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Magnetooptical gratings with circular dots
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The Kerr reflection is studied on various cases of binary magnetooptical grating with circular dots. 
The grating schemes proposed correspond to irregular grating preparation. Kerr rotation is 
calculated using theoretical model based on coupled wave method. The results obtained are 
compared with experimental data and discussed to find conditions of optimal coincidence.
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1. Introduction

Several of our recent experimental works and theoretical studies were concerned 
with an investigation of reflection properties (Kerr rotation) of two-dimensional 
magnetooptical (MO) gratings with the artificial anisotropy of permittivity induced by 
external magnetic field. The interest in magnetooptical grating multilayers corresponds 
to their wide applications to storage media, sensing devices or light modulators. Rich 
experimental results obtained at the Institute of Physics of the Technical University of 
Ostrava, Czech Republic, [1] required an appropriate theoretical tool for their 
consecutive analysis. We derived our own mathematical model [2] based on coupled 
wave method (CWM) implemented as the Fourier modal method (FMM).

As shown by the analysis based on atomic force microscopy (AFM), several of 
the analyzed gratings undergo certain shape irregularities in the course of preparation 
by ion milling. Also, residual impurities in the inter-dot area can be caused by “over 
-milling” into the substrate. In our study, the above factors were included in theoretical 
model to reach a better agreement between experiment and theory.

mailto:jaroslav.vlcek@vsb.cz
mailto:daiibor.ciprian@vsb.cz
mailto:qpisto@ipc.shizuoka.ac.jp
mailto:rstyama@rie.shizuoka.ac.jp
mailto:elekvavr@savba.sk


264 J. VlCek et ał.

2. Experiments

Samples for measurements were prepared at the Institute of Electrical Engineering of 
Slovak Academy of Sciences. The gratings of an area of 1 mm2 were etched by ion 
milling in the continuous 20 nm thick iron film sputtered on the S i/S i02 substrate, see 
Fig. 1. The resulting cylindrical dots rise the entire iron height and are ordered in bi­
periodic grid. Geometrical parameters of any grating were established using AFM in 
a chosen domain, see Fig. 2 for example. In different gratings, the estimated dot radius 
r was in the range from 0.95 to 1.65 pm, the dimension A  of square grating period 
varied from 4 to 4.3 pm. In order to represent this variability as simply as possible, we 
introduced the fill factor of the grating F, as the ratio “dot area/square period area”, 
so that F = n(r/A)2.

The measurements were concerned with specification of hysteresis loops of the Fe 
thin films and periodic gratings. The analyzed MO response allowed us to estimate

Fig. 1. Magnetooptical sample with 4 square gratings -  a general view.
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Fig. 2. Grating No. 4, the 17x17 p.m AFM-frame (—»y-axis, T x-axis).
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Kerr rotation for various reflected diffraction orders. For details of the method and 
experimental setup used we refer to an earlier work of PiStora et al. [1]. The Ken- 
rotation has been measured in the incidence plane for the incidence angle q> = 45° at 
the wavelength A = 670 nm. In numerical simulations the following material 
parameters were used: nFe = 2.87 -  3.46/, 0 Fe = 0.0386 + 0.0034/ (refractive index and 
the Voigt MO parameter of iron). All the media were supposed to be magnetically 
isotropic with permeability /x = 1.

As the AFM analysis shows, the real grating geometry differs from expected ideal 
form, so that the shape irregularities of dots and grooves as well as impurities in the 
inter-dot area affect the results of experiments. In Figure 3, an example of the profile 
running through the centers of circular dots is shown. Unfortunately, using AFM we 
can estimate only the profile of grating surface, but not information about material 
properties.

Note that the vertical scale in Fig. 3 is in nanometers, however, the horizontal scale 
extending up to 17 p,m is labelled in pixels. Therefore, this one is strongly compressed, 
which leads to seemingly large peaks and grooves.

Incident laser beam was linearly polarized in the incidence plane (p-polarization) 
or in orthogonal direction (s-polarization). Especially, the incidence plane was set to 
be parallel to external magnetic field H (the angle 0 = 0 in Fig. 5) that means a longi­
tudinal geometry of the MO effect. Thereby, sufficiently high values of magnetic field 
strength were used to ensure a chosen geometry of Kerr effect in agreement with our 
formerly published experimental results in plain anisotropy of planar iron samples [3].

3. Basic theoretical model

The concepts prevailing in the modelling of periodical gratings favour the widely 
used coupled wave method frequently implemented as the FMM [4]-[6]. The 
mathematical model used here is based on the same principle with the following 
assumptions:

-  the MO system under consideration is multilayered with one or more anisotropic 
layers separated by planar interfaces;
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-  the grating is created from anisotropic elements periodically patterned in 
isotropic medium; all the dots are of identical shape and they are fixed in the knots of 
bi-periodical rectangular grid;

-  any layer is supposed to be homogeneous and isotropic in the direction 
perpendicular to interfaces, so that we speak about binary grating;

-  admissible gratings satisfy the conditions h «  Ax, h «  Ay, where h is the layer 
thickness and Ax, Ay are the periods in main grid directions, respectively; this 
assumption ensures faithful application of FMM without the need of eventual 
convergence improvement [7].

To develop some efficient model of irregular gratings described in Sec. 2, we 
consider five forms of grating multilayer which correspond to the most important (but 
not all possible ones) tasks, see Fig. 4. In all the cases the modelled system contains 
only two kinds of layers: inhomogeneous domain with periodic space modulation or 
a homogeneous layer (sub- or superstrate, remaining Fe film by partial etching). The 
basic configuration (Fig. 4a) has been studied in [2] especially from the point of view 
a relation between fill factor and Kerr reflection.

Fig. 4. Typology of binary gratings: original model (a), fully (b), and partially filled (c) grating; over 
-etched (d), and partially etched (e) grating.

Fig. 5. Coordinate system and incident wave (a), and the scheme of a multilayer (b).
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The coordinate system is introduced as in Fig. 5. Generally, the layers of the grating 
structure are indexed toward growing z coordinate and their thickness is denoted by h( v), 
v= 1 The multilayer is sandwiched between two semi-infinite isotropic regions, 
the substrate (v  = K  + 1 for z > ... +h and the superstrate ( v = 0 for z < 0).

Incident monochromatic plane wave with free space wavelength A propagates in 
the homogeneous isotropic superstrate with refractive index n(0). The wave vector 
forms an angle (p relative to z-axis and these two directions define the incidence plane. 
Its deviation from the y-axis is denoted by angle <j). Generally, the incident polarized 
state is elliptical and defined by the angle #  between unit-amplitude electrical field 
vector and the incidence plane.

A representation of field components and material functions by two-fold Fourier 
expansion is the basic principle of the FMM. Introducing dimensionless space 
coordinates (jcj, x2, x3) = k0(x, y, z), &o = 2tc/A, the components of field vectors can be 
obtained in the form (j = 1, 2, 3)

E j % „ x 2, x3) =  X X X  uT e% q exP ( + /3„ *2  + 7,$ ) > • (1)
m n q

hY \ x v x2, xt3) = X E S “«V)/,]»»«exP { - ,-(a**i + &*2 + łŚV)*3)} (2)
m n q

where am = n(O)sin0 sirup + hn !A x, ($n = n(O)cos0 sin<p + Xn!Ay. Since in real 
computations only the finite number of harmonic components is used, we truncate both 
the index sets by appropriate chosen values M, N , so that -M  < m < M , and - N ś n < N .

In any layer the boundary value problem for the Maxwell partial differential 
equations is reformulated to an algebraic eigenvalue problem. Its solution leads 
to propagation constants y ^ a n d  polarisation states at single diffraction orders, 
represented by eigenvectors e ^ ,  h j^ o f  Fourier coefficients with dimension 
d = (2M  + l)x (2N + 1) regarding finite truncation of mode orders. Note that for an 
isotropic homogeneous layer the eigenvalues and eigenvectors can be exactly derived. 
For futher details of the CWM model used refer to paper [2].

The wave coupling in the multilayer follows from application of boundary 
conditions on layer interfaces to tangential field components in the form:

E {v) = £ (v+1) H j v+l) .7= 1 ,2 . (3)

Using Fourier representation of field components we obtain a 4D algebraic system 
for vectors u(v) of amplitude coefficients in the superstrate (incident and reflected 
fields) and substrate (transmitted field):

(4)
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where any layer of the thickness h(v) contributes to the matrix M by the term S(t/) = 
D(v^.p(»0.(D(v) )_1. The matrix D(v) is composed of 4D column vectors of the 
form (ej h2 e2 h j)T

iw: tv; th2,];
1*2,1;

[h„i; [••„i;
(the layer index v is omitted). The structure of matrix D(v,) allows dividing the field 
into forward (+) and backward (-) modes, which are further distinguished regarding 
both the basic s- and p-polarizations. Diagonal elements of the matrix P(v) = 
diag{ exp( ik0^ h ^v̂ )} express the propagation of q-th mode through the v-th layer. 
Supposing that no wave propagates from the substrate, we solve Eq. (4) for amplitude 
coefficients in two cases,

(0)+

(0)-u
(0)-u

-  SP .

= M

(*+!)+
ss
( K +  1)+
sp or

0
(0)+

u/>

u(0)-ps
(0)-u1 pp J

= M

(*+!)+
ps
( K +  1)+ 
PP (6)

correspondingly to a given polarization state of unit-amplitude incident wave, i.e., for

U .0)+ =  5 0m 5 0n =  UP°)+’ m  =  ~ M ' M ' n  =  ~ N ’ ' N -

O

Magnetooptical activity of a grating is expressed in the reflected field by Kerr 
rotation and ellipticity. Denoting

* * -
,<»)■sp,q
i(“)"ss, q

or ** -

(0)-ups,q
(0)-

Upp>q

regarding incident polarization (first subscript of amplitude coefficients), we can 
calculate the rotation 6 by the formula [8]

e - a r c  tan
'2R e(X .)''

1 - IY
(7)
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4. Numerical results

The algorithm derived was implemented in the Matlabó.O code and operated on 
standard personal computer with the 733-MHz Pentium III® processor and 128-Mbyte 
memory. The input data correspond to experimental arrangement described, which 
means longitudinal configuration of MO effect, incidence angle 45° and square grating 
period Ax = A y = A. The latter leads to equal truncation orders M  = N, which implies 
global dimension of eigenvalue problem 4(2M + l)2. For instance, this means for a 
basic model with one inhomogeneous layer 1156 modes and 12.9 minutes of 
computational time for truncation order M -  8. An error less than 10-7 was obtained 
in the case of ideal media for both polarizations.

Two gratings with different geometrical parameters given by fill factor F  are 
presented in our comparative study, for which the structural models shown in Fig. 4 
are considered. Tables 1 and 2 summarize measured and calculated values of the Ken- 
rotation 6 in mrad. These results correspond to the modes in the incidence plane x  = 0 
at the lowest diffraction orders, for which k = 0 and / = -1 ,0 ,1 . Longitudinal geometry

T a b l e  1. Grating No. 1: Kerr rotation 0in mrad for various grating models.

Grating No. 1 
F = 0.170

Orders for 5-polarization Orders for p-polarization
-1 0 1 -1 0 1

Experiment 0.73 0.37 1.11 1.09 -0.16 1.23

Basic model 1.61 0.49 2.55 0.94 -0.99 1.02

Partially filled 5 nm 1.60 0.41 2.51 0.90 -0.93 0.99
grating up to 10 nm 1.57 0.41 2.47 0.87 -0.82 0.97

Fully filled grating 1.45 0.40 2.33 0.82 -0.57 0.91

Over-etched 2 nm 1.61 0.41 2.55 0.93 -0.98 1.01
grating by 4 nm 1.61 0.41 2.55 0.93 -0.97 1.01

Imperfectly etched grating 1.61 0.59 2.88 1.10 -2.39 1.04

T a b l e  2. Grating No. 2: Kerr rotation 6 in mrad for various grating models except an over-etching.

Grating No. 2 
F = 0.475

Orders for 5-polarization Orders for p-polarization
-1 0 1 -1 0 1

Experiment 0.69 0.81 1.19 1.03 -0.07 1.32

Basic model 1.33 0.79 2.13 0.77 3.66 0.97

Partially filled 5 nm 1.33 0.78 2.10 0.75 3.98 0.96
grating up to 10 nm 1.32 0.77 2.07 0.74 4.03 0.84

Fully filled grating 1.25 0.74 1.98 0.71 3.45 0.79

Imperfectly etched grating 1.29 0.84 2.35 0.87 2.23 0.84
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of MO effect mentioned above implies very small amplitude coefficients at zero 
diffraction order for p-polarized incident beam. This may be the reason of the 
difference between experimental and theoretical values, as well as of several data shifts 
(see the last row in Tab. 1).

The results of numerical simulation presented in Tab. 1 permit us to draw several 
conclusions related to chosen grating features. At first, an over-etching into the 
substrate by a few nanometers has rather no influence on the Kerr rotation. Similarly, 
an imperfect etching is of little importance except the p-polarized mode at zero 
diffraction order due to the above mentioned data inaccuracy. In particular, we chose 
in this model the etching depth 18 nm by the entire height of iron layer 20 nm.

A fully filled or partially filled grating contains badly determinable material within 
inter-dot grooves. By mathematical simulation we suppose that refractive indexes of 
the filler and substrate are equal. As filler height increases up to the fully filled case, 
theoretical values of Kerr rotation by s-polarized input approach experimental data. 
An interpretation for p-polarized beam is not unique yet, because the non-zero 
diffraction orders show opposite tendency.

A change of the grating geometry brings about the same trends, as can be seen in 
Tab. 2. Here the data are measured and calculated for three times greater fill factor F. 
It follows from the two tables that increased ratio of ferromagnetic component in a 
geometrically modulated layer (i.e., by growing fill factor) leads to decreasing 
dependence of MO effect on geometrical irregularities described. Note that the reason 
of asymmetry for Kerr rotation angle between diffraction orders -1 and +1 is the 
difference of their tangential field components.

5. Conclusions
The results obtained confirm the fact that small over-etching into the substrate or 
incomplete etching play the minor role in Kerr rotation, when their size is much less 
than dot height. On the other hand, a subsequent fill of the inter-dot area with another 
material (remainder of protection cover or of etched medium) seems to be more 
important. To solve this problem, the material properties of the filler should be 
specified more correctly.
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