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Directional coupling for solitary waves 
in quadratic nonlinearity

M. A. Karpierz

Institute of Physics, Warsaw University of Technology, uL Koszykowa 75, 00— 662 Warszawa, Poland.

The propagation of temporal solitary waves, formed in the second-order nonlinear medium, is 
analysed in waveguide directional couplers. The influence of the third-order nonlinearity on the 
switching effect is also presented.

Recently, the great effort of nonlinear guided-wave phenomena research is focused 
on the cascaded second-order process which can produce relatively large inten­
sity-dependent phase changes of the wave propagating in optical waveguides 
[1] —[7]. Among a variety of nonlinear effects, the cascaded second order non­
linearity can be a source of forming temporal or spatial solitons [3] — [7]. The phase 
mismatched second harmonic generation (cn+co) and difference frequency generation 
(2co—co) lead to effective intensity-dependent phase changes of the pulse at both 
frequencies. This allows to form the pair of solitary waves at fundamental frequency 
and second harmonics with amplitude envelopes not changed along the propagation.

In this paper, the propagation of the temporal solitary waves, formed in the 
second-order nonlinear medium, is investigated in nonlinear directional couplers 
[8] —[12], Fig. 1. The slowly varying complex amplitudes of fundamental wave 
U and second harmonic V  in the directional coupler structure fulfil equations [13]:
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Fig. 1. Schematic drawing of the analysed directional coupler
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where 1= 1,2  describes the waveguide number, Aft is a. difference of propagation 
constants of both frequencies, vfl =  (a =  17, V) is a group velocity, Da is a group 
velocity dispersion, y is a second-order nonlinearity coefficient, rab is a third-order 
nonlinearity coefficient and xa is a coupling coefficient of the directional coupler. In 
this paper for numerical analysis it was assumed that Afl < 0 and vv = vv , Dv =  Dv 
and xv =  xv. It should be pointed out that typically xv > x v and therefore both 
pulses are switched at different lengths.

An as input pulse launched into the waveguide 1 (Fig. 1) of the directional 
coupler the solution in the form of bright solitary waves governed by the quadratic 
nonlinearity is taken:

t/i =  3^ D2Dzcosh~2(z/x 0), 
yTo

Ki =  ^ cosh' 2(TAo) (2)
rT 0

where x =  (t —z/v), x§ = 2\(2Dv —Dv)/Af}\ and as an input in the second waveguide 
U2 = V2 = 0 is taken.

First, the coupling phenomenon in the directional coupler without the 
third-order nonlinearity has been analysed (i.e. for =  0). Figure 2 presents the 
pulse energies Evl =  f |^ |2dx/x0 and = J |l/,|2dx/x0 evolution along the direc­
tional coupler length.

The switching of the temporal pulses in the waveguide directional coupler 
depends on the value of the normalised coupling K  =  xtI/D = LS/LB, where 
Lg =  n/x is the half-beat length of the coupler and Lg = nxl/D is the dispersion 
length. For analysed solitary waves the second order nonlinearity compensates the 
effects caused by the dispersion, i.e., the changes of the pulse shape and width. 
Therefore large values of the dispersion length are equivalent to small values of the 
nonlinearity terms. It means that for large coupling K »  1 the second-order 
nonlinearity terms are small in comparison with the coupling terms and the 
directional coupler behaves as a linear coupler (dotted lines in Fig. 2).

The different behaviour appears in the case of low coupling K, i.e., for long 
half-beat lengths of the directional coupler. In this case, the influence of the quadratic 
nonlinearity is comparable with the directional coupling effect. The nonlinearity 
destroys the resonant coupling conditions, first for the waves of the second harmonic 
(for K  ~  1), and then also for waves at the fundamental frequency (for smaller



K=0.5

Fig. 2. Pulse energy evolution along the coupler length for the fundamental frequency (top) and second harmonic (bottom) in the input waveguide 
1 (left) and the output waveguide 2 (right) for different values of the normalised coupling coefficient K
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Fig. 3. Second harmonic pulse envelope \Vt\2 in the input waveguide 1 (left) and output waveguide 2 (right) for two values of the normalised 
coupling: a -  X = 100 and b -  K =  10
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coupling coefficients K). The effect of diminishing of coupling due to the nonlinearity 
is similar to the effects in directional coupler with the third-order nonlinearity 
(Kerr-type) [10] — [12]. In the Kerr-type nonlinear directional couplers the effect of 
increasing the coupling length (like in analysed coupler for K  =  1) is also observed.

The changes in coupling cause that pulse envelope shapes are also modified. This 
is presented in Fig. 3, where the second harmonic pulse envelopes evolution in both 
waveguides is plotted for two values of the effective coupling coefficient K.

Fig. 4. Pulse energy evolution along the coupler length for second harmonic in the output waveguide 2 for 
the normalised coupling coefficient K  =  10 and for different values of the third-order nonlinearity 
coefficient R

The effect caused by the second-order nonlinearity can be compensated by the 
third-order nonlinearity existing in the directional coupler. The sign of the rab 
coefficients (connected with the third-order nonlinearity) can be the same or opposite 
to the sign of the y coefficient (connected with the second-order nonlinearity). 
Therefore the third-order nonlinearity can amplify or diminish the second-order 
nonlinearity effect. This phenomenon is shown in Fig. 4. The third-order nonlinearity 
coefficients were taken as follows: 2rUXJ = 6ryy = 12ruv and the dimensionless 
coefficient R  =  2ruvD/To was introduced. The third-order nonlinearity causes the 
focusing of the output pulses for the R < 0  and defocusing for R  > 0. However, for 
R <  0 the energies in both output pulses are different

In conclusion, the directional coupler for the solitary waves governed by the 
second order nonlinearity has been analysed. It has been shown that the third-order 
nonlinearity allows to modify the switching phenomena and it seems to be useful 
especially for long couplers (for small coupling coefficients). Presented results can be 
applied to spatial case of solitary waves coupled between two planar waveguides of 
directional coupler.
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