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We describe the calculation of photonic band structures of 2D square compound lattices made up 
of three dielectric arrays. In particular, we evaluate the relationships between the existence of 
absolute photonic band gaps common to E and H polarized waves and the structure parameters, 
and find that only given large contrast of the dielectric constant and their diameter the absolute 
photonic band gaps can be created.
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1. Introduction
During the last decade, photonic crystals, also known as photonic microstructures or 
photonic bandgap (PBG) structures, have matured from an intellectual curiosity 
concerning electromagnetic waves to a field with real applications in both the 
microwave and optical regime. Recently, considerable interest has been focused on 
2D and 3D structures for which one expects to obtain absolute PBG common to E 
and //polarized waves, by analogy to the electronic band gaps in natural semiconductor 
crystals [1]. In contrast to the limited experimental successes with 3D structures, work 
on 2D structures has flourished and produced many interesting results. This progress 
is mainly due to the fact that 2D structures are easier to make, in particular with the 
aid of the tools developed for the silicon microchip industry. Lower dimensionality 
also implies easier manipulation of the photonic lattice to increase functionality, such 
as the deliberate inclusion of defects, or interfacing with “standard” optical elements, 
such as waveguides, fibres, light sources and detectors. Experimentally, one needs to 
fabricate photonic lattices and to integrate them into complex assemblies in appropriate
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length scale. In the 2D case, it is commonly believed that the honeycomb structures 
are the best candidates for the creation of absolute PBGs. In particular, triangle lattices 
of GaAs voids fabricated by electron beam lithography and reactive ion etching have 
been studied but giving no conclusive evidence of the existence of absolute PBGs [2]. 
As we know, the 2D square lattices are the best candidate for fabrication and theoretical 
computing. But because of its high symmetry, there is no absolute PBG common to E 
and H polarized waves. In principle, the lower the structure symmetry the lower the 
band structure degeneracy. A detailed symmetry analysis can be found in [3]. In this 
paper, we design a 2D square compound lattice and perform theoretical computing 
using the plane-wave expansion method. We hope that with the symmetry decreasing 
and the structure parameters being adjusted, the absolute PBG with the structure can 
be created.

2. Theory

For the general calculation of photonic band gaps in full periodic structures and 
the modes introduced by structural defects, various methods have been proposed. One 
of the most widely used is the plane-wave method [4], [5]. This method solves the 
full-vector wave equation for the magnetic field and, as the name implies, is based on 
a plane-wave expansion of the field and an expansion of the position-dependent 
dielectric constant. The method has a very general nature for treating periodic 
structures and may be applied to one-, two-, and three-dimensional problems. It allows 
one to calculate the photonic band diagrams of photonic crystals and thereby the 
possible existence, width, and positioning of any PBG.

In the plane-wave method, Maxwell’s equation of electromagnetic waves is

V • D = 0,

„  „  3H
V xE  = >

V xH  = £0£ ( r )  ^  , 

V • H = 0.

( 1)

We consider arrays of parallel cylinders, all oriented in the z-direction. For a single 
mode and H polarized waves, the full-vector wave equation of the electromagnetic 
fields E(r) and H(r) can be written as:

H (r, t) = [0, 0, Hz(r)]e\p(-i(Ot),
(2)

E (r, t) = [Ex(r), Ey(r), O)exp(-ian).

Taking (2) into (1), we find
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dEy dEx
dx dy

d3
dx

icoe(r)e0Er (3)

dH7
—  - = -icoe(r)£QEx. 
dy

From Eq. (3), we let ft, = 1 and take out Ex, E and obtain the equation about Hz

a r_L W i  + a r j_  W ]  .
3xU(r) dx J 8yLe(r) dy J c2 z (4)

where e(r) is the position-dependent dielectric constant of the periodic structure. 
Taking advantage of the periodic nature of the problem, the //-field may be expanded 
into a sum of plane waves using Bloch’s theorem as

Hz( r )  = £ t f ( k  + G )ex p [/(k  + G )r]  (5)

G

where k is a wave vector in the Brillouin zone, G represents a lattice vector in reciprocal 
space, describing the periodic structure and H (k + G) is the expansion coefficient 
corresponding to G. The dielectric constant may be expressed as a Fourier series 
expansion

- f -  = 5 y ' ( G ) e x p ( i G r )
£ ( r )

G

where

£_l(G) = A~ I e^) e x p ( - /G  ' r ) d r -

(6)

(7)

In Equation (7), Au indicates the area of a unit cell, i.e., the smallest region, that may 
be used to represent the periodic structure. Finally, by substituting Eqs. (5), (6) into 
Eq. (4), we obtain 2

2
£ ( k  + G )(k  + G ')  e ~ \ G - G ' ) H ( k  + G) = ^  H (k  + G). (8)
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By the same method, for a single mode and E polarized waves, we also conclude 
the equation

2

£ | k  + G '|2 e ' ' ( G - G ' ) E ( k  + G ' )  = ^ £ ( k  + G ). (9)
G’ C

Equations (8), (9) include the sum of infinite reciprocal vectors G' and we select 
N = 15 reciprocal vectors instead. Then the two equations become a matrix eigenvalue 
equation, which has the form ME = A£(A = af/c2). The matrix M  includes NxN  matrix 
elements, E and A are a lxN  matrix. For a fixed wave vector k we use the Matlab 
program A = eig(M), then the frequencies co of the allowed modes in the periodic 
structure are found. In our calculations, the diagonal PQ of the Brillouin zone is equally 
divided into one hundred parts and the end point of wave vector k is selected along 
the end point of every part of PQ (Fig. 1).

Fig. 1. Two-dimensional square compound structure (a) and its first Brillouin zone with P(-n/a, n/a) and 
Q{n/a, -n!a) (b).

In the case of our square compound lattice with lattice constant a = 10-6 m, 
the unit cell contains three dielectric cylinders with dielectric constants ea = 5 and 
£b = £c = 15 which are embedded in a background of air with dielectric constant £ = 1. 
The cylinder with dielectric constant £a = 5 is placed at ^4(0, 0) and named A with a 
diameter of <2/10, and the cylinders with dielectric constant eb = ec = 15 are placed at 
B(1 j 2 a / 4 0 , 1 J l a / 4 0 )  and C ( - l  J 2 a / 40, -7  J l a / 4 0 ) ,  and named B, C with the 
same diameters of al4 (Fig. 1). We select the compound lattice as well as the larger 
values of £bl£a and rB/rA in order to decrease the symmetry of the lattice. From the 
lattice and Eq. (6), we obtain
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Fig. 2. Photonic band structures for E (denotes as O) and H (denotes as *) polarizations of 2D square 
compound lattice.

<f‘(G) =

+ fA  + fS  + ----------- !----------- ,
£a Eb Bc ~ f a  ~ f b  ~ f c )

G -  0

M _ n  2 f a J l (GrA) + f  1  
v ea £ J X GrA V £b

1
£

y 2 f b J, {GrB) 

X GrB
x 2cos(G  • d ), G * 0 .

( 10)

In Equation (10), f a = nr2a/ a 2, f b = nr2b/ a 2, f c = nr2. / a 2 are the fractional filling 
factors for the three dielectric cylinders and the vector d points from A to B. With 
Eq. (10), we solved Eqs. (8) and (9) by the Matlab program. Figure 2 shows the results 
obtained by using 225 plan waves. The difference between this result and that of the 
more often used plan waves is less than 1/100. In Fig. 2, the O and * lines are for the 
E and H polarizations, respectively. Clearly, we resolved an absolute PBG in the 
frequency range from 0.65 to 0.7, respectively (in unit of 2nc/a).

3. Conclusions

To evaluate the structure dependence, we have calculated the PBGs as a function of 
the dielectric constant with a fixed value of a! 10 for A and a!4 for B, C. With 
£a = 5, only if eb = ec >13, absolute PBGs can be created. The width of absolute PBGs
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Fig. 3. Photonic band structures for E (denotes as O) and H (denotes as *) polarizations of 2D square 
single lattice.

increases with increasing eb. But if eb = ec >20, the width of absolute PBGs changes a 
little. On the other hand, fixing ea = 5 and eb = ec -  20, absolute PBGs can be obtained 
on condition that rB/rA > 2. When eb = ec = 1 and ea = 15, the structure becomes a single 
lattice and the calculated result is shown in Fig. 3, from which we find a photonic band 
gap (0.44-0.6) only for the E polarization but no absolute photonic band gap common 
to the E and H  polarizations. We still calculate the PBGs when we turn B and C around 
A, but the results are almost the same. This may be ascribed to the central symmetry 
of the cylinders.

In conclusions, we present the photonic crystal of 2D square compound lattice and 
obtain an absolute PBG common to E and H polarized waves. For the 2D square lattice 
is the simplest of 2D lattices to be fabricated, our work may be helpful in designing 
photonic crystals.
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