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A reflection model which enables an identification of matte, highlight and interreflection regions on 
objects of inhomogeneous dielectric materials is presented. The model utilises the concept of the 
dichromatic reflection model and the one-bounce model of mutual reflection. A cp—0 space is 
introduced to enable the spectral cluster of a region to be identified either as a matte hill, 
a highlight lobe or an interreflection lobe. An analysis of the boundary of clusters enables the use of 
the K-means clustering algorithm to segment the regions without the need to specify the expected 
number of clusters and the initial cluster centres.

1. Introduction
Interreflection occurs when light reflected from one surface impinges on another 
surface. It alters the hue and brightness of the affected pixels in colour images. 
Unaccounted for interreflection can easily confuse image processing algorithms 
because interreflection alters image grey levels in a consistent, non-random way so 
that any errors it introduces, say, a shape-from-shading solution accumulate rather 
than cancel out [1].

For the most accurate available model, light-matter interaction can be described 
in terms of the interaction of photons with atoms or molecules [2]. However, it 
would be a formidable task to derive image processing algorithms from a physical 
model at such a low level. Therefore, it is often necessary to sacrifice some degree of 
physical accuracy in order to obtain a useful model.

Materials can be classified into two classes on the basis of their optical properties 
[3]. Optically homogeneous materials, e.g., metals, glass and crystals, have a con­
stant index of refraction throughout the material. Therefore light undergoes 
reflection and refraction only as it encounters an object surface, i.e., there is only 
interface or surface reflection. Optically inhomogeneous materials, e.g., ceramics,
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plastics and paper, consist of a medium and some embedded pigments. By assuming 
that the pigments are completely embedded in the medium and the Fresnel coefficients 
of the medium are constant over the visible spectrum, the surface component has 
approximately the same spectral power distributions as the illumination [4], [5]. For 
typical objects with rough surfaces, the surface reflection is diffused around the 
direction of perfect specular reflection [6]. By assuming that the pigments are 
distributed randomly in the body, the light that is reflected from the material body has 
the same colour over the entire surface. The body reflection component thus provides 
the characteristic object colour and is modulated by shading.

A method for recovering the shape and surface reflectance of a scene in the 
presence of interreflection uses an iterative scheme in which an estimate of the shape 
is calculated from the intensity data, and the radiosity method is used to estimate the 
no-interreflection image until convergence [7]. However, it has only been applied to 
white interreflecting surfaces and does not take into account the colour of the 
interreflected light.

The one-bounce model of mutual reflection utilises the fact that the intensity of 
interreflection diminishes substantially with each bounce [8]. It provides an accurate 
description of mutual reflection between two matte, convex Lambertian surfaces 
each of uniform colour, with an illumination that can vary spatially in its intensity 
but not in its spectral composition. FUNT and Drew [1] show that the singular 
value decomposition of colours emanating from a surface lie on a plane in the RGB 
colour space. The intersection of two planes which correspond to the two regions of 
interreflection, one on each of the interreflecting surfaces, determines the colour of 
the interreflected light. This algorithm assumes that the two regions of interreflection 
have been segmented.

This paper proposes a new reflection model which is based on the dichromatic 
reflection model [3], [9], and utilises the concept of the one-bounce model for the 
analysis of interreflection in colour images. The model enables regions of interreflec­
tion on an object of inhomogeneous dielectric materials to be differentiated from 
regions of matte reflection and highlight. The paper also introduces a (p — Q colour 
space so as to enable an automatic segmentation of regions of interreflection, of 
matte reflection and of highlight.

2. Image modelling
The dichromatic reflection model [3], [9] describes light reflection by inhomogene­
ous dielectric materials, e.g., ceramics and plastics, as a sum of that reflected at the 
surface interface and that by the material body, and scaled by the geometric 
reflection properties. The surface reflection component has approximately the same 
spectral power distribution as the illumination and appears predominantly as 
a highlight on the object. The body reflection component provides the characteristic 
object colour and is modulated by shading. It appears predominantly as the matte 
areas on the object.

The model states that the light spectra of the body reflection and surface re­
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flection are constant over an entire object, while the geometric scale factors vary with 
the illumination and viewing angles [9]. The light spectra from an object form 
a dense spectral cluster in the dichromatic plane in the RGB colour space. The shape 
of this cluster is related to the shape of the object For matte object points, the 
surface reflection is negligible, and therefore the observed light depends only on the 
light spectra of the body reflection, and scaled according to the geometrical 
relationship between the local surface normal of the object and the viewing and 
illumination directions. Consequently the light reflected from the matte object points 
forms a linear cluster (referred to as a matte line) in the direction of the light spectra 
of the body reflection. For highlight object points, the body reflection component is 
approximately constant and the spectral variation is due to the geometry of the 
scene. Consequently the light reflected from the highlight object points forms a linear 
cluster (referred to as a highlight line) from some position along the matte line, and in 
the direction of the light spectra of the surface reflection.

For an object with convex surface, e.g., a cylindrical object, and illuminated by 
a light source whose colour is different from that of the object, the two reflection 
components form a skewed T-shaped spectral cluster consisting of a matte and 
a highlight line. The skewing angle depends on the spectral difference between the 
body and the surface reflection, while the position of the highlight line depends on 
the illumination geometry. In the case of a concave object, e.g., an object with two 
surfaces inclined at an obtuse angle, the illuminant (of a different colour to the 
object) creates a highlight on each of the surfaces. Therefore the spectral cluster of 
this object consists of two highlight lines which are parallel to one another, and 
emanating from two positions along a matte line [9].

The dichromatic reflection model has been shown, using the Reichmann 
body-scattering model, to be a reasonable approximation [10]. The applicability of 
the reflection model can be extended to include homogeneous materials by 
considering only surface reflection, the unichromatic reflection model, which has 
been shown using the Torrance —Sparrow surface reflection model and the Fresnel 
equations to be a reasonable approximation for metals [10]. The reflection model 
allows the physical attributes of surfaces to be taken into account and acts as a priori 
knowledge for colour image analysis.

2.1. Function-based approach to image modelling

We model a colour image by considering how light is attenuated and altered by the 
absorption of a range of wavelengths as it is reflected from various points on an 
object surface. This leads to the concept of describing a surface as a function of 
colour and spatial position, i.e., F: F  x *F x A-*  F, where F  is the set of wavelengths 
used to describe the colour of the light, and A is a set whose elements define spatial 
information. Thus F (1/^ ,1/^, a) is the reflected light from a surface with i/ts denoting 
the colour of the surface, \J/r — the colour of the incident illumination and a — the 
spatial information. F itself is a function which is defined for the physical properties 
of the surface.
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From the ideas of superposition of waves, and the continuously variant nature of 
wavelengths in light, light can be considered as an infinite dimensional vector 
space, with any one colour described as the combination of some of its component 
wavelengths, and intensity as the value of some metric on the space. To simplify 
matters when considering the output of a colour camera, only the three primary 
wavelengths are taken into account. All other wavelengths may be considered to be 
attenuated to zero. This reduces the continuous infinite dimensional case into 
a discrete three dimensional. Further, the concept of colour and intensity can be 
combined in the three dimensional vector X — (XR, XG,XB) which measures the 
intensity of each of the primary wavelengths present, and for the purpose of 
normalisation the values of the 2’s are considered to be in the range [0,1]. It now 
becomes possible to define colour as the unit vector 1 and the intensity as the 
Euclidean length of the vector.

By treating light as a vector, a pixel can be considered to have several colour 
components, each possibly caused by a different physical effect, that combine 
together, summing to form the overall colour of the pixel. If each point on the 
surface of a dielectric object is considered to be the summation of a matte reflection 
component and a specular highlight component, where the relative scalings of these 
vector quantities are determined by its spatial position, then according to the 
dichromatic reflection model the colour of a pixel in the image space is

U X S,X „ « )  =  C„(a) B(AS, X ,)  +  C s( x ) S (X s,  X ,) (1)

where: L \A x  A x  A-* A, aeA  is the geometric factor, Xs eA  is the colour of the 
surface, and Xf gA is the colour of the incident illumination. CB(a) and Cs(a) are the 
proportions of body and specular reflection in the colour L(XS, XJ} a), respectively, 
and B:A x A -* A and S : A x A -*■ A are functions returning the colour of the body 
and specular reflections.

Various spectral clusters are formed when the colours of all the pixels are 
plotted in the RGB colour space. The shape of each of these clusters can be used to 
provide a priori information about the object surfaces. Since this grouping of 
colour points is independent of the geometric information, Eq. (1) can be rewritten 
as

L(Xs,Xi) = C j.B iX M  + CgSfXsM. (2)

The spectral cluster of the entire surface thus lies somewhere within the parallelo­
gram defined by the two vectors B(XS,XI) and S(Xs,Xf). Since CB changes slowly 
compared to Cs, a useful simplification is to consider CB as constant and Cs as 
variable. The spectral cluster of a convex dielectric surface on a black background 
consists of two linear clusters. The first cluster, the matte line, is approximately 
a straight line that starts at the origin of the RGB space and extends in the 
direction of B(Xs,Xj). The second cluster, the highlight line, starts at some point 
along the matte line and extends in the direction of S(Xs,Xj).
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2 2  Modified dichromatic reflection model
When considering the possible physical effects and interactions among surfaces, 
treating a surface as a function allows the light radiated by one surface to be acted on 
by another. Thus,

L = CB B(XS, C | S (̂ -s, Ajr)) (3)

is the matte reflective effect of the surface reflection from surface S1 onto the p r im a ry  
surface S. A model that incorporates reflective effects from a number of adjacent 
surfaces on a surface is

L  =  CBB(As,Ai ) +  CsS(As>Ai ) +  £
iefl

+ Cs5 (4 ,Q B (4 ,^ )) + CsS(Xs, CsSi&Xj))} (4)

where Q is a set of surfaces St that might affect S.
Equation (4) can be simplified using observed physical properties. The first 

property is that the specular highlight from a dielectric surface is approximately the 
same colour as the incident illumination, thus the function of surface reflection, 
S:A x A  -> A, may be considered as merely an attenuation of the incident light

VXs,Xf eA, S(Xs,Xj) = TXj, with (5)

where is the set of real numbers.
Assuming that all wavelengths are absorbed equally in a surface and that 

temperature change in the surface due to absorption of light energy generates 
negligible effect, then the function of body reflection may be considered as linear with 
respect to intensity. This is because a fixed proportion of the light flux will exit the 
surface, no matter how much or little is applied. This can perhaps be explained by 
considering the probability of one photon being absorbed or reflected by the surface. 
This probability is dependent on the path of the photon through the surface and its 
’’collision” with particles of pigment in the object, it is independent of the number of 
photons passed at any instant. Thus,

and Xs,XzeA, B(Xs,pXj) = PB(XS,,l,) (6)

where is the set of positive or zero real numbers.
When a coloured surface is viewed, most of the incident light is absorbed in all 

but the colour of the surface. However, the incident light itself may also have 
a colour, and any reflected light from the surface cannot have any of the wavelengths 
not present in the incident light. Furthermore, no component of the wavelength may 
be greater in magnitude than it was in the incident light. This leads to a theoretical 
maximum for the body reflection

VXs,Xl e A, B(Xs,Xf) eXs n  Xr

where
(7)
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A = {(aR,ac,aB):0 ^  a* ^  Xx, VXe {R,G,B}} (8)

with A —
Although any one surface may be visibly affected by an arbitrary number of 

neighbouring surfaces, when a local region of a surface is considered it is likely that 
at most one of the neighbouring surfaces will have any effect. This is because only 
one illuminant is used, and in practice the neighbouring surfaces will be of a size 
comparable to the local region. Thus Eq. (4) may be restricted to a single adjacent 
surface for the purpose of local region analysis

L= CBB(XS,XI)+TCSXI + {CBB(Xs,CgJB№,X,)) + CBB(ls,r°il C f n i)

+ rC sCgJB().?J,X,)+ r r “‘ CasdjCsX,} (9)

with r  and r adJ denoting the scalar attenuation factors for the primary and adjacent 
surface, respectively, and ”adj” denoting the adjacent surface. Assuming that T and 
r adj are similar in magnitude and that the body reflection varies linearly with respect 
to intensity, Eq. (9) can be expressed as

L = C„B(XS, X ,)+ rcsx,+C„B(XS, Cg>B№‘,id)
+rcBcfiB(xs,x,)+rcsci4lB(x?i,xI)+r2c°siicsxI

= {(CB+ rCsC’s^B U sA ,)+ rc sx,} + r c s{CidiB(Xiii,xl)+rc"sdJx,}

+ CBB(Zs,CjfiB(Xf,XI)), (10)

CB + rC BCsdj can be replaced with another scalar variable CB. Furthermore, the 
additional attenuation caused by the term B(XS, CBdj B(Xasdj ̂ j)) renders this term very 
small, and it is likely that it will have a negligible visual effect. So, the final 
simplification of the model, i.e., the modified dichromatic reflection model that 
incorporates interreflection is

L= { C W M + r c sxr}+ r c s{c tB {x fK K )  + r c ^ X j} .  (11)
The modified dichromatic reflection model has an intuitive physical inter­

pretation. It is the double image of the dichromatic model. There is the feature 
C'BB(XS,XI) +rCsXj that relates to the distinctive skewed T  structure of the 
original model for convex objects, and an attenuated cluster given by 
rC s{CBdjB(Xasdj,XI) +rCsdjXj}. This cluster can be considered as a scaled version of the 
cluster that is expected when an adjacent surface is viewed. This is because the primary 
surface spectrally reflects the light incident on it The range of wavelengths in the 
reflected light corresponds to another scewed Tcluster. Thus, the primary surface may be 
viewed as a function on the incident light, and the adjacent surface as a source of 
low-intensity illumination. The modified dichromatic reflection model indicates the 
presence of an additional matte cluster which corresponds to the interreflection.

23. Verifying the modified dichromatic reflection model
To verify the proposed reflection model, several colour images of a scene each con­



A physics-based approach to identifying interrejlection 207

taining a cylindrical ceramic object were grabbed using a JVC TK870E CCD colour 
camera. The scene was illuminated by a tungsten light which was placed at a distance 
of about 0.2 metres from the object and at an angle of about 45 degrees from the 
horizon. The object was single-coloured and was placed near another single-coloured 
cylindrical object of a different hue to generate a region of interreflection. To simplify 
the verification process, the second object was not placed in the camera view, both 
objects were suspended in air about 0.2 metres from a black velvet background to 
suppress the effect of shadows, and the region of interreflection was sufficiently bright 
when compared with the background.

Figure 1 (see coloured inserts following page 212) shows an image of a bright 
green ceramic mug and the interreflection is due to a bright yellow paper cylinder. 
The spectral clusters of the image, Fig. 2, show a skewed T-shaped spectral cluster 
(albeit fuzzy) and a smaller cluster near the origin of the RGB colour space.

Fig. 2. Spectral clusters of image in Fig. 1

To verify that the smaller cluster corresponds to the region of interreflection, the 
regions of highlight pixels (i.e., with R = 255, G = 255 and B = 255) and the 
background pixels (i.e., with R < 10, G < 10 and B < 10) in the image were first 
segmented and removed using a thresholding process. A K-means clustering 
algorithm [11] was then applied to the remaining pixels. The clustering process 
determined two spectral clusters: one corresponding to the matte cluster of the 
primary object surface; and a smaller cluster which is oriented at an angle to the first, 
and is located near the origin of the RGB colour space.

The elements of the two clusters were mapped back onto the image, and the 
results are shown in Fig. 3. The figure shows the matte cluster of the primary object 
surface as a green region and the smaller cluster as yellow regions, the region of 
interreflection. The white and black regions correspond to the highlight and 
background regions, respectively. Comparing Fig. 1 and Fig. 3 (see coloured inserts



208 Tardi Tjahjadi, D. Litwin, Yee-Hong Yang

following page 212) shows that the various regions are correctly segmented and the 
experimental results conform to what the modified dichromatic reflection model 
predicts.

3. (p — 0 colour space
The spectral clusters of an image in the RGB colour space, e.g., Fig. 2, do not contain 
sufficient information to indicate with confidence whether there are any regions of 
highlight and interreflection. Also, in using the K-means clustering algorithm we 
need to specify the number of expected clusters and the initial guess of the cluster 
centres. We therefore introduce the (p — 0 colour space (Fig. 4) as a means to 
identifying the different type of clusters in an image, and determining the initial 
cluster centres for the clustering algorithm.

B

Fig. 4. The (p — 0 colour space
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Fig. 5. The (p—0 plane
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The (p — 0 colour space is obtained from the RGB colour space using the 
following transformation:

cp = arctan

d = J R 2 + G2 + B2

( 12 )

where R, G and B are the red, green and blue grey levels of an image pixel, 
respectively, cp and 0 define the direction of the (R, G, B) vector and d represents the 
intensity of a pixel. Since only the direction of a colour vector is required for the 
identification of interreflection or object regions, d is dropped. We use (p and 0 to 
represent the normalised RGB vector, and all the image colour points lie on the (p — 0 
plane (see Fig. 5). The position of the primary and three other colours on this plane 
are indicated.

Note that R and B may be zero and will cause (p and 0 to be undefined. Also, if 
R and G are very small then a smal variation in R/G causes a large variation in cp. 
We therefore assume that when R = G = 0 and B 0, then pure blue is indicated. 
The table is formulated to deal with these cases.

Tab le .  Special cases to consider when using the cp— 9 transformation

R G в <Ρ 0 Comment

Φ0 Φ 0 Eq. (12) Eq. (12) All combinations
*0 0 0 0 90 Red
0 Φ о 0 90 90 Green
0 0 Ф о 45 0 Blue
Φ о Φ о 0 Eq. (12) 90 Yellow
0 Φ о Φ ο 90 Eq. (12) Cyan
0 0 0 0 0 Black

Figure 6 (see coloured inserts following page 212) shows an image of a blue mug, 
and two paper cylinders, one yellow and one green. Each of the two paper cylinders 
caused a region of interreflection on the blue mug. The three objects were suspended 
in air above a black velvet background so that each of the objects can be isolated 
from each other easily by thresholding. Figure 7 (see coloured inserts following page 
212) shows the spectral clusters of the yellow cylinder on the (p — 0 plane as a 3-D 
plot, as a contour plot and as a colour plot. Figures 8 and 9 (see coloured inserts 
following page 212) show the corresponding spectral clusters of the green cylinder 
and blue mug, respectively. In the colour plot, the R, G,B values in the image are
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normalised as follows:

R
max[R,G,.B]’

G b _  B
9 max [R, G, B] ’ max[R, G, 5] *

(13)

This normalisation is only used for enhancing the visualisation of the spectral 
clusters.

The 3-D plots of Figures 7 and 8 show that when there is no region of 
interreflection in an object region, the spectral cluster of the object approximates 
a Gaussian distribution of colours with an extension in the direction of any highlight 
(also the colour of the illuminant). This extension when viewed as a contour plot and 
a colour plot appears as an elongated lobe. The Gaussian distribution corresponds 
to a matte region and is referred to as a matte hill. The lobe corresponds to 
a highlight region and is referred to as a highlight lobe.

When there are regions of interreflection on an object then the spectral cluster 
consists of a Gaussian distribution of colours with extensions in the direction of the 
colour of the objects which cause the interreflection, and any highlight. Figure 9 (see 
coloured inserts following page 212) shows two lobes which correspond to the two 
regions of interreflection on the blue mug. These are referred to as interreflection 
lobes. One of the interreflection lobes also incoroprates a highlight, but this is not 
a problem because a highlight region can easily be removed by region growing (see 
Sect 4). The results are shown in Fig. 10 (see coloured inserts following page 212). 
Thus the (p — 0 colour space reveals that the nature of highlight and interreflection is 
similar. Regions of interreflection could be treated as the image of an additional light 
source, the secondary object which causes the interreflection. Note also that the 
matte hill will have the tallest peak in the spectral cluster. This is because in practice 
the matte region is normally the largest of the tree types of region within an object 
Thus, the (p — 0 space provides a simple (i.e., not time-consuming) means of obtaining 
a priori information about the regions within an object

Note that if the primary object is very desaturated (i.e., close to white) then the 
colour of the interreflection region is approximately the same colour as the 
secondary object which causes the interreflection. Otherwise, if the primary object is 
saturated, then the tip of the interreflection lobe will not be the colour of the 
secondary object For example, if the secondary object is a green cylinder and the 
primary object is a saturated red plastic cup as shown in Fig. 11a, then the colour of 
the interreflection is yellow as shown by the rightmost lobe of Fig. 11c. Figure lib 
shows the spectral cluster of the green cylinder (see coloured inserts following 
page 212).

4. Design of the segmentation algorithm
The objective of the segmentation algorithm is to utilise the proposed reflection 
model and the a priori information about images of inhomogeneous objects to 
identify/extract the matte region and any regions of highlight and interreflection
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within an object region automatically. The segmentation of the image into object 
and background regions is not of importance in this paper, and therefore this process 
is facilitated by using a black velvet background, and with the objects not touching 
one another and suspended in air. In this way the object regions can be extracted 
simply by thresholding before the segmentation within an object region is under­
taken.

From the reflection model we note that an object region consists of a matte and 
a highlight region. It may also consist of one or more regions of interreflection. From 
Sect 3 the spectral cluster of an object will consist of a matte hill and possibly one or 
more lobes as shown in Fig. 12. Since the matte region is usually the largest of

Interreflection lobe

Fig. 12. Expected spectral clusters of an object with two regions of interreflection and a highlight region

the three types of regions, a search is made to locate the tallest peak in the spectral 
cluster. This peak will correspond to approximately the centre of a matte hill, 
referred to as the matte centre. The approximate radius of the base of the matte hill is 
then computed by taking the average of the 14 border points (as indicated in Fig. 12) 
with the shortest distance from the matte centre. Points within a circle of this radius 
are considered as matte image pixels, without any highlight or interreflection.

In this paper, a border point refers to a point on the boundary of the base of the 
spectral cluster plot of an image, i.e., the outermost contour of the contour plot of 
a spectral cluster (e.g., Fig. 10). It should have at least one neighbouring spectral 
point and one neighbouring non-spectral point in a 3 x 3 neighbourhood.

A lobe may not be connected to the rest of the spectral cluster of an object as 
a result of very few points between the matte centre and the tip of the lobe, or 
because of noise. This will result in more than one boundary. In this situation the 
boundary with the greatest number of border points is chosen to be the one which 
surrounds the matte peak.

As noted in Figures 9 and 10 a highlight lobe may be part of an interreflection 
lobe. Therefore, it is essential to remove highlight pixels because they distort the
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shape of the interreflection lobe. Since highlight pixels are situated in the bright area 
of an object region whereas interreflections are located in the shadowed part of the 
object region, they are spatially separated. Therefore highlight pixels are removed 
(and hence segmented) by applying a region growing process from the brightest pixel 
in an object, i.e., with R >  T, G > T, and B > T, where T is a threshold (e.g., point 
A in Fig. 12), an incorporating pixels outside the matte circle. The condition that 
highlight pixels must be outside the matte circle will exclude bright pixels which are 
not highlight. Since a highlight region may not be continuous due to some 
irregularities of the surface, the entire object region is scanned for any other bright 
pixels (i.e., with R >  T,G> T and B > T), and the region growing process is repeated 
from these pixels.

A new boundary of the spectral cluster is then determined after the highlight 
pixels have been removed. In order to analyse the shape of the boundary, the 
distance of every boundary point from the matte centre is calculated as illustrated in

Fig. 13. Analysing the shape of the boundary (a) of the spectral cluster (b)

Fig. 13. If there is a region of interreflection then the maximum in the curve (distance 
from matte centre versus border point) is significant, otherwise there are only small 
insignificant maxima. The following four criteria have been derived experimentally 
using twenty test images, and are used to determine whether a maximum is 
significant (see also Fig. 14):

1. Width of maximum > threshold (= 5).

Height of maximum . maximum , 12. ------ 4 5----------------------  and ——------- —-------—------> threshold (=  1.3).
height of left minimum height of right minimum

3.
Height of maximum 

matte radius
> threshold (= 4.5).

4. Height of maximum > threshold ( = 20).

Any pixels which correspond to points within the matte circle are considered as 
matte pixels. They are removed so as to segment the matte region. If there are more 
than one maximum, indicating the presence of more than one interreflection lobes,



Fig. 1. Image of a green mug with 
interreflection

Fig. 3. Image in Fig. 1 segmented 
using the proposed image model

Fig. 6. Test image 1
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Fig. 7. Spectral cluster of the yellow cylinder in test image 1 on the (p — 6 plane
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Fig. 8. Spectral cluster of the green cylinder in test image 1 on the φ — θ plane
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Fig. 9. Spectral cluster of the blue mug in test image 1 on the cp — 0 plane
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Fig. 10. Spectral cluster of the blue mug without highlight on the (p—0 plane
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Fig. 11. Test image 2 (a), the spectral clusters of the green cylinder (b) and the red cap (c) in test image 2 
on the (p — 0 plane



Fig. 15. Segmentation of test image 1 into 
background and object regions using thresholding
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Fig. 16. Boundary of the three spectral clusters of test image 1: a -  with highlight, b -  without highlight



Fig. 19. Test image 3 (a) and the segmented regions (b)
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Fig. 14. Criteria for a significant maximum

then the K-means clustering algorithm is applied to the remaining points of the 
spectral cluster in the (p — 0 colour space. Thus the K-means algorithm is only 
applied to regions of interreflection, and only if there are more than one interreflec­
tion lobes. This does not assume that the regions of interreflection have some 
characteristic colours. If there is a painted region on an object which is of a different 
hue to the object, then the region would not be identified as a region of 
interreflection by the proposed image segmentation algorithm. This is because there 
would be no connection between the spectral clusters of the region and the object in 
the (p — 0 colour space. The nonmetric similarity function [11] is used as the 
similarity measure

s(x,z) = x'z
M l N f

(14)

This function gives the cosine of the angle between the vectors x and z. It is 
maximum when x and z are oriented in the same direction with respect to the matte 
centre. This function is used because the cluster points are clustered along the 
principal axes of the interreflection lobes.

The number of clusters and the initial guess of the centres of the clusters are 
required when using the K-means clustering algorithm. The number of clusters to be 
identified by the clustering algorithm is indicated by the number of significant 
maxima. The initial guess of the cluster centres is the border point numbers which 
correspond to the peaks of the maxima. The number of clusters identified 
corresponds to the number of regions of interreflection in the image.

The image segmentation algorithm is summarised below.
— Segment the image into background and object regions using thresholding.
— For each object region:

1) create the histogram in the (p — 0 colour space and determine the tallest 
peak, which corresponds to the matte centre,

2) determine the boundary of the spectral clusters,
3) determine the radius of the base of the matte hill,
4) remove any highlight pixels by applying a region growing process,
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5) determine the boundary of the spectral cluster without any highlight,
6) analyse the shape of the boundary to determine any significant maxima,
7) remove matte points which are within the matte radius,
8) apply K-means clustering algorithm using the nonmetric similarity func­

tion if there are more than one maximum.
— Colour code the matte pixels, highlight pixels, and pixels which belong to the 

clusters identified by the clustering algorithm onto the original image.

5. Results
Test image 1 (Fig. 6) is used to illustrate the various stages of the proposed 
segmentation process. Figure 15 (see coloured inserts following page 212) shows the 
segmentation of the image into background and object regions using a thresholding 
process. The spectral clusters of the image in (p — 0 space are shown in Figs. 7 —10. 
The boundaries of the three spectral clusters are shown in Fig. 16a (see coloured 
inserts following page 212). The boundaries after the highlight pixels have been 
removed are shown in Fig. 16b. Note that only the spectral cluster of the blue mug is 
affected. This is because the highlight regions in the other two objects are too small 
to be significant. Note also that there are two boundaries in the spectral cluster of the 
first object (the yellow cylinder). The larger boundary is chosen to be the boundary of 
the matte hill.

Figure 17 (see coloured inserts following page 212) shows the distance of every 
boundary point from the matte centre for the three objects in test image 1. According 
to the criteria for a significant maximum, only the blue mug has significant maxima, 
indicating two regions of interreflection. Therefore, the yellow and green cylinders 
are entirely matte object regions, and the K-means clustering algorithm is applied to 
the blue mug. The results of the segmentation are shown in Fig. 18 (see coloured 
inserts following page 212) . The segmented regions are colour coded according to 
the average colour of the region. The figure shows that the detected highlight region 
seems much larger than what is normally considered as a highlight, i.e., a clipped 
area. This is because a highlight region is an area which is affected by a direct 
illumination, and it is much larger than the clipped area.

Another image is used to test the proposed segmentation algorithm. Fig. 19a (see 
coloured inserts following page 212) shows an image with three plastic caps, two of 
which have a highlight and a region of interreflection. The results of the segmen­
tation of this image are shown in Fig. 19b. The segmentation of both test images 
1 and 3 shows that the proposed image segmentation algorithm have correctly 
classified the matte region, highlight regions, and regions of interreflection.

6. Conclusions
This paper proposes a reflection model based on the dichromatic reflection model 
which provides a means of relating the physics of light reflection to colour changes in 
both the image and colour spaces. It also propose the cp — 0 colour space which
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enables the spectral cluster of an object to be identified as consisting of a matte hill, 
a highlight lobe and possibly one or more interreflection lobes. Using the proposed 
model and the information derived from an analysis of the spectral clusters in 
the (p — 0 colour space, a segmentation algorithm which employs the K-means 
clustering algorithm successfully distinguishes colour changes at material boundaries 
from changes due to shading, highlight, or interreflection. The model can also be 
used to determine the colour of the interreflected light and hence to remove it so as 
to facilitate an accurate shape-from-shading and colour-based object recognition. If 
the nature of the spectral clusters of objects of various shapes is determined, then the 
model could be used to determine the shape of an object
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