
Optica Applicata, Vol. XXXIII, No. 2-3, 2003

Conversion efficiency
and the beam-quality factors
of the second-harmonic interaction
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The second-harmonic conversion efficiency was calculated for the biaxial molecular crystal 
(-)2-α -(methylbenzylamino)-5-nitropyridine (MBANP) under high power conditions. The de­
pendence of the second-harmonic efficiency on the beam walk-off angles and the crystal length is 
discussed. A maximum efficiency of 60% was calculated for the input peak power of 7 kW with 
a beam radius o f 0.15 mm and the interaction length of 1.5 cm. The quality of the second-harmonic 
and the fundamental beams involved was assessed by the beam-quality factors M2. For the second
-harmonic beam, the beam-quality factors M2y and M2x are 2 .6 and 1.4, respectively. 
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1. Introduction

Over the past decade there has been observed an intensive development of molecular 
crystals for applications in nonlinear optics. Many of these π-electron delocalized 
systems (with donor and acceptor groups) possess optical nonlinearity of the second 
order similar to, or larger than that of the current inorganic materials. Since the optical 
quality of these materials is high and they can be prepared with suitable dimensions, 
one can anticipate their future use in high power applications [1]. In order to use the 
full potential of the high second-order nonlinear optical susceptibilities of these 
materials it is advisable to make an analysis of their performance, which includes 
interactions taking place under high power conditions.

The crystal (-)2-a-(methylbenzylamino)-5-nitropyridine (MBANP) is, at the 
present time, one of the most extensively investigated molecular crystals [2]. It is 
monoclinic and therefore exhibits the most general features that can be found in 
crystals of higher than triclinic symmetry. The biaxial MBANP crystal has two 
molecules in the unit cell (Z = 2) and belongs to space group P2j. The values of the
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lattice parameters are a -  0.5409 nm, b -  0.6371 nm, c = 1.7968 nm and β  = 94.60°, 
where the polar crystallographic b-axis is two-fold by symmetry [3]. In MBANP, 
a substantial “dispersion of the axes” is found between 1064 and 532 nm. The two 
principal axes of the index ellipsoid (or the principal dielectric axes), which are 
orthogonal to the monoclinic twofold axis, rotate about the monoclinic axis by about 
27° [2]. For frequency doubling two different principal dielectric systems exist, which 
complicates the analysis and introduces new significant features.

Here, the analysis simulates frequency doubling with a 1064 nm fundamental, 
which is often carried out for the evaluation of nonlinear optical properties of the 
second order. A Fourier transform method was applied in order to solve the system of 
partial differential equations describing the coupling between the second-harmonic 
and fundamental electric fields in the crystal, including the effects of beam walk-off, 
depletion, optical absorption and diffraction. Asymmetric diffraction of light in the 
birefringent medium was ignored since it is a correction of the second order [4]. The 
conversion efficiency of second-harmonic generation was calculated as a function of 
the input energy of a pulse with the length of 15 ns, the beam-walk angles and the 
interaction length. The quality of the fundamental and generated beams was quantified 
by use of the M2 factors.

2. Beam walk-off angles
To calculate the beam walk-off angles of MBANP, the three principal values of the 
refractive index and the orientation of the dielectric axes at both frequencies were taken 
from [2] and the directions s, for type I phase-matching, were calculated (Tab. 1). Then 
the Poynting vectors ίΩ (Ω=2ω\ ω) in the principal dielectric systems were determined 
using relations found in [5] (for details, see [6]). After a linear transformation their 
components were obtained in the standard orthogonal piezoelectric system (a*, b, c) 
where b and c are the lattice vectors and a* is the reciprocal lattice vector normal to the 
Cb, c) plane. The beam walk-off angles ρ Ω, defined as angles between phase-matching 
direction s and the Poynting vectors tQ, were then calculated from equation

Ω Ω
COSp =  t · S. (1 )

An orthogonal phase-matching system x||Dw, y||D'2w and z||s was defined, where 
Dw is the dielectric displacement vector of the fundamental wave. The vector ϋ ' 2ω is

T a b l e  1. Principal values of the refractive indices and the relative orientation of the indictrix in the 
orthogonal system (a*, b, c) for both wavelengths used in this calculation (see [2]). The angle ΦΩ (Ω = 
2ω; ω) is the rotation about the positive 6-axis needed to bring the a*-axis into the coincidence with the 
jc'-axis.

λ  [nm] n x ' "ν’ η ζ · φ Ω η
1064 1.6550 1.7144 1.6882 -14.0
532 1.6895 1.8584 1.7632 13.0
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Fig. 1. Orthogonal phase-matching system χ ||ϋ ω, y||D'2tu and z||s of the MBANP molecular crystal. The 
propagation o f the waves at both frequencies is in the z-direction. The angle ρω is the beam walk-off of 
the fundamental beam with the Poynting vector tw propagating in the (x, z) plane. Direction of the second 
-harmonic Poynting vector is denoted by t2a) and its beam walk-off angle by p2". The projections of this 
angle onto (y, z) and (x, z) are denoted by px and py , respectively. For clarity, the angles are shown 
in enormous proportions.

T a b l e  2. Values of the parameters of MBANP crystals used in the computation. The quantity de{{ is 
the effective nonlinear susceptibility of the second-order, the angles ρω and p2" are beam walk-off angles 
of the fundamental and second-harmonic waves. The angles ρ 2ω and p 2(0 are projections of the angle 
p2*", as defined in Fig. 1. The absorption coefficients are α2ω and αω and n is the refractive index of the 
phase-matching [6].

de(( fpm/V] Ρω [°1 P2" [°1 p f  π d T  n « 2α, [cm ‘] &ω [cm ’] n

6.5 0.51 2.29 2.27 0.31 0.045 0.038 1.700

the component of the second-harmonic displacement perpendicular to the (.x, z) plane 
and s is the unit vector of the phase-matching direction. Since propagation is not in a 
dielectric plane, fixed for both frequencies, vectors Dw and Ό2ω are not orthogonal. 
Consequently, t2a) lies in neither the (jc, z) nor the (y, z) plane, which presents additional 
difficulty in further analysis (see Fig. 1). For this reason the beam walk-off angle of 
the second-harmonic wave p2(0 was projected onto the (jc, z) and (y, z) planes as:

2ωCOS p x
2(0COS p

sinS,
(2a)

2ωcos p y =
2ωCOS p

sin <5̂
(2b)

where δχ and 5y are the angles between the second-harmonic Poynting vector ί2ω, and 
vectors Dwand Ό2ω, respectively. The values of the beam-walk angles are given in Tab. 2.
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3. Second-harmonic generation

The simulation assumes that the crystal is unbounded in the transverse directions. The 
amplitudes of the electric fields decrease to zero with an increase in radial distance 
from the phase-matching direction and are negligible on the lateral boundaries of the 
crystal. For normal incidence, the equations for the amplitude of the fundamental wave 
Αω and the second-harmonic waves Α1ω in the depleted and slowly varying amplitude 
formulations are [7]:

dAw , . , ω 1
S T  + T A “ + P

/  2̂d A,,, d A ω

dx dy

= - i  — -  2̂0) Λω exp( - i A k z ) , (3a)

and

dA 2ω a 2 ( 0 dA-
dz +  ~T~ Α 2ω +  P 7  +  P

2 ω  υ / Λ 2 ω dA>
dx

2ω υ /χ 2ω
x

1
dy 2 ik

r d2A

2ω

2ω +
dx dy

cod ff 2
= - i  ----- - Α ω exp(iAkz).

cn 2(0

(3b)

We have two coupled second-order nonlinear partial differential equations 
describing the propagation of the electric fields through the crystal. This formulation 
includes diffraction effects and terms in and accounting for optical absorption. The 
terms involving β ω, p ® and describe the effect of beam walk-off. The wave 
vectors at the fundamental frequency ω and second-harmonic frequency 2ω are k(lj and 
k2ω, respectively, deff is the effective nonlinear optical susceptibility, c is the speed of 
light in vacuum, η2ω and ηω are the refractive indices of the second-harmonic and 
fundamental waves, respectively. The phase-mismatch is denoted by Ak. In order to 
account for the intensity-dependent phase shifts of second-harmonic and fundamental 
pulses, the electric field amplitudes are time dependent, that is A(x, y, z, t) [8].

Applying Fourier transform, B(p, q, z, t) = F(A(x, y, z, t)), to Eqs. (3) and using the 
elementary rules for the Fourier transformation of derivatives, one obtains the 
following equations:

M L
dz

Bω

0)deff

cn ,
exp ( - iAkz)F(A2(IJA*J, (4a)
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dB a

dz 2

ωά

2ω 1 'Λ'2ω η .1 λ / 2ω 2ω . 271 / 2 2.
+ ~ ^ Β 1 ω ~  Μ 2π (Ρ ν Ρ +  Ρ* 4 ) +  ·ξΓ“ (Ρ + 9  )

2ω
Β2ω

= - ι  exp (
2ωcn

(4b)

The TEM00 mode of the Gaussian spatial and temporal dependences was inserted 
at the input surface (z = 0) and sliced in time by the interval At. Only Fresnel loss at 
this surface was taken into account since nonlinear optical reflection can be neglected. 
This is justifiable for propagation directions of light into or close to the phase-matching 
direction where the amplitude of the second-harmonic wave can be neglected at the 
input surface.

For each time slice, at the beginning of each step z, the corresponding products of 
the electric fields on the right-hand side of Eqs. (3) were calculated, Fourier 
transformed by the FFT algorithm and inserted into Eqs. (4), see [8], [9]. To yield the 
Fourier transforms of the electric field, at z + Az, the integration over each step was 
carried out by the semi-implicit extrapolation method with an adaptive step size control 
[10]. Before integration the substitution, as suggested in [4], was applied in order to 
eliminate the diffraction and the beam walk-off terms from the left-hand side of 
Eqs. (4). It was pointed out that this makes the computation more efficient [4]. After 
applying the inverse substitution, the solutions were transformed by the inverse Fourier 
transform to calculate the amplitudes of the electric fields at a distance z + Az. The 
procedure was repeated over the whole crystal length. At the end, both pulses (second 
-harmonic and fundamental) were composed from the time slices calculated as 
described above. After the interaction length z, the resulting electric field distribution 
of the second-harmonic wave was multiplied by its complex conjugate and the energy 
of the second-harmonic pulse was obtained by numerical integration of the intensity 
over the two space variables, x and y, and the time t.

4. Beam-quality factors

The beam quality can be assessed by use of the beam-quality factors M2. For a purely 
Gaussian ideal distribution the value of factor M2 is one, but real beams have M 2 larger 
than one. The values of factors M 2 have been calculated for the second-harmonic and 
fundamental beams by the theory outlined in [11], [12]. The transverse moments of 
the optical pulse are based on the intensity integrated over the time dependence of the 
pulse (fluence). The calculation begins by defining the quantity U as:

u  =  J  J  J  | A ( x (5a)
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U = J J J \B(p, q, t)\2dpdqdt. (5b)
—oo —oo —c

The first moments are defined as

H z )  = J y, z, i ) |2didxdy, (6a)

P = J j \  J j  p \ B( p , q , t ) \ 2dtdpdq.
— oo — oo — oo

The first spatial moment propagates as [11]:

* (ζ) = x(0)  + λζρ.

The fluence based variances of the beam shape are given by:

(6b)

(7)

σ](ζ)  = ^  J* J [ * - χ(ζ)Γ |  |A(x, y, Z, t)\2dt d*dy, (8a)

°l - hi W-pw
— oo — oo

I  IB(p, q, t )\2dt dpdq. (8b)

The beam variance σ x(z)  in the transversal ^-direction propagates as 

a 2J z )  = σ^(0) -  [4 .(0 )  + 2λχ(0 )ρ]ζ  + λ 2σ2ζ2

where

‘ω  = hi l
— oo — oo

J dilm pK *, y, z, t ) A*(x, y, z, t) djcdy. (9)

The formulas for the minimum variance of the beam shape or the beam waist <Jqx(z) 
and for the beam-quality factor M in the transversal ^-direction then become
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2 2 ,  N [ A x ( z )  +  2 λ χ ( ζ ) ρ ] 2
σ 0χ ~  2 2 (1 0 )

Α λ 2 σ ]

A
,

II a 0S
0

X q 3̂ 
tO

( I D

The beam-quality factor Μ2χ characterises the beam quality when projected onto 
the (λ:, z) phase-matching plane (see Fig. 1). Similar expressions exist for the value of 
My , i.e., the beam quality factor characterising the projection of the beam shape onto 
the phase-matching (y, 2) plane.

The calculations were performed for the phase-matching direction (Ak = 0) 
corresponding to the largest effective nonlinear optical coefficient of MBANP 
(deff = 6.5 pm/V) [6]. This phase-matching direction is at the angle φ = 121.1° and 
Θ -  51.2° from the a* and b axes, respectively. The optical absorption coefficients in 
this direction were calculated from the data and the procedure given in [13]. The input 
peak power follows from the radius at the input face and the input peak intensity. The 
third parameter defining the Gaussian input beam is the position of its focus before 
increasing the input power to a level at which depletion becomes significant. The 
analysis at a beam radius of 0.1 mm has shown that shifting the focal position over the 
whole crystal length makes only a 1% difference in the efficiencies. At a beam radius 
of 0.15 mm and above this difference is negligible. Therefore, for the range of 
parameters used in the calculations, the position of the focus is irrelevant. A value of 
20 MW/cm2 was chosen for the intensity since it is near the optical damage threshold 
observed in the second-harmonic generation experiments. The dependence of the 
second-harmonic conversion efficiency on the interaction length is presented in

Fig. 2. Dependence of the second-harmonic efficiency on the interaction length for MBANP. The value 
of input peak power of the fundamental beam is 7 kW (pulse length 15 ns). The input peak intensity has 
a value o f 20 MW/cm2.
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Fig. 3. Projection of the second-harmonic beam 

Fig. 4. Projection of the second-harmonic beam

x [cm]

the (y, z) plane of the phase-matching system, 

the (x, z) plane of the phase-matching system.

Fig. 5. Projection of the fundamental beam onto the (y, z) plane of the phase-matching system.

Fig. 6. Projection of the fundamental beam onto the (x, z) plane of the phase-matching system.

Fig. 2. It was found that a beam with the input peak power of 7 kW and the radius of 
0.15 mm produces the maximum efficiency of 60% in MBANP (the pulse length of 
15 ns, the interaction length of 1.5 cm). Using the calculated electric fields, the beam 
-quality factors M2 for the fundamental and second-harmonic beams were determined 
from Eqs.  ̂ (5 )-(l 1̂ . For the second-harmonic beam, the calculated beam-quality 
factors Mx and M are 2.6 and 1.4, respectively. The corresponding beam-quality 
factors of the fundamental beam are 2.0 and 1.3, respectively. The projections of the 
beam shapes onto the (x , z) and (y, z) planes of the phase-matching system are shown 
in Figs. 3-6.



Conversion efficiency and the beam-quality factors ... 367

5. Conclusion

This work presents a solution of the system of partial differential equations describing 
the coupling between the electric fields produced in the second-harmonic generation. 
The equations were solved systematically by use of a two-dimensional Fourier 
transform. The simulation was extended to the characteristic biaxial features of 
MBANP, taking account of the rotation with frequency (angular dispersion) of 
dielectric axes and the consequent more complicated relationship between the 
Poynting vectors at the two frequencies. To account for these biaxial features, it was 
also necessary to modify the theory for the calculation of the beam-quality factors.
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