possible to apply the composite 
filters that we overviewed because we want to obtain a binary filter for use with 
a ferroelectric SLM.

We decided to select a more complex energy function than is used in the SDF 
filters, and optimize the filter numerically. We maximized the ratio between the 
squared modulus of the lowest correlation signal for objects from the class I to the 
highest correlation plane energy for objects from the class II. With use of the 
Parseval’s theorem this ratio can be simply written in the spectral domain. The 
energy function to be minimized is the inverse of this expression and is equal to

max Y\ f i l f Bk\2
/C \ _ OeobjccU to reject (class II) k

min I M
0eobjects to detect (class I) k

(10)

Our criterion has several practically important advantages. Because we use the 
min(.) and max(.) functions, the optimization always tends to improve the lowest 
correlation signal for class I, and to decrease the largest correlation plane energy for 
class II. In effect, after the filter is optimized, nearly equal correlation signals will be 
obtained for class I, and very similar correlation plane energies for class II. Our 
energy function does not impose unnecessary constraints on the exact value of 
intensity and phase of the correlation signals. Moreover, if we optimize the filter in 
the Fourier domain, the energy function is simple to evaluate — there is no need to 
calculate any Fourier transforms to find its value. If a single pixel of the filter is
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modified in an iterative optimization procedure (e.g., by a mutation in a GA), the 
number of numerical operations needed to find the new value of the energy function 
is proportional to the number of reference images, and does not depend on their 
dimensions. After making this observation, the numerical optimization of the 
proposed energy function can be implemented in a very efficient way.

6. Optimization of the filter

We optimized the filter [13] with a genetic algorithm. The GA were already used for 
optimization of correlation filters and other diffractive elements with good results, 
e.g., [33] —[35], however, the size of the optimized element was much below the 
64 x 64 pixels that we have here. We have chosen a version of a GA with point 
mutation, proportional selection and a small probability of cross-over. The selection 
was forced not to eliminate the currently best solution from the population. The 
genetic operators that we used are schematically illustrated in Fig. 3. We varied the 
population size between 10 and 100 chromosomes. The size of about 20 chromo­
somes seemed to be the most reasonable to us — with a smaller population the 
optimization often got stacked at a local maximum. We also tried with a population 
of just one chromosome. Then the GA becomes similar to simulated annealing [36]. 
Then the optimization usually got stacked before at a local maximum, but if the 
procedure was repeated several times, the best result was similar to the result 
obtained with a larger population. The advantage of simulated annealing is that it is 
easier to implement and not so memory demanding as the GA. We also tried to 
implement a GA with no cross-over. Elimination of the cross-over did not affect

The filter is represented and optimized directly in the Fourier domain with discrete values corresponding to 
LCTV transmittance levels. We assumed that the LCTV is a binary phase only device, and we represent every 
pixel as a single bit. The prim ary population of filters is created randomly:

Roulette wheel selection is used to create the new population from the previous one. The filters are selected 
from the old population with probabilities proportional to the value of the criterion for each filter.
M utation assigns a new, random value to a single pixel of 
the filter. The pixel is chosen randomly.
Mutation introduces new solutions into the population.

£
1 - , r f f l

Uniform crossover creates 2 new solutions by randomly exchanging pixels from 2 existing filters.

Fig. 3. Description of the binary representation of the filter and genetic operators used in our variant of 
the genetic algorithm.
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the results and significantly increased the optimization speed. The algorithm 
converged in a few minutes on a Pentium 100 Mhz computer. A more systematic 
comparison of the optimization algorithms is out of the scope of this article, 
especially that there exists a large number of their variants and always there are 
some free parameters that can be chosen in many ways.

We will now discuss some of the results of the simulations. Figure 2 illustrates the 
two classes of reference objects that we assumed to find a binary filter h that 
maximizes the criterion from Eq. (10). After optimizing numerically the filter, we 
tested its performance on the training objects. In Figure 4, we compare the energies 
of the correlation peaks obtained with every reference object. Below we show the 
perspective view of the correlation planes obtained with a selected target-object and 
an object for rejection.

20
18

Fig. 4. Top: the maximal value in the correlation plane obtained with the optimized filter for each of the 
ten reference images. Bottom: examples of the correlation plane, when the input contains a false object (2) 
or a target object (6).

We notice that thanks to the appropriate choice of the fitness function that 
includes the nonlinear functions min (.) and max(.) we were able to achieve a filter 
that produces very uniform correlation signals for all the target objects from class I. 
We may contrast this result with a typical situation, when a SDF filter is calculated 
analytically from Eq. (4) and afterwards is projected onto the coding domain 
available to the SLM. For example, we verified the performance of the MACE filter 
projected onto the binary domain, and we obtained a significantly lower uniformity 
(see Fig. 5).
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Projected MACE

1 2 3 4 5 6 7 8 9  10
Input scene

Fig. 5. Values of the correlation signals corresponding to the ten target objects, obtained with a 
MACE filter directly projected onto the binary coding domain.

The examples of the correlation planes plotted in Fig. 4 indicate that our filter 
has good discrimination properties and produces high and narrow detection signals 
for the target objects.

The criterion that we optimized could be easily modified to include a measure of 
noise robustness. Other (discrete) coding domains may be used, depending on the 
characteristics of the SLM. We would also impose a condition on the rotation 
symmetry of the filter to achieve rotation invariant recognition. Other mdified 
versions of the genetic algorithm or simulated annealing could be easily proposed. 
We intend to continue the research in some of these directions in the future.

7. Conclusions

Our main conclusion is that there exists a class of energy functions that give 
composite filters of interesting properties, and that can be very efficiently optimized 
with numerical methods such as the genetic algorithms or simulated annealing 
— which are usually considered to be compositionally expensive.

The speed of optimization is reasonable because the effect of point mutation on 
the change of the energy (fitness) function can be computed in just a few arithmetic 
operations. In fact, for any energy function that depends on the filter h through

expressions such as: £ |/ijr* |2 or Y^h'krek or similar, the point mutation can be
k k

evaluated in a fast way, provided that the previous values of these sums are kept in 
the computer memory. The energy function may then depend on these sums in any 
way, and may include nonlinear or non-differentiable operations such as min or max 
or other.

An appropriate construction of the energy function lets us eliminate the hard 
constraints on the values or phases of the correlation peaks, at the same time giving 
more control of the correlation plane for each input object than, e.g., we have in the 
MACE filters. Our numerical experiment based on the energy function (10) in­
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dicates that numerical optimization with quite arbitrary reference objects and 
realistic image dimensions leads to an interesting composite filter, and the op­
timization time is acceptable.

Further research is required to compare the performance of the new filter with 
other composite filters in terms of other criteria such as the SNR or light efficiency. 
We also intend to introduce other energy functions, and e.g., include the informa­
tion about the power spectral density of input noise into the optimized energy 
function.
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