
The Effect of Spherical Aberration 
on an Electron Beam with Gaussian 

Current Density Distribution

The effect of spherical aberration on the characteristic parameters of the beam, such as half-radius, characteristic radii and 
maximal current density has been examined by calculating the beam current density distribution for the best focusing plane. The 
results are given in the form of diagrams and approximate analytical relations.

1. Introduction

An essential problem in designing electron-optical 
systems is the estimation of the effect of aberrations 
on the electron beam diameter and current density. To 
solve this problem, it is necessary to take account of 
spherical aberration, considered as the error restric­
ting resolving power of electron-optic devices, the 
effective compensation of which is as yet not possible.

Many ways of combining electron-optical aber­
rations have been proposed; for example the beam 
radius in the image plane and the radii of the aber­
ration spots may be summed either linearly or in 
quadrature (geometrical composition) [1]. So far, 
however, these propositions have not been adequately 
tested and for many other reasons seem to be unac­
ceptable. The problem of combining electron-optical 
aberrations has also been discussed by K. I. H A R TE [2]. 
He has shown that if an electron beam is distorted by 
electron-optical aberrations and its current density 
is distributed arbitrarily, then the mean square devia­
tion (moment of the second order) o f the current 
density at the image is the geometric sum of the mean 
square deviations for the distributions of the aber­
ration-free beam (*S*o) and o f the aberration scat­
tering spots (<S"i, .$2 , ...), according to the formula

^  =  ^ + ^ + ^ + . . . .  (1)

The theorem presented is of a great cognitive 
importance, because o f its general character. In prac­
tice, however, it can hardly ever be applied. On the 
one hand, mean square deviation cannot be calcula­
ted for all current density distributions (e.g. for a dis­
tribution of the type y(r) =  y4( / + r ^  with a finite 
current 7 =  mean square deviation S =  a). 
On the other hand, this parameter does not give satis­
factory information about physical properties of 
electron beam. Although the reconstruction of the beam
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current density distribution based on a sequence of 
moments of higher order is possible, even the calcu­
lation of the moment of fourth order raises serious 
difficulties; moreover, the composition principles 
of these moments are not known.

The best solution, which allows the effect of elec­
tron-optical aberrations on electron beam to be taken 
into account, is to determine the current density dis­
tribution of the final beam. This distribution can be 
determined numerically [3]. Being, however, rather 
complicated and time consumming this process is not 
much use for practical purposes. In many cases, 
sufficient information about the character of the cur­
rent density distribution of the beam can be obtained 
from knowledge of the distribution in several points, 
i.e. by the knowledge of several radii (distances) for 
which the current density of the beam assumes defined 
values. For a given current density distribution of 
the aberration-free beam and for a particular value 
of the electron-optical aberration, the dependence of 
such characteristic radii on error value can be presented 
graphically or in the form of approximate analytical 
relations. Although such a convenient form cannot 
be used to illustrate the effects of all electron-optical 
aberrations (and their combinations) on all the pos­
sible types of current density distributions of the beam, 
nevertheless, the discussion of a few basic cases can 
be of practical importance. In the subsequent parts 
of the present paper, an attempt has been made to 
illustrate the effect of spherical aberration on an elec­
tron beam with Gaussian distribution of current den­
sity.

2. Calculation method

In order to determine the current density distri­
bution of the final beam, a numerical method [3] 
has been used. This method resembles that employed 
by HARTE [2] in initial assumptions.

The current density o f an ideal (aberration-free) 
beam in the image plane, at a point with radial co­
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ordinate p, is a sum of current densities of eiementary 
current streams reaching this point. With the assump­
tion that the beam has an axiai symmetry the current 
density of such stream is given by the reiation

d/, =  7?(p)dco =  (2)

where:
2? — electron brightness, 
a — convergence angle, 
y — azimuth angle, 
to — solid angle.
In the case of electron-optical aberrations, the 

point of final image with coordinate r is reached by 
elementary streams intended for different points of 
the ideal image with different coordinates p. These 
points are contained within the figure determined by 
the error ¿1 of the electron-optical aberration in ques­
tion (Fig. 1). The coordinate p of the ideal image

Fig. 1. Scattering region of eiectron beam

point transmitting one of current streams to the final 
image point of the coordinate r, can be calculated 
from the Carnot's formula

p ^ = r^ + zl^ + 2/-Jcos^ . (3)

If we assume that the electron brightness distri­
bution in the idea! image is a Gaussian one, then in 
view of (2) and (3) the current density distribution 
in the final image can be described by the formula

"1 2n "1 2n ^
7^  =  J  i?(r, a, =  j" J" F „ e x p ------— (r ^ + z P + 2r/lcosy  ! a< (4)

where
7?o ** maximal brightness, 
a — parameter of Gaussian distribution,
H, — aperture angle ofthe beam on the image side. 
From now on, only spherical aberration is taken 

into account. The value of this error at the best focus­
ing plane is given by the equation

J  =  C ,a3+Z pa, (5)

where the distance Z  ̂ of the best focusing plane from 
the Gaussian plane is given by the relation

Z p— (6)

and Cg is the spherical aberration constant.
Some numerical calculations based on the relations 

(4), (5) and (6) and performed by means o f a computer 
allowed us to determine fourteen current density 
distributions of the beam in the best focusing plane 
for spherical aberration errors ranging from Jg  =  0.5a 
to Jg =  100a. The maximal value of the error refer­
red to the Gaussian imaging plane, denoted by Jg, 
was determined from the relation

¿lg =  Cgct .̂ (7)

The results of several calculations are illustrated 
in Fig. 2. These curves represent reduced current den­
sity distributions of the final beam in the best focus­
ing plane, for the given values of the spherical aber­
ration error ¿lg. The radial coordinate r of the distri­
bution was referred to the half-radius that is, 
the value of radial coordinate r, within which one-

-half of the total value of beam current 7 is contained, 
i.e.

Fig. 2. Reduced distributions of eiectron beam current density

f  1 r 7J  7i g ( r ) 2n r t &  =  y  J  7i g ( r ) 2T r r &  =  ( 8)
0 0

3 . Parameters
of the beam current density distribution

For the current density distributions of the beam, 
determined numerically, a number of parameters 
such as half-radius, characteristic radii and maximal 
beam current density, constituting a simplified charac­
terization of these distributions, have been assumed. 
Further parts of the paper present the dependences 
of these parameters on the value o f spherical aber­
ration error.

142 OpTicA AppucATA VI/4, 1976



A . Half-radius

The current density distribution within the spheri- 
cai aberration spot can be determined in the following 
way:

The current 6?/ of an eiementary current stream 
contained within the element of solid angle, is given 
by the equation

J7 =  (9)

where : is angular current density of the beam.
This elementary current stream falls on the ap­

propriate element of the surface tfF of the aberration 
spot, satisfying the relation

J7 =  7 ^ F  =  7,Z)ifzl^, (10)

where 7, is a surface current density of the beam.
The total current o f the beam is thus given by the 

following expression
2n

7 = J ^  :a<?%K?a=7Hai. (11)
o o

In the best focusing plane, the current flowing 
through the element of aberration spot surface is 
the sum of the currents of three current streams, the 
inclination angles a of which are the roots of the error 
equation (5). Thus, the beam current contained within 
a half-radius results from the equation

"1A "0
OM/a-t-

=  ( 12)

where a,^, a ^ , are the roots of the error equa­
tion (5) with the assumption that Z) =  and a„ 
is inclination angle of the ray intersecting the origin 
of the system o f coordinates. To determine the half- 
radius it is necessary to calculate only one o f the 

three roots of the error equation. Using Vieta's for­
mulae and equations (11) and (12) we get

Finally, the half-radius of the spherical aberration 
spot in the plane of best focus is given by the relation

4^2 ) 4 ^ 2
(14)

The density distribution of the current beam within 
Jie aberration spot is obtained by comparing relations

(
9) and (10) and taking account of the error equation
n the form

7 . =
i'ai/a
&7zT

(C ^ + Z ,) (3 C ^ + Z „ )
(13)

Using the relations (5), (6) and (11), the mean 
square deviation 3 , for the above distribution may be 
written :

* 1
— f  /f7,2yrz!ifzl = ----- ^ f
7 J nia? J

:a&t
Æ//F Ctl J

^+Z„a)3<Mfa =  —
32

(16)

Comparison of (14) and (16) leads to the conclu­
sion that for-an aberration spot in the best focusing 
plane, the absolute values of the half-radius and 
of the mean square deviation 3 , are equal. For 
a Gaussian distribution, the respective values of the 
half-radius p/, and the mean square deviation 3„ 
amount to

p̂ , =  ln2 =  0.833a, 3o =  a. (17)

The difference between them is thus relatively 
small. Hence, it may be assumed with some approxi­
mation, that, in conformity with equation (1), the half- 
-radii of a beam with a Gaussian current distribution 
p% and o f an aberration spot add geometrically in 
the best focusing plane. Thus, the half-radius of 
final beam results from the relation

^  l^A +'A  =  < * } /ln 2 +  - (18)

Numerical calculations of half-radii performed 
for several current density distributions — determi­
ned from the relation (4) — have shown that formula 
(18) leads errors not exceeding a few per cent.

B. Characteristic radii

Three characteristic radii denoted by 
and /*,/„ have been considered. These radii describe 
the position of distribution points for which the rela­
tive values of current density amount to 2/3, 1/2, and 
1/e, respectively, according to the formulae:

^is(G/3) _  2 ^n(^*t/z)   As(/*i/<-)   1
/is(0) "  y ' 7,^(0) "  2 ' 7i,(0) "  e '

(19)

General rules describing the effect o f spherical 
aberration on characteristic radii are difficult to 
obtain analytically. The relationship is presented
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graphically in Fig. 3, using a number of current density 
distributions determined numericaHy. The values of 
consecutive characteristic radii were referred to the 
successive vaiues of haif-radius . These curves show 
that the dependence of the characteristic radii on sphe- 
rica! aberration is complicated and cannot be presented 
in the form of a simple relation, holding within the

Fig. 3. Reduced parameters of electron beam current
density distribution vs the error of spherical aberration

whole range of errors considered by us. Nevertheless, 
it can be observed that for small errors, Zl, ^  7a 
the final current density distributions differ little 
from a Gaussian, and the characteristic radii keep 
a constant proportion with respect to the half-radius. 
Consequently, the following relations can be used 
(for ^  7a) with an error less than 3%,

/-2/3 ^ 0 .7 6 6 ^ ,

'l/2

G/, ^  1.2/7,,

where is calculated from (18). However, within the 
error range mentioned above, the most convenient 
way is to use a Gaussian distribution and to correct 
the distribution parameter, according to the relation

a, ^  1.2 for J ,  ^  7a. (21)

C. Maxima! current density

The effect of spherical aberration on maximal beam 
current density was already discussed analytically 
in [3], using a series expansion of (4). Accurate nume­
rical calculation allow us to make precise the results 
obtained previously.

The effect of spherical aberration on axial (i.e. 
for /* =  0) density of beam current in the best focusing 
plane is illustrated by two curves presented in Fig. 3. 
The first curve represents the axial density o f the 
final beam referred to the axial current density o f an 
aberration-free beam with the same aperture angle

(a, =  const). Within the range ¿4, ^  10a this curve 
can be approximated, with an error smaller than 4%, 
by the relation

in which the effect of spherical aberration has been 
taken into account by considering the half-radius r̂ .

The second curve describes the axial current den­
sity of the final beam (0), referred to the maximal 
value of this density 7 ,^ ^  (0) in conditions when the 
constant of spherical aberration is invariant (C, 
=  const). The maximum value of axial current den­
sity is obtained when

and for the resulting optimal value of spherical aber­
ration:

¿l;.pt =  3-5a. (24)

4. Conclusions
The basic purpose of the paper was to analyse the 

effect o f spherical aberration on the electron beam 
current distribution and to present the results in 
a form convenient for practical applications. The 
assumed Gaussian current density distribution of 
an aberration-free beam is most similar to the distri­
butions observed in the case of beams with a small 
perveance. The range of errors, within which its 
effect on the distribution parameters was successfully 
represented by simple analytical relations, is suffi­
ciently wide for practical applications, since its exceeds 
twice the error value recognized to be optimal.

Влияние сферической аберрации 
на электронный пучок с гауссовым распределением 

плотности тока

Исследовано влияние сферической аберрации на ха­
рактеристические параметры пучка, такие как полови- 
ночный луч, характеристические и максимальные лучи, 
плотность тока, причем вычислено распределение плот­
ности тока пучка для наилучшей плоскости фокусирования. 
Результаты приведены в форме диаграмм и приближенных 
аналитических связей.
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