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Localization of light in dielectric media
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Recently random dielectric structures with typical length scale matching the 
wavelength of electromagnetic radiation have attracted a great deal of attention, 
both in the microwave and in the optical part of the spectrum. Propagation of 
electromagnetic waves in these structures resembles, to some extent, the properties of 
electrons in disordered semiconductors. Therefore, many ideas concerning transport 
properties of light and microwaves in such media exploit the theoretical methods and 
concepts of solid-state physics that have been developed over many decades. One of 
these concepts is electron localization in noncrystalline systems such as amorphous 
semiconductors or disordered insulators. As shown by A n d e r s o n  [ 1 ] ,  in a sufficien­
tly disordered infinite material an entire band of electronic states can be spatially 
localized. Thus, for any energy from this band, the stationary solution of the 
Schrodinger equation is localized for almost any realization of the random potential. 
Prior to the work due to Anderson, it was believed that electronic states in infinite 
media are either extended, by analogy with the Bloch picture for crystalline solids, or 
are localized around isolated spatial regions such as surfaces and impurities [2].

It is commonly believed that the Anderson localization is completely based on 
the interference effects in multiple elastic scattering. However, interference is 
a common property of all wave phenomena. No wonder, therefore, that many 
generalizations of electron localization to electromagnetic waves have been proposed 
[3] — [7]. So-called weak localization of electromagnetic waves manifesting itself as 
enhanced coherent backscattering is presently relatively well understood theoretical­
ly [8] —[10] and established experimentally [11] —[13] beyond any doubts. The 
question is whether interference effects in random dielectric media can lead to strong 
localization. Despite some reasonable indications that strong localization could be 
possible in 3D random dielectric structures (mainly some suspensions of T i0 2 
spheres in air or in some low-refractive-index substances [14] —[18] have been 
considered) the convincing experimental demonstration has been given only for 2D 
[19]. In this case, the strongly-scattering medium has been provided by a set of 
dielectric cylinders randomly placed between two parallel aluminium plates on half 
the sites of a square lattice.

Despite the huge amount of existing literature about Anderson localization of 
electromagnetic waves, there still is lack of sound theoretical models concerning this 
interesting effect. To be realistic, such models should be based directly on the
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Maxwell equations. On the other hand, they should be simple enough to provide 
calculations without too many too-crude approximations. The main purpose of our 
paper is to construct such a model for the 2D localization and to elaborate in detail 
its major consequences. We restrict ourselves to the study of the properties of the 
stationary solutions f?(r, t) = Re[<^(f)e_i<Bt] of the Maxwell equations. Consequent­
ly, the polarization of the medium is considered to be the oscillatory function of time 
P(f, t) =  R [#(f)e-i“*]. By investigating the region of frequencies co corresponding to 
the band of localized waves, we expect to provide some deeper insight into the 
existing experimental results.

We believe that what really counts for localization is the scattering cross-section 
and not the geometrical shape and real size of the scatterer. Therefore we will 
represent the dielectric cylinders located at the points pa by 2D dipoles

&(?) =  (l)
a

Since the polarization of our system varies only at a certain plane, we have 
introduced cylindric coordinates f  =  (p, z) in the above formula. In principle this 
approximation is justified only when the wavelength is much larger than the 
diameter of the dielectric cylinders under consideration and simultaneously much 
smaller than their height.

It is known that the theory of multiple scattering of electromagnetic waves by 
dielectric particles is tremendously simplified in the limit of point scatterers. Many 
multiple-scattering effects have been obtained qualitatively for coupled electrical 
dipoles. Examples are: universal conductance fluctuations [20], enhanced backscat- 
tering [21], and dependent scattering [22]. But, on the other hand, several 
mathematical problems emerge in the formulation of interactions of point-like 
particles with electromagnetic waves [22] — [24]. It turns out that to use safely the 
point scatterer approximation it is essential to use a representation for the scatterers 
that fulfils the optical theorem rigorously and conserves energy in the scattering 
processes [25]

ink2pa =  i  (eiv - 1  )T'(p«) (2)

where k = a>/c is the wavenumber in vacuum. The field acting on the a-th cylinder

f W  = ■?■"”(£,)+£«i(pj (3)
b f a

is the sum of some free field <f{0)(p), which obeys the Maxwell equations in vacuum, 
and waves scattered by all other cylinders [25]

?aip) = 2k2 K 0(—ik\p — pa\)pa (4)

where K 0 denotes the modified Bessel function of the second kind.
Inserting Equation (4) into (3), and using (2), we obtain the system of linear 

equations
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b

determining the field acting on each cylinder for a given field of the free wave 
incident on the system <̂ (0)(pa). If we solve it and use again Eqs. (2) and (4) then we 
are able to find the electromagnetic field everywhere in space (outside the cylinders)

<T(p) =  #*<°>(p)+I^a(p) for P *  pa. (6)
a

Similar integral equations relating the stationary outgoing wave to the stationary 
incoming wave are known in the general scattering theory as the Lipp- 
mann—Schwinger equation [26]. In that formalism localized waves correspond to 
nonzero solutions of these equations (in our case Eqs. (5)) for the incoming wave 
equal to zero [27] (for different arguments based on the analysis of the behaviour of 
the energy density of the field, see [25]).

It is convenient to study eigenvectors

lG„tr:(pb) = Ijgj'tpJ, (7)
b

of the matrix

inGab =
2K0(- ik \p a- p b\)
0

for
for

a=£b,
a = b, (8)

which depends only on the positions of the cylindres kpa scaled in wavelengths. It 
turns out that there exists a one-to-one mapping between electromagnetic waves 
localized in the system of cylinders (1) and eigenvectors Sj{pJ  corresponding to 
eigenvalues Xj obeying the condition

RqXj =  - 1 .  (9)

To prove this statement let us observe that, if we take

<P = arg(l +  2/2) -  arg(2/2), (10)

then those eigenvectors are simultaneously eigenvectors of the M  matrix from Eq. (5) 
corresponding to the eigenvalues A 0 )  =  (1+2/2)—ei*(2j/2) =  0.

Let us stress that, for given position of the cylinders pa, die localization condition 
(9) may be fulfilled only at discrete frequencies to (or wavenumbers k). According to 
Eq. (10) each of these frequencies is assigned a single value of the parameter 

describing the scattering properties of the cylinders. This means that localized 
electromagnetic waves existing in systems (1) consisting of well separated dielectric 
cylindres correspond to discrete points on the plane {co,4>}. Similarly, localized states 
in quantum mechanics always appear only at discrete energies. However, in the case 
of a disordered and unbounded system, the countable set of energies corresponding 
to localized states becomes dense in some finite interval, in the same way as the 
rational numbers are dense in the real numbers [28]. But it is always difficult to 
separate energies allowed to the electron from energies which may be arbitrarily 
near, and by convention the spectrum is always a coarse-grained object [28].
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Physically speaking, there exists an entire continuous band of spatially localized 
electronic states. This happens when Anderson localization occurs in solid state 
physics. It turns out that in the case of random and infinite systems of cylinders (1) 
there exists an analogous continuous region on the plane {cd, $}. After choosing 
a point (co,$) from this region a localized wave of frequency co exists in almost any 
(;i.e., out of a set of zero measure) random distribution of the cylinders described by 
the scattering properties $.

To illustrate this statement we have diagonalized numerically the G matrix (8) for 
103 different distributions pa of finite number of N  cylinders placed randomly inside 
a square, with the uniform density n =  1 cylinder per wavelength squared. Then we 
have found the m in im al rectangle on the complex plane containing all those 
eigenvalues, divided it into 100 x 100 small regions and counted the total number of 
eigenvalues inside each of these regions. The surface plot of the resulting 
probability distribution PN(X) for N = 300 is presented in Fig. 1. In addition, in 
Fig. 2 we have prepared contour plots of PN{X) for different numbers of cylinders

Fig. 1.
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Fig. 2.

N = 100,200,300. It follows from inspection of Fig. 2 that for increasing values of N, 
the probability distribution PN(X) moves towards the Re2 =  — 1 axis and simul­
taneously its variance along the ImX =  const, axes decreases. Our numerical 
investigations indicate that in the limit of an infinite medium, the probability 
distribution under consideration will tend to

lim PN(X) = 5(Re2 +  l)/(Im  A). (11)
N-*oo

This means that for almost any random distributions of the cylinders pa, the 
condition (9) holds, and thus a localized wave with frequency to (determined by the
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condition n =  1) exists. However, as follows from inspection of Eq. (11), this happens 
only if /(ImA) #  0. This requirement together with Eqs. (10) and (9) determines the 
values of #  suitable for localization. This region of <P may be regarded as the section 
of continuous region corresponding to localized waves on the {to,#} plane along 
a certain co =  const axis.

In summary, we have presented a novel theoretical approach to localization of 
electromagnetic waves in 2D dielectric media. The most important, and deeply new, 
step taken here is the willingness to deal with probability distributions, not averages. 
Generally speaking, most physicists immediately apply averaging procedure as soon 
as ’’disorder” is introduced in their model. When the scattered intensity is averaged 
over some random variable, a transport theory emerges [30]. But, as pointed out by 
Anderson, ’’there is a very important and fundamental truth about random systems 
we must always keep in mind: no real atom is an average atom, nor is an experiment 
done on an ensemble of samples” [31].
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