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On the Partially Coherent Near and
Far Field Diffraction

In the paper the partiaHy coherent diffraction in the case of both near fiefd and far field approximations is investigated.

The concept of quasi-stationarity of the mutual coherence function is presented.

The generalized Schell's theorem is formulated. The latter expresses the intensity distribution in the partiaHy coherent diffraction
pattern by the convolution of the corresponding intensity distribution in coherent diffraction pattern and the Fourier transform of

the mutual coherence function.

1. Introductory remarks

In the paper the diffraction of partially coherent
light under paraxial approximation is dealt by applying
the Kirchhoff-Fresnel diffraction integrals and assu-
ming the quasi-monochromacy. This implies that
it is enough to deal with the spatial parts of the optical
signal i/(P) only. Thus the Mutual Coherence Func-
tion (MCF) can be defined [1] as

C(P", P") - <C(P")- C*(P")). )

Fig. I. Propagation of the MCF in a free space

According to simplified notation used in this equa-
tion and throughout the whole text (see Fig. 1) the
point in the ~ plane is denoted by P = (x,y) and
described by radius vector P

p= [
The distance between two points P', P" is

tr=p -P = [v-v" y'-y"] (2a)
similarly:
D=P'+P" - [x'+x"y'+y"]. (2b)
Scalar multiplication gives
P'-P" = x'x"+y'y",
so
P2= r=+y2. (20)
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By differential r/P we mean
P J . v (2d)
The following simplified models of optical elements
are applied:

The diffraction screen is assumed to be a transpa-
rency of amplitude transmittance f(P):

f(P) inside the diffraction aperture Z
3
0 outside Z ®)

Lens is treated as a thin, nonaberrant phase trans-
parency of transmittance 7/(P):

JP)=exp MNP 'j. 4)

This approximation allows to extend to infinity the
region of integration in the Kirchhoff-Fresnel integrals.

2. Quasi-stationarity

When discussing the propagation of the MCF, as
well as the diffraction or imaging in partially coherent
light it is usually assumed that the MCF is spatially
stationary, i.e. it has the form [2], [3]:

r(P,P")=r(P'-P™). (5)

Such an assumption is not true in general. To justify
this statement let us consider the propagation of the
MCF in a free space (Fig. f).

Under paraxial approximation we can write [2]:

YKPz-Pz)
jyr.(p;.p;')<

xexp[-~(P"™-Pr)]x

expjt- N (pips-pstes ) dpi<tp;, (6)

where AE= 2jr/2.
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Assuming stationary (5) and changing the variables

B

the equation (6) becomes:

pi+p;'=ip "
N
expL-z-Z(P’\-’P’\Z 71 ’ \ [ A
pip;.p;') = ’222. jil (1 7)exp”_ Uipjexpj- ™ [PAIF-;-U)- PACIF  F)]' r/IFr/F
exp)™-(P?-Pnj
29171 ic,<y.p[-A p;. it [-2» (A~ )] r/IFJU
A
MP I ~ 2 (/\ .Azr)] b (F n UFPA+PATA I:)/\_I:)"_U\l } _ i \ . B o
2//2' J 1( )eXp ) 2P rru = '5& (p -p; ) ()

The last line can be expressed in the form:
[NPA-PN) - CJY, (P2-P 2)- (8a)
This equation states that apart of the multiplicative
constant the MCF does not change. Such a constancy
of the MCF during propagation is in contradiction
to the experiment.
Instead of stationarity let us assume that the
MCF is %varl-s7al/o/?a;y in space, i.e. it has the form:

Ix
P(P', P") = P(P'-P"™)exp 5 (P"'-P"S)] 9)

Thus, the MCF consists of a stationary part P
and a quadratic phase factor. This form is suggested
by a well known form of the MCF [2] generated by
a completely incoherent, flat source S of the intensity
distribution /y(P) (Fig. 2).

The assumption of quasi-stationarity leads to the
results consistent with the experiment. As an example

Fig. 2. Generation of the partially coherent held by
the flat incoherent source

let us repeat the above calculations in the case of free
propagation of the MCF.

Inserting (9) into (6) and changing variables in
analogous manner we can obtain:

)=xp [-§-(P + p X

(py-p™)jexpjn- " (p; P;-P, PMNjr/PjIP™

P2(p;.p;") = Is(P,)
exp[~Pi(P2-P2)]*r (10)
AP AN (P?2-P2
r*.<p;-*9 - /7. Njy A <r-p;
exp”y (PN PA7ij
2N

(z,+22)22(

114

j P,(Flexp ~ P F(PN+P, l)p"]

A
|
2z

iF/) p(-p;-F ZPF)] rAIFr/F
(11)

OPTIJCA APPUCATA VI/4, 1976



Equation (11) shows that in free propagation the
guasi-stationarity is conserved. In this case the form
of the MCF remains constant, but the function is
changed in scale.

P") = r,,.,(P", P"X(P")?i(P") =

where f*t,, denotes the MCF immediately before the
lens,
71,, denotes the MCF after passing the lens.

3. Near Reid diffraction
in partiaily coherent iight

Let us consider a diffraction on a transparency of
transmittance ?(PJ placed in a *2 plane (Fig. 3).

Let the transparency be illuminated by the light
characterized by the MCF equal to P (P2, P 2)- Imme-
diately after the transparency the MCF becomes:

r(p;,P2)?(p;)?*(P2) (i3)

r(p;.p:*) = —

xexp [ (PM-P™)]exp[-*(P;P;-P2PnpP;r/P2.

To obtain the expression for the intensity distri-
bution on the 4 plane it is enough

Transformation of the variables

Po—P, = (16)

where 0 — denotes convolution,

IF+ t7\~ A A

Propagation through a lens does not change a cha-
racter of the MCF either, since this process causes
only multiplying by a quadratic phase factor:

P")expl[—’\((&P '3-P"2)]1 = A,.(P"-P"™)X

propagation from the .~2 plane to
the Fresnel diffraction integral [1]:

is described by

JJ r(p;,P2)t(P~(PD X

(14)
to set P4= P4 = P4 Then
P'+P" = IF
gives
2 274 / )
xexp]'— P4IT)A=P (P4, (17)

denotes the Fourier transform.

uipj AMFexp™-~ P4U) rft7x

. A 2+Z74 .
i <)P(p:).xplyig i (p:"-pr)lpxp[-~-F . (Fi-Fr)]~r<y:'
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AP P4NP2I
N

(18)
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The meaning of 7?,(P?) is ctear, if we notice that
the intensity distribution 4oh(”) in a diifraction pat-
tern on a transparency /(PJ due to a point source
located in P, = 0 can be obtained by inserting a sphe-

ricai wave diverging from the centre of the piane
into the Kirchhoff-Fresnel integra!.
This spherical wave is:
t/(P;)=fl,exp~Lp". (19)

rzfiit(p;)t*(pn f/..2exp

xexp

p

(PA-PA)jexpA- AP .(P; -PARjjPAPA"

The Kirchhoff-Fresnel integral is:

j'3 fI(PIN(PI

That is: after substitution of (19) into (20) and
setting 7(PJ = U(PJ U*(PJ:

-pr)jx

Y

& z"M+z.

Xexp

2 Z,z.

Therefore with an accuracy to a multiplicative
constant

'p.coh(P4) = A 4.(PI. (22

4. Far field diifraction
in partiaily coherent light

As it is usually done the far held diffraction can be
realized by placing a lens after a diffraction screen
and observing a diffraction pattern in a back focal

exp P 3]

2z,
'K P 3-P3) -

The lens causes the multiplication of 7~(P™, P,")
by (see (11)):

(P3) exp[--~(P?-P?)].

—P.P~pJ
/9,

=li/.I'-P,(PJ. (21)
plane of the lens (Fig. 4). Propagation of the MCF

from the transparency in the ~ plane to the lens (3
plane) is described by (see (14)):

P:)t(P)tIP;)exp Y (P?2-PD] X

exp YY(p;p;-p;p;')j jpiip:".

plane follows:

(23)

Then the propagation to the ~

Y4(p; .p;i = -pi-)l
v
1A IA
]np[ P1Ry B33P j] ~~p ;. (24)

Inserting (23) into (24) and setting Z3= Z4 = y we have:

exp [2
I T (I ANAMA(P3)exp A (PA-P?2)] X

/A - - .
Xe'ply (F?2-p?)lexpj-Y [p;(p;+p;)-p;(p;+p;)lii/lp~p~pip;'. (23
116

OPTtcA AjpucATA VI1/4, 1976



The intensity distribution in the ™ piane

w - A I

i$/(Pi)=

74("4,”), hence,

Xexpjry (P~-P~jjexpj-y [PA~ -15)-p; (P4HD;)] X

Integration over P3P 3 is easy to perform after
introducing new variables:

i [y (pr-pnjlexp}-

1 r r ik

YJ

The intensity distribution /(P4) can be obtained by
inserting (27) into (26) and assuming quasi-stationarity
of the MCF in the A2 plane (9). Integration over

7'(p;pnt(p;)™(p;exp” (PN-PM)jx

("-~rr)lexp{-y [P3(MN4+7)- A (NA+ADIN3NIX N 2702 - (26)
p;-p; = t/,
. 27
p;+p; = Ip.
[p;(P4+p;)-Ps (P4+~")]}"3N!
D(2P4+p;+p:')]i'"'[ tp(u-p;+p;jjip~tu
Jexp Ap;3P;'Jlexp[-yP 4P ;-P;)]. (28)
the variables
i = b -
p;+p; = 1p,

P2P2 can be performed easily after changing

=

X <

Similarly to (17) let us write

The last equation expresses the intensity distri-
bution in a diffraction pattern on a transparency
;(P2), due to a point source located in the centre of
the plane. To check this statement it is enough to

~""Ng')

23 Z4

tw

xexptrPzyexpjyl
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JY A (pi-p:)t(p:)t*(P2)exply

+ij (p"h-pnjexp [-~ (P2 -PY )] x

/"2 M §

Xt p(-~P.v)

ik
PPJAP

Y

insert spherical diverging wave (19) into the Kirchhoff-
-Fresnel integral describing coherent propagation
through a lens:

@31

i* ?2("2) exp P 2jexp

*2

<)l

(32)
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but (3= zi =./; and /(PJ = i/(Pi) t7*(PJ hence.

1
~coh(™4)

IA
Xexp [ — P, (P4+P2) [~2 T/P3

X?
Kii o~ [y ~-rr)lexpi-y [P3(P4+~)-~A"(~+p)]}x ~p~rp~pijp;’. (33
Referring to the equation (28):
. Itr L S\1r -1 H A\ /\ o]
aneiy 1 (p;)U(rs)eip[ML+y) (p?-Fn]x
Xexp[-y (P"-PM)jexp[-y "M(N-~)]"272
J't(PZ)exp N PfjexpM-yPAgn (34)
AT 22
Consequently (28) becomes: If the test sample is illuminated by a complete inco-
herent source, then (according to (10))
4ch(™4)- A (yjOf.h(n)- (35)
P(P'_P")_ 41”n’(yy_)- A7)
5. Conclusions consequently
The equation
Jp.ch(P) = 0 Th (P) (36)

is valid for a partiaiiy coherent diffraction in both
cases: i.e. in near held (Fresnei) diffraction, as weil
as in far field (Fraunhofer) diffraction. Paraxial
approximation is the onfy important one. By analogy
to the Schell's theorem [4] the equation (36) can be
called ,,the generalized Schell's theorem", and for-
mulated as follows:

£ mie?Miy fPs7r;'6m/im m a pattern
on a tart of transmittance t(P) tn partfa//ly coherent
paraxia/ iitTact/on is prgportionai to t/?e conrotation
of tAe intensity JistriAation in a i/ifrotion pattern on
t/?%e same test, <iue to a point soarce ancfa Poarier trans-
form of a stationary part of a Afataai Coherence
Ponction in a test piane.
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In such case the intensity distribution in the dif-
fraction pattern is a convolution of the intensity distri-
bution in the diffraction pattern, due to a point source
and the intensity distribution on a source. This means
that each point of the source generates its own diffrac-
tion pattern shifted with respect to such pattern gene-
rated by the neighbouring point of the source. All
these patterns superpose incoherently. This causes
"bluring™ of the resultant diffraction pattern —
the effect being more visible as the dimensions of
the source extends.

Such understanding of partially coherent diffrac-
tion phenomenon may be helpful in investigation of
the visibility or resolution in the image given by
a hologram (especially that of Fourier type) recon-
structed by an incoherent source.
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O 4YaCTMYHO KOTepeHTHOI Audpakuum
6/IM3KOT0 W [Janekoro roneii

B cTaTbe 06CYX[aeTci 4YaCTUYHO KOTepeHTHas Audpak-
uMs B cnyvasx annpokcumauuu 61M3Koro W Aanekoro noneid.
MpeAcTaBNEeHO MOHATME KBA3UCTALMOHAPHOCTU (YHKUMW B3a-
WMHOI KorepeHTHocTW. CdopmynnpoBaHa 0606LLeHHas Teope-
ma Lllenna. OHa onpefensieT pacnpefeneHue WUHTEHCUBHOCTM
B AMPaKUMOHHOM CMEeKTpe CBepThbiBaHWEM COOTBETCTBYHO-
Lero pacnpefeneHns MHTEHCMBHOCTU B KOTEPEHTHOM Audpak-
LMOHHOM CnekTpe ¥ npeobpasoBaHvem ®ypbe B3anMOKOre-
PEHTHOW (YHKUMW.
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