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Inverse problem in scatterometry of rough surfaces
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The aim of the paper is to examine one o f variant inverse problems constituting the basis for surface 
roughness measurements by light scattering methods. This problem consists in determining the 
scatterer form based on measured distribution of scattered light intensity. A solution o f the inverse 
problem amounts to determination of the optical signal from a measured squared modulus o f the 
Fourier transform of this signal. The paper presents methods for solving the inverse problem. For 
that purpose, the initial modification o f the light wave on the surface measured was carried out so 
that the complex light amplitude was described by accordingly attenuated Hermitian function. The 
method presented can be used for analysis of other, similar problems.
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1. Introduction

The light scattering methods assume great importance in surface metrology, especially 
in optical surface metrology [1]—[3]. Configuration and dimensions of surface 
roughness in these methods are assessed by analysis of an electromagnetic field of 
light waves scattered by rough surfaces. The theoretical basis for the surface roughness 
assessment by these methods stems from the theory of optical imaging [4].

Analyzing the optical imaging process, from the viewpoint of surface metrology, 
two main problems can be distinguished: the so-called direct problem and the so-called 
inverse problem. A direct problem consists in determination of the electromagnetic 
field distribution of light waves scattered by the rough surface on the basis of the 
function z = f ( x s, ys) describing the configuration of the surface roughness in the 
illuminated area of surface. Generally, it is assumed in this case that the surface at each 
point has the same optical properties. Furthermore, it is presumed that the method of 
its illumination is known. The inverse problem is solved with similar assumptions. It 
consists in determination of the function z =f(xs, ys) describing the surface roughness, 
from the measured distribution of light waves scattered by the rough surface.

Thus, from the viewpoint of surface metrology, the inverse problem assumes 
greater importance since the solution to this problem makes it possible to take full 
advantage of the light scattering phenomenon in the surface roughness assessment.
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Regarding a great number of possible situations there are many variant inverse 
problems [5].

To solve the inverse problem, the respective mathematical models describing the 
rough surface and the light scattering phenomenon are used. The models assumed 
should make allowance for conditions related to the configuration and dimensions of 
the surface roughness, the method of its illumination and to the position and 
configuration of the area where the scattered field is to be determined. If the inverse 
problem applies to surfaces described by random functions, then often the mere 
formulation of this problem undergoes modification. In this case, the problem consists 
in determination of statistical characteristics of the random function describing the 
rough surface based on statistical features of the scattered light [6], [7]. Mostly 
mathematical models based on the scalar diffraction theory find application concerning 
the scattered light phenomena [8]—[10].

The subject of this work is one of the variant inverse problems. This variant inverse 
problem is of great importance in practical terms, because it often concerns methods 
of the surface roughness assessment based on Fourier optical transform [11]—[13]. The 
paper presents a general method of solution to this variant inverse problem.

2. Inverse problem
The work [5] gives a review of the extensive, general classification of inverse problems 
occurring in optics. Many problems mentioned here are related to widely 
acknowledged issues of diffraction and scattering of electromagnetic waves.

Two methods of solving the inverse problems are known. The first consists in 
determination of formulas or algorithms expressing the inverse transformations. The 
application of the inverse transformations is strictly related to mathematical problems
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Fig. 1. Set-up for analyzing the inverse problem.
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with the existence, the unambiguousness and the stability of solutions obtained [5]. 
The second method of solving the inverse problems consists in searching for a proper 
model of the scatterer that is able to satisfy the direct transformations. The parameters 
of this model are selected based on the experimental data. Once again, this way of 
solution to the inverse problem amounts to the direct problem. Solving the inverse 
problem by this method, the numerical analysis using the iterative algorithms finds 
application in many cases [14].

Let us consider the reflection of the coherent light plane wave with constant 
amplitude and wavelength A, from the rough surface z = f (xs, ys), the amplitude 
reflection coefficient pA of which is equal to unity at each point of the surface. Let us 
assume that an analysis of light scattered by the rough surface is made by means of 
the lens with focal lengths/. Let the primary focal plane of the lens coincide with the 
plane tangent to the rough surface of the object, which is shown in Fig. 1. It results from 
the diffraction model of light scattering that in such a case the light intensity I(xp, yp), 
measured in the secondary focal plane of the lens is proportional to the squared modules 
of the Fourier transform of the complex light amplitude E(xs, ys), in the primary focal 
plane

y„) =
U f )

1 |3 [ £ ( ^ > , ) ] |2 = 1 |3{exp[/A<p(*s, ys)]}\‘

(1)

where A is the light wavelength, /  -  the focal length of the lens, symbol 3  stands 
for the Fourier transformation, i is the imaginary unit, Aę(xs, ys) -  the function 
describing changes in light-wave phases caused by surface roughness, f ( x s, ys) -  the 
function describing the height of surface irregularities, whereas E(xp, yp) -  the complex 
light amplitude in the secondary focal plane.

It results from Eq. (1) that in a given case the inverse problem consists in 
reconstruction of the complex light amplitude E{xs, ys) from measured values of the 
light intensity I(xp, yp). Considering the consecutive sides of Eq. (1) one can easily 
observe that the essence of the inverse problem amounts to the determination of 
the function Aę(xs, ys) describing changes in the light-wave phases or the function 
f (xs, ys) describing the rough surface. This is done on the basis of measured values of 
the light intensity I{xp, yp).

The most serious difficulties which arose when solving the inverse problems 
resulted from the fact that photoelectric detectors respond to the light intensity, but not 
to the complex light amplitude. The light intensity I(xp, yp) is proportional to a squared 
modulus of the complex light amplitude E(xp, yp). It results from Eq. (1) that information 
on the light wave phase during measurements of the light intensity is being lost.

Is it possible to determine the complex light amplitude E{xs, ys) based on intensity 
measurements of light reflected from the rough surface and measured in the secondary
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focal plane of the lens and the function A(p(xs, y5), determining changes in the light 
wave or the function f ( xs, y v) describing the height of surface irregularities? In the case 
under consideration this question points out the essence of the inverse problem. 
Therefore, the inverse problem from the mathematical viewpoint amounts to the 
determination of the function E(xs, yy) based on the measured values of the squared 
modulus of Fourier transform for this function. Unfortunately, it is generally 
impossible to determine the function knowing only the squared modulus of Fourier 
transform. Thus, the general answer to the question put earlier is negative. Regardless 
of the above, there is a continuous search for methods of solving to the inverse problem 
for selected classes of function. One of such methods is presented below.

3. Solution of the inverse problem

The most serious difficulties which emerged when solving the inverse problems 
resulted from the fact that measuring the light intensity leads to the loss of phase 
information. From the mathematical viewpoint, there are two reasons for losing the 
information on the phase function E(xp, yp). One of them is that a modulus of 
this function does not include information on which component -  sinusoidal, 
cosinusoidal or their combination -  the intensity measured at a given point of the 
plane (xp, yp) responds to. The second reason for losing the information on the phase 
function E(xp, yp) results from the fact that the modulus of the complex light amplitude 
E(xp, yp) and all the more its square does not include information on the sign of 
respective components. This double indeterminacy applies to the parity and the sign 
of components. It makes the reconstruction of the function E(xy, y5) impossible as a 
result of the synthesis of harmonics obtained by inverse Fourier transform of function 
IE(xp, yp) |.

In general case, one cannot determine the function E(xs, ys) from the squared 
modulus of its Fourier transform. However, there are known methods of solving this 
problem based on the initial modification of the transformed function [15], [16]. To 
solve the inverse problem it is necessary to transform initially the function E(xs, y5) by 
means of some operator M into the new function EN{xv  ys), for which there exists an 
unambiguous relation between it and the squared modulus of its Fourier transform. By 
measuring the intensity of scattered light, the squared modulus of Fourier transform 
for the function EN(xs, ys) can be determined. The inverse Fourier transformation of 
the square root of the measured light intensity allows this function to restore. Then 
using the inverse transform in relation to operator M, the primary function E(xs, ys) is 
obtained. The way of reconstructing the real-valued function E(xs, ys), describing the 
amplitude objects, has been given in [16]. Application of similar procedures for phase 
objects has been proposed in [17].

It is most important in the proposed solution to the inverse problem that operator 
M enabling initial modification of the function E(xs, ys) should be determined. With 
this end in view, the following question should be put: in what way the function 
E(xs, ys) should be transformed into the new function EN(xs, y j ,  which could be
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determined if only the squared modulus of its Fourier transform were known? The 
answer to this question can be as follows: the function E(xs, y5) should be transformed 
so that the new function EN(xs, ys) had real and non-negative Fourier transform. 
Obtaining such a transformation is a solution to the inverse problem.

3.1. Modification of the complex amplitude
It is worth considering before trying to find the applicable transformation of the 
function E(xs, ys) that according to the above assumptions this function is complex in 
a given case. It describes a wave with constant amplitude whereas phase modulated 
through the rough surface. If EN(xs, ys) obtained as a result of transformation of the 
function E(xs, ys) should have a real Fourier transform, then it should be a Hermitian 
function. The real part of Hermitian function is even and its imaginary part is odd [18]. 
Thus, operator M  in demand should initially transform the complex amplitude 
En(xs, y5) in Hermitian function EH(xs, y5).

The complex light amplitude in the plane (x5, ys) is Hermitian function if the real 
functions f (xs, ys) and A(p(xs, ys), describing the roughness height and changes in the 
phase of light waves reflected from the rough surface, respectively, are odd. Therefore, 
the operator M should form other functions f n(xs, ys) and A(pn(xs, ys) which are odd 
from the functions/(x^, ys) or A(p(xs, ys).

In general, the above mentioned modification of the function f (xs, ys) is difficult 
to bring about, because changes in the surface being tested are required. This 
modification of the function f (xs, y )̂ is possible and quite easy if only the function 
satisfied three conditions specified below. Firstly, this function must be a periodic one. 
Then there exist such numbers Ax > 0 and A y > 0 that satisfy the following relation:

f ( x s + Ax, ys + A y) = f ( x s, ys) (2)

where symbols Ax and A y denote the shortest periods of the function f (xs, ys), 
determined along axes xs and ys, respectively. Secondly, the function f ( x s, yv) must be 
even, i.e., must have the symmetry of the first kind satisfying the following condition:

f ( xs> ys) = f ( - xs>-ys)• (3)

Thirdly, this function must have the symmetry of the third kind, given by the relation

/ ( * ,  + \ A*  y* + I 'V )  = - f ( x s, y s). (4)

The rough surface -  described by the function f ( x s, y )̂, satisfying the conditions 
determined by relations (2), (3), (4) -  after shifting along axis xs by half period Ax and 
along axis ys by half period Ay will have the symmetry of the second kind, i.e., will be 
described by the odd function f n(xs, ys). Modification of the function f (xs, ys), in this 
case, consists in its shift in relation to the coordinate system Oxsyr

In general, more advantageous is the modification of the function A(p{xs, ys) 
describing changes in the phase of light waves reflected from the rough surface. Since
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the light wave can be transformed by means of various optical systems, the 
modification of the function A(p(xv y5) is obtainable without any change in the function 
f ( x v ys). To obtain the odd function Aęn(xs, ys) from the function A(p(xv y5), the 
following operations should be applied. First, the function A(p(xs, ys) is to be shifted 
so that it is definite in the coordinate system (k5y5 only for non-negative values of both 
arguments. Afterwards, this shifted function is complemented symmetrically in 
relation to the origin of coordinates forming the even function, and then the 
complemented part is multiplied by -1. With this end in view, image multiplication 
techniques and optical systems realizing Hilbert transforms could be used.

Regardless of that which of the above methods transforming the function f{xs, ys) 
or A(p(xs, ys) will be applied, the complex amplitude of the reflected light will be 
described by Hermitian function EH(xs, y5).

Fourier transform of the complex amplitude EH(xs, y5) gives a real function, which 
in general may assume positive, null and negative values. Therefore another question 
arises: in what way the complex light amplitude EH(xs, y j  should be additionally 
modified to devoid its Fourier transform of negative values? In general, one cannot 
obtain a satisfactory answer to this question. However, if the function describing the 
complex light amplitude EH(xs, y5) is a function with a finite spectrum, it is possible 
to find the way of its transformation, as postulated in the question. This way is 
presented below.

The functions with finite spectra have non-zero Fourier transforms in a limited 
frequency interval [18]. If the complex amplitude EH(xs, y5), in the primary focal plane 
of the lens is described by a function with a finite spectrum, then Fourier transform 
FH(fS’fs) ° f  this function will satisfy the following condition:

= 3  [£ „ (* „)-,)] = 0 for \ f xy\ > f g (5)

where

fxy = ± J f ?  +/,*. (6)
while f x and f y are the spatial frequencies determined along the xs and ys axes, 
respectively, symbol 3  denotes Fourier transform, f  is the spatial frequency 
determined along an arbitrary direction in the plane (xs, ys) , fg is the spatial Nyquist 
frequency {fg > 0).

If the Hermitian function EH(xs, ys) is complex analytic function with the finite 
spectrum, its real part Re{EH(xs, y9)} will reach the extremum at the origin of 
coordinates Ojc j ,̂ which is given by the relation

o° fg

R e {£ „(0 .0 )} = \ \ F H( fxJ y) i fA f y  = j  f W xJ y)d fxd fy (7)
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where Re denotes the real part, while FH(fs, f s) is Fourier transform of the function 
Eh{xv ys). In a zero-point neighborhood, that is

M  s  ffg (8)

where

ps = ± J x2s + y2s> (9)

the real part of the function EH(xs, ys), with the assumptions accepted above, satisfies 
the following relations:

|Re £ H(*s, y,)| £  C0S( J I W t ’ fy W fA fy ( 10)

\ReEH(xs, ys)| > cos(fgp s)\ReEH(0, 0)|. (11)
Let us find the way of transforming the function EH(xs, ys) into an other Hermitian 

function EN(xs, ys) with the finite spectrum, the Fourier transform of which is 
non-negative. Fourier transform of such a new function EN (jc5, ys), besides satisfying 
Eq. (5), must be greater than zero or equal to zero for \fxy\ <fg. Since Hermitian function 
En(xv ys) with the finite spectrum had Fourier transform FN(fx,fy) without any negative 
values, some additional conditions should be imposed on this function, as 
follows:

y,)  = 1

VIUta

(12)

\ReEN(xs< >'s) £ infj | for
w > ^ *

(13)

and

|ImEw(jcs, y,)| S infj
i Cr\PS\ ,

j- for (14)

where Cr is a carefully selected constant coefficient, while Re and Im are the
symbols of real and imaginary parts.

This means that additional modification of the complex amplitude EH(xs, ys) on 
the rough surface -  designed to obtain Hermitian function with non-negative Fourier 
transform -  consists of two operations. The first operation expressed by Eq. (12),
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Fig. 2. Plots showing the supplement of Re{ E^(xs, y5)} by unitary pulse: the function before modification 
(a), unitary pulse (b), the function after modification (c).

Fig. 3. Plots showing attenuation of complex amplitude EH(xs, ys): function Re{E H(xs, y,)} before 
attenuation (a), attenuation function (b), function Re{E N(xs, y5)} after attenuation (c), function 
Im {£//(.*,, ys)} before attenuation (d), attenuation function (e), function Im{ Ef^x^y,)} after attenuation (f).

includes the replacement of previous values of real parts of the function EH(xv ys), in 
a close neighborhood of the origin of coordinates 0 x^ s, for values equal to 1. This can 
be interpreted as the replacement of the real part of the function EH(xs, y5), at the origin 
of coordinates for the unitary pulse. This operation is presented in Fig. 2. The second
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operation, described by inequalities (13) and (14), consists in such an attenuation of 
the function EH(xs, y5), at respective points of the plane (xs, y5), which is proportional 
to the distance of a given point from the origin of coordinates. This operation could 
be easily performed multiplying the real part and the imaginary part of the complex 
amplitude EH(xs, ys) by the factor l/(Cr |ps|), which describes half of a hyperboloid of 
two sheets, as shown in Fig. 3.

3.2. Analysis of attenuation coefficient
The present modification of the complex amplitude EH(xs, y )̂ will be effective if the 
attenuation coefficient Cr is correctly selected. The values of the coefficient Cr 
should be selected so that any Hermitian function EN(xs, ys) with the finite spectrum, 
satisfying conditions (12)—(14), has non-negative Fourier transform. This is equivalent 
to the requirement that for all f ^ ,  included in the closed interval {-fg, fg), the real and 
imaginary parts of this function should satisfy the following inequalities:

jjRetEwU,, ;>>,)]c o s (P j /^ c b c ^  > 0, (15)
0
oo oo

JjRetEflOc,, x ^ lc o s C P j/^ d X jd ^  -  | | l m [ £ N(xs, yI) ] s in (p ,/^ )d x JdyJ > 0.

0 o (16)

In work [19], inequalities (15) and (16) were analyzed to determine the admissible 
values of the coefficient Cr  The analysis of inequality (15) leads to a conclusion that 
attenuation coefficient Cr should satisfy the condition

Fig. 4. Plots of attenuation function l/(C^o5).
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c  L + 1) (17)

where rq is an integer depending on the spatial Nyquist frequency f g and the maximum 
value of the radius ps. The condition resulting from the analysis of inequality (16) is 
stronger than from (17) and takes the following form:

/ , ( » " ■ + 5 > (18)

Figure 4 shows the graphs of the attenuation function l/(Crp5), assuming that the 
attenuation coefficient Cr was calculated from Eq. (18) for the spatial Nyquist 
frequency f g = 1000 1/mm.

3.3. Retrieval of phase and surface irregularities
It follows from the above discussion that consequently to the proposed transformations 
the complex amplitude E ^ x ^  y5) becomes Hermitian function the Fourier transform 
of which is the real function not including any negative values. Its analysis allows the 
light-wave phase and the height of surface irregularities to restore. Let us then analyze 
the properties and relations of this transform with the function f ( xs, ys) describing the 
surface irregularities. The light intensity /(xp, yp) in the secondary focal plane of the 
lens presented in Fig. 1 is proportional to a squared modulus of the complex amplitude 
in the plane (xs, ys), which results from Eq. (1). If the complex amplitude E(xs, ys) had 
previously been transformed so that the complex amplitude EN(xs, ys) had arose in the 
plane (xs, y )̂, the square root of the measured light intensity I(xp, yp) would have been 
proportional to the modulus of the complex amplitude EN(xs, y )̂ and the transform 
alone as well. This is illustrated by the following relation:

J l (x p, y p) = \E(Xp, y p)\ = ± f \2>lEN(xs, y s

= E(xp, y p) = j-f <S[EN(xs, y s)] (19)

where A is the light wavelength,/is the focal length of the lens, symbol 3  stands for 
the Fourier transform, E(xp, yp) is the complex amplitude in the secondary focal plane 
of the lens, whereas EN(xs, ys) is the complex amplitude after making all the above 
transformations.

The complex amplitude E{xp, yp) obtained as a result of Fourier transformation of 
Hermitian function EN(xs, ys) includes only the real part. The even part of the function 
E(xpt yp) is proportional to Fourier transform of the real part of the function EN(xs, y )̂. 
However, the odd part of the function E(xp, yp) is proportional to Fourier transform of 
the imaginary part of the function EN(xs, ys). By denoting the even part of the function
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E(xp, yp) by the symbol e(xp, yp), while the odd by the symbol o(xp, yp), the following 
is obtained:

e (*p> yP) = J j  3 [ E N(xs, y s)] = e(xp, y p) + o(xp, y p) (20)

where

= J j  ys)1’ (21)

o(xp, yp) = Y f  3[ lm E N(xs, y s)]. (22)

To retrieve the function describing surface irregularities, the light intensity should 
be measured at respective points of the plane (xp, yp). For each pair of the measured 
values I(xp, yp) and I(-xp, - y p) the system of equations is to be solved:

j K ^ y p )  = E(xp, yp) = e(xp, yp) + o(xp, yp),

J l ( - x p, - y p) = E(-xp, - y p) = e(xp, yp) -  o(xp, yp).

It allows the values of the functions e(xp, yp) and o(xp, yp) to be determined at 
respective points of the plane (xp, yp), according to the following formulas:

e(Xp>yp) = \ l j l ( , x p, y p) + J l ( - x p, - y p)], (24)

o(*p, y p) = + (25)

Then transforming Eqs. (21) and (22) and applying the inverse Fourier transform 
denoted by 3 _1[ ], the following is obtained:

ReEN(xs, y s) = 3 ~l [(Xf)e(xp, yp)], (26)

Im£tf(*s, ys) = 3 ~l [(Af)o(xp, y p)], (27)

where A is the light wavelength and/  is the focal length of the lens.
Equations (26) and (27) make it possible to determine the real and imaginary parts 

of the function EN(xs, ys) obtained as a result of the modification described above. To 
retrieve the initial values of the complex amplitude E(xs, ys), the inverse transformation 
should be successively applied to the function EN(xs, ys) in relation to these 
transformations that were applied to the complex amplitude E(xs, ys) during its initial 
modification.

First, the unitary pulse should be superseded to this end -  within the argument 
|ps| < n/2fg, for the function Re{ EN(xs, y5)} -  by the primary values of the function
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Re{Eh (xs, ys)}. Unfortunately, to be precise this is not possible directly because the 
primary values of the function Re{ EH(xs, ys)} are unknown. Consequently, the loss of 
information on the values of the function Re{ EH(xs, y5)} in the neighborhood of the 
origin of coordinates will occur. Fortunately, the area where information will be lost 
is small. The following procedure is recommended to avoid this problem. To obtain a 
unitary pulse in the process of modifying the complex amplitude, the multiplication 
or other linear operation should be applied. However, the inverse operation, which was 
applied during the modification, should be used for reconstruction of the complex 
amplitude.

The next step in the process of reconstructing the function E(xs, ys) is the 
multiplication of the values Re{ EN(xs, y5)} and Im{ EN{xs, y5)}, calculated from Eqs. 
(26) and (27), by the factor Cr\ps\. It enables obtaining the values Re{EH(xv y5)} and 
Im{ Eh(xs, ys)} at respective points of the plane (xs, ys):

Re £ H(x„ x t) = Cr|ps| Re ^ N(xs, yt ) for |p ,| > j j , (28)

Im E „(W t ) = Cr|ps| [m EN(xs, )’,) for |ps| > ^ r .  (29)

Then, on the basis of these values the following functions are reproduced: the function 
Aę(xs, ys) describing changes in the light wave phase, and the function/f^, y5) describ­
ing the surface irregularities. To this end, the values Re{ EH(xs, y5)} and Im{ EH(xs, y )̂} 
obtained from Eqs. (28) and (29) are subject to the following transformations:

&<Pn(xs’ ys) = arc cos [Re £„(* ,, y,)] for \ps\ > (30)

&<Pn(xs>ys) = a r c s i n t ^ E ^ ^ ,  y,)] for \ps\ > y 7  (31)

where Aq)n(xs, ys) denotes the odd function describing changes to the phase. Then, the 
function A ę n(xs, ys) should be limited so that it is determined only for the non-negative 
values jc5, ys. The function Aę(xs, ys) is determined after applying the inverse translation 
to that which was made at the stage of modification. At last the function f{xs, y5) 
describing the surface irregularities is retrieved

f ( x* y , )  = ^  A<p(xs,y s). (32)

Symbol A in formula (32), as before, stands for the light wavelength.
Some problems are connected with transformation of relations (30) and (31) 

described above since the arcsines and arccosines of the functions, in general, are 
many-valued functions. It is possible to avoid problems arising from this fact on 
condition that the range of changes to the function Aę(xs, ys) will be limited. 
Consequently, acceptable changes to the function f ( xs, ys) describing the surface



Inverse problem in scatterometry o f rough surfaces 327

irregularities within ±A/4 are also limited. However, there are possibilities to overcome 
the above problems, and thereby to extend the range of changes in the surface 
irregularities, on condition that adequate analytical algorithms are applied. An example 
of such an algorithm along with its metrological analysis is described in [20]. This 
algorithm is applied to the analysis of interferograms obtained during the tests on 
periodic vibration, where the identical mathematical problem has occured.

4. Conclusions

The present way of solving the inverse problem in scatterometry of the rough surfaces 
consists in initial modification of the complex amplitude in the object plane. It is rather 
complicated and involves a series of limitations discussed above. Its advantage is 
universality. It can be applied in practice, not only to testing on precise machined 
surface, but also in those fields of investigations and measurements where problems 
with retrieving phase information have occurred. The methods proposed have been 
verified during the model testing, the results of which are to be published.
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