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Matrix approach for ray tracing 
through holographic lens

E. Jagoszewski

Institute o f  Physics, Technical University o f W roclaw, Wybrzeże Wyspiańskiego 27, 50— 370 W roclaw, 
Poland.

M atrix algebra is ideally suited to handle problems o f transformation o f the coordinates o f  rays 
passing the system, and is a powerful tool for analysis o f  quality o f the optical systems. In this 
paper, we consider how  matrices may be used to describe ray propagation through optical system 
containing a holographic lens.

1. Introduction

In a similar way as an optical system which consists of rotationally symmetric 
refracting (or reflecting) surfaces, a holographic system can also be described by 
matrices composed of elements representing intervals and the focusing powers (in 
this case, the diffracting powers). This matrix method is useful in elucidating 
fundamental paraxial properties, and permits many results to be derived mechanical­
ly, especially for lens combinations. If we take the optical axis to be along the z-axis 
of the Cartesian coordinate system, then the intersection points of rays at a certain 
plane perpendicular to the optical axis can be specified in the xy-plane by the vectors 
that contain information of the position and direction of each ray. It would be 
convenient that we can find the coordinates of the ray at any other plane normal to 
the optical axis, by means of successive operators acting on the initial ray coordinate 
vectors. These operators can be represented by matrices. The advantage of this 
matrix formalism is that any ray propagating through the holographic system can be 
treated by successive matrix multiplications, which can be easily programmed on 
a computer. Such a representation of geometrical optics is elegant and powerful, and 
is used in optical system design.

Ray tracing through a holographic system resolves itself into propagation from 
one plane to the next and to operation of diffraction at the holographic surfaces. 
A ray crosses each constant plane: z =  const at a point (x,y) with direction cosines 
(/,m,n), as shown in Fig. 1. The coordinates of the intersection points of meridional 
rays lying in the plane that includes the axis are then (x,0). Paraxial rays are those in 
the limit of having small angles and small distances from the axis. A ray originating 
in the input plane: z0 =  const, at point (x0,y0) intersects the surface of holographic 
optical element at point (x,y), where:
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I m
* =  *o+-Zo. y  =  y0 + -Z 0 ·n n

If u is the slope (angle between the axis and the ray), then for the meridional rays we 
have

x = x0+ z 0tanu0, Xj =  x +  zjtanuj

where (xj,0,z7) are the coordinates of the intersection point of the ray at the output 
plane Zj =  const We see that for the transfer operation of paraxial rays, the outgoing 
heights of the intersection points depend linearly on the incoming heights and slopes, 
i.e., a ray that enters the fc-th surface of the system at height x k and angle uk leaves the 
next plane with the height

8xk + 1
Nk+l <9x. x k +

dxk +  1.
dut (1)

Analogously for the power operation by an optical element, the outgoing angles 
depend linearly on the incoming heights and angles

* * + 1

d u k + i

dxk x*+ duk “ k> (2)

because for each focusing element (see Fig. 1) the slope of the paraxial ray tracing can 
be written in the form

x k
u k + 1 =  - y + % ·

The partial derivatives in the above equations depend on the structure of the system 
and on the axial locations of the input and output planes. They are determined by 
tracing rays through the system, and are constant for a given system. The linearity is 
the basis of the matrix treatment, since Eqs. (1) and (2) can be written in the
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(3)

2. Ray tracing

The optical system design is usually based on the data obtained by ray tracing 
through the system [1]. In this paper, ray tracing through a holographic optical 
element is treated as a generalized case of tracing the rays through a diffraction 
grating. As we know, for the diffraction grating inserted in the second plane of the 
system shown in Fig. 1, the relationship between the direction cosines of the 
diffracted and the incident rays are given by the equations

V =  Z±-cos<p, 
a

, Xm =  m±-cos<p, 
a

n '=  ±y/\  — r 2—m'2, (4)

where: X is the wavelength of the incident light, d — the grating spacing, cp — the 
angle in the xy-plane between the normal to the grating lines and the x-axis.

The sign choice in the first two equations is used for the plus (+) order or the 
minus (—) order diffracted wave front; the sign choice in the last equation of (4) is 
used to select the z-direction of propagation of the wave front. Simultaneously, Eqs. 
(4) that determine the spatial frequency of the grating can be applied to define the 
diffracting power of the grating, i.e.,

in the xz-plane,

and

1 m —m
— =  — -—  m the yz-plane. 
dy X

A holographic optical element (HOE) is described by the transfer phase function 
that refers to the intensity distribution in the interference pattern between the object 
and reference recording wave fronts. When the HOE is illuminated by a wave front 
identical with the wave front of former reference beam, one of the diffracted beams 
that are formed is a duplicate of the former object recording beam. Therefore, this 
property of HOE’s is used to determine the diffracting power. Let the holographic 
focusing element be recorded in the xy-plane inserted in the origin of coordinate 
system (as shown in Fig. 1) by two spherical wave fronts. The centres of the object
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and reference waves are situated at the points: P0(x0,_y0, —z0) and P r{ —R  
sinu,0, — JR cos u), respectively, where R  is the distance of PR from origin of the 
coordinate system along a line making the angle u with the z-axis. In accordance 
with the fundamental property of such a holographic optical element which is 
illuminated by a point source of light of wavelength X placed at Pr ( —R 
sinu,0, —Rco&u), a reconstructed wave front appears as a duplicate of the former 
object wave front to the right of the HOE. In this way the direction cosines of the ray 
incident at point PH(x,y,0) of the hologram from point source PR are as follows:

After diffraction this ray appears to come from the point -P0(x0,y0> — zQ) with the 
direction cosines

We see that the diffracted light corresponds here to first order diffraction in the 
direction which would reconstruct the original object Equations (5) and (6) can then 
be used to describe the diffraction power of the HOE at the point of intersection of 
the hologram surface by the incident and the diffracted rays. When a holographic 
optical element is considered as a general element in an optical system, computerized 
ray tracing requires the calculation of both the direction and amplitude of the 
diffracted rays.

3. Ray transfer matrices

In ray tracing through an optical system, we have four types of transformations of 
ray coordinates:

— transformation describing the reflection of rays at a reflecting surface,
— transformation describing the refraction of light passing through a refracting 

surface,
— transformation describing the diffraction effect of light at a diffracting surface, 

and
— transformation describing the translation of the rays from one to the next 

surface in a homogeneous medium.
Restricting ourselves to one transverse direction (for example, the x-direction), 

the ray at a given plane (z =  const) may be specified by its height in x-direction from

(5)

r =  ( x - x 0)[ (x -x 0)2+ y 2+ z S - 1/2, 
m' =  y [(x -x 0)2+ y 2+ 4 r 1/2,
n' =  z0[ (x -x 0)2+y2+ z a - 1/2· (6)
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the optical axis and by its slope u that it makes with the optical axis. Thus, the two 
quantities, height and slope, represent the ray at a given plane in the examined 
optical system.

Reflection and refraction are governed by Snell’s law which states that the 
refracted (or reflected) ray lies in the plane defined by the incident ray and the normal 
to the point of incidence. The relationship between the incidence and the refraction 
(reflection) angles can be described by Snell’s law in the vector form

N'ir' x S) =  N(r x S) (7)

where r and r' are the unit vectors of the incident and the refracted (reflected) rays at 
the point of incidence, respectively. S is the unit vector of the normal to the refracting 
(reflecting) surface at the ray intersection point T, N, and N' are the refractive indices 
of the medium before and after refraction. For reflection N' =  —N, thus we can treat 
reflection as a special case of refraction. For simplicity, we consider ray tracing only 
in the xy-plane. The optical direction cosines before and after refraction are then 
defined by the relations:

L = N l , 11 =  N'U,

and the coordinates at the point of refraction of the surface are always the same: 
x' =  x. Thus, the transformation equation for refraction [2], [3] is given by

E H . -m (8)

where A
N 'cosi'—N cosi

P
is the power of the refracting surface, p is the radius of

curvature of the spherical surface, i,i' are the incident and refraction angles, 
respectively.

The purpose of this paper is to describe the ray tracing through a diffracting 
surface and to derive the equation for holographic optical element in the matrix 
form, analogously as we have shown for the refraction surface. Let a holographic 
optical element be inserted in a right-handed coordinate system having its origin at 
the centre (or at the vertex in case of curved surface) of hologram. For curved 
diffraction surface defined by the equation

F(x,y,z) =  0,

the unit vector normal to the surface at the point of incidence PH(x,y,z) is determined 
by the surface derivatives

___, , .dF  .dF  , dF
v F ( x , y , z )  =  « - + , - +  l T z ,

and the direction cosines of the normal vector are given by

cosa = - i ï  ,d x [\ d x  J
" Y +

- 1/2
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— £ [(T O X S )']"’
The unit vectors r and r' of the incident and diffracted rays define the incident and 
diffraction angles, respectively. They are taken to be positive when the z-axis has to 
be rotated counterclockwise through the angle of less than 7t/2 to bring it into 
coincidence with the ray.

The ray tracing through a holographic optical element resolves itself into 
determining the direction of rays leaving a generalized holographic grating, and has 
been discussed in scientific literature [4]. Many papers tried to emulate the 
diffraction properties of the element by means of mathematical analogy between 
a holographic and a conventional optical element. Usually, the holographic optical 
element is created by the interference of two perfect wave fronts, where both 
reference and object beams originate from single point sources. It is relatively simple 
to trace rays through such a hologram, since one can easily compute the exact 
directional cosines of each beam that is incident at a given point of the optical 
surface. It is also possible to obtain a simple vector equation for ray tracing [4] 
which applies to any shape of holographic optical element. This equation is 
applicable to holographic lenses, holographic gratings, and is given by

Sx[(rI- r c) ± f ( r o- r ll)] =  0 (9)

where S is the unit vector along the local normal to the hologram surface at the 
incident point PH (see Fig. 2), r0, rR are the unit vectors along the rays emerging

Fig. 2. Unit vectors along the readout rays at the incident point PH; S is the unit vector along the 
local normal to the holographic surface, and p is the curvature radius of this curved surface

from the object and reference points at and rc, Tj are the unit vectors along the 
reconstruction and the diffracted (image) rays at PH; X0, X are the wavelengths used in 
construction and reconstruction, respectively. Therefore the grating equations
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hold for the incident ray impinging on the optical element and are given in 
components form by

, , . *
' ' - , c ± 2

m m +  Xd* & ’ $
n i - m c ± 2ii ~ W  

r i j  =  + ^ / l  —  I j — m j (10)

where the components of the unit vectors rf, rc, r0, r*, determine the direction cosines 
of the respective rays. The function <P(x,y) defines the transfer phase function of the 
holographic optical element, and the partial derivatives of this function are evaluated 
in the incident point of the HOE. In agreement with the definition of matrices for the 
conventional elements, the matrix equation for the holographic element takes the 
form

where k =  2n[X is the wave number of beam used in the diffraction process. The 
transfer phase function specifies the transparency of the holographic optical element 
whose transmittance is given by

os[$(x,y)].

When only one pair of an input and its desired output wave fronts is given, we obtain 
the trivial phase function: #(x,y) =  $out—# in. Generally, we have a set of con­
tinuously different input phase distributions and another set of corresponding, 
desired output distributions. Therefore, it would be impossible to obtain a holo­
graphic optical element which converts every input wave front into each desired 
output wave front. The design is to determine parameters of an optimal holographic 
element that make the differences between the emergent and desired wave fronts as 
small as possible over the set of inputs. If we consider a complete system containing 
a diffracting surface (i.e., holographic element), as shown in Fig. 3, then the matrix 
describing the transformation of the coordinates of a ray from the first to the last 
plane is given by

J_ \
kx dx 

1

where aQ and at are the distances along the rays in the object and image spaces, 
respectively. Now carrying out the multiplication, we have
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Object plane HOE Image plane

Fig. 3. O bject—image relationship; in the sign convention the distances are

EH.,-kx dx

an-i
ajao d<P

kx dx 

kx dx
El

kx dx

where in the coordinate column x' =  Xj for x =  x Q. It follows that

(12)

, _ /  . aoai s ^ \ , a ,d *
1 V i+  kx d x ) 1 k d x '

We require that x r should be independent of /, since x t =  M x Q for any angle uQ, M  is 
the linear magnification. The lower left-hand element of the system matrix in Eq. (12) 
should be equal to zero

kx dx
= 0,

hence

aT =  a, (■*gï>
Further,

— - S s -
■ ♦ g f

which is due to the fact that the detei umiaut vaiuc ui luc uia.LJ.iA /v uiusi uc equal iu 
unity. For the axial conjugate points, x 0 =  xt =  0, and
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i.«.,

M smuj =  sinu0,

where u0 and are the angles which the ray forms with the optical axis in the object 
and image spaces, respectively.

4. Conclusion

The ray tracing through an optical system containing a holographic optical element 
has been discussed. We introduced the diffraction matrix which describes the 
transformation of two coordinates of the incoming ray. One can treat the direction of 
the ray and the position of a point on the ray by asking where a point in space is 
imaged after passing the system. This treatment can be extended to the analysis of 
more complicated systems.
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