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There is presented a quite simple technique for improving the axial resolution capacity of confocal 
scanning microscopes without detriment to their transverse resolution. The technique, that is based 
on the equal contribution to the image of the illuminating and collecting lenses, consists in 
symmetrical defocusing of both parts of the imaging system.

1. Introduction

Confocal scanning microscopes (CSM) are imaging systems in which the light 
radiated from a point source is focused onto the object by an illuminating set, then 
the transmitted light is imaged by a collecting set and the light, which passes through 
a pinhole at the center of the image plane, is detected. In this symmetrical 
configuration, both the illuminating and collecting sets play equal roles in the image 
properties. The most important feature of the CSM is their ability to form 
a three-dimensional (3-D) image of 3-D objects [1]. This 3-D capability results from 
both their high transverse resolution capacity and their optical sectioning ability. 
Over the last years several attempts have been made in order to achieve an 
improvement of the resolution capacity of the CSM either in the transverse direc­
tion [2] — [6], along the axial direction [7], [8], or simultaneously in both directions 
[9], [10].

The goal of this paper is to report a new technique for improving the resolution 
capacity of CSM in the axial direction with no detriment to resolution in transverse 
direction. The technique that is based on the equal contribution to the image of the 
illuminating and collecting lenses consists in symmetrical defocusing of both parts of 
the imaging system. It is also shown that the performance of the technique can even 
be improved by introducing a pair of axially-superresolving purely-absorbing pupil 
filters into both parts of the confocal setup.

2. Basic theory

Let us start with considering the transmission-mode symmetrical confocal scanning 
microscope depicted in Fig. 1. In this setup the plane object is illuminated with the 
beam focalized by the illuminating lens. If we consider that the object, whose 
amplitude transmittance is i(x0»yo)> is centered at the point (xI5 yf), the amplitude
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Fig. 1. Schematic layout of the transmission-mode confocal scanning microscope

distribution at the object plane can be expressed as follows:

V(x0,y0) = e*P [ ,  ̂  (*o+ >>o) J *1 y0) t(x0 ~  x*> y0 ~  y,)

where function

( 1)

M*o.>\>) =  ||pi(Ci.'Ii)exp^->'|ÿ(Cx*o+’îiyo)JdCid'ii (2)

is the transverse amplitude point spread function (PSF) of the illumination lens 
within the Fresnel approximation.

Since the function h1(x0,y0) falls off quite quickly, x0 and y0 are small enough in 
the exponential term of Eq. (1) to be replaced by the unity and Eq. (1) may be 
rewritten as

U(x0,y0) = K (x0,y0)t{x0- x s1y0- y a). (3)

The amplitude distribution U(x0,y0) is the object for the second half of the 
confocal system, i.e., the collecting set. As U(x0,y0) is a quite narrow function in 
comparison with the distance d', it can be considered, with a good approximation, 
that the collecting lens is in the far field region of U(x0,y0), and then that the 
Fraunhofer pattern of U(x0,y0) is at the exit pupil of this imaging system. In this 
case, the collecting set works as a coherent linear shift invariant (LSI) imaging 
formation system. Thus the amplitude distribution in the image plane can be 
expressed by the convolution between the geometrical'image of the object and the 
amplitude transverse PSF of the collecting lens, that is

~ )  ® JJfcKa.*)

x exp [  ”  X3 + 7/2 y3)J d C2 d̂ 72 (4)

where m represents the lateral magnification of collecting set. If we take into account 
that m =  —d'/d, Eq. (4) can be rewritten as
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whose integral representation is

(5)

(6)

Finally, when the point detector placed at x 3 =  y3 = 0 is considered we can state 
that the amplitude at this point is

u , №x . ,y . )  = u3(x„yj -  { f

= («, P)t(ct- x„ P -  ys) h2(pt, P)dctdp

= h2(xs,y j]  0  i(xJ5yJ. (7)

Based on the comparison of Eq. (7) with the equation that provides the amplitude 
distribution in the image plane for a coherent LSI imaging formation system we can 
state that, from an analytical point of view, a transmission mode CSM behaves as 
a coherent imaging system with an effective amplitude transverse PSF that is given, 
precisely, by the product of the two independent amplitude PSFs of illuminating and 
collecting sets.

As we are interested in radially-symmetric confocal scanning systems we 
particularize here, and in all the study developed below, our equations for the case of 
two radially-symmetric pupil functions with the same radial extent. In this case, the 
intensity PSF of the CSM is

/(v) =  IMv)Mv)|2 = ¿ Jp iW o M p d p 2jp2(P)J o M P dP (8)

where p = r/rm represents the normalized radial coordinate at the pupil plane, and 
v = rmrJM ' stands for the radial variation in the object plane, rm being the 
maximum radial extent of the pupil.

The function /(v) in Equation (8), which stands for the transverse intensity PSF of 
the confocal scanning imaging system, is not a transverse PSF in the conventional 
way, because it does not represent the intensity distribution in the image plane for 
a point object. On the contrary, it represents the function that can be composed of 
the values of the intensity collected by the point detector when a pinhole is scanned 
through the confocal plane.
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As the main feature of CSM is its ability to form three-dimensional images, it 
is convenient to extend the concept of intensity PSF up to three dimensions. In 
this sense it is easy to show that the intensity achieved at the point detector 
when a pinhole is centered at a normalized distance (v,u) from the confocal point is 
given by

I(v,u) =  lh1(v,u)h2(v ,-u )l2 (9)

where
1

h(v,u) =  2 j*p(p) exp^ — i ̂  up2̂ J 0(vp)pdp (10)

o

stands for the 3-D amplitude PSF of illuminating (or collecting) lens, being

u
Xd'id'+z)' ( 11)

u denotes the axial coordinate in optical units, where z represents the axial distance 
as measured from the confocal point.

If we particularize now Equation (9) for axial points, v =  0, we arrive at the axial 
intensity PSF of the system given by

J(0,U) =  IMO, u)h2(0 ,-u )l2, 

where

(12)

(13)

In the above equation, an irrelevant premultiplying factor has been omitted. In order 
to analyze the axial behaviour of CSM, it is convenient to perform the next 
geometrical mapping

C = P2~0.5, q/Q = Pj(p), j =  1 ,2 , (14)

which allows us to convert Eq. (13) into a 1-D Fourier transform of the mapped 
version of p(p), i.e.,

0.5

h(0,u)= |  9( f )e x p ^ - i‘ Û dC · (15)

- 0.5

The function defined in Eq. (12) is designed with the values of intensity collected 
by the point detector when a pinhole is canned through the optical axis, and 
constitutes an important figure of merit for evaluating the axial resolution capacity 
of CSMs.

Up to now, we have described the formulation corresponding to CSM working in 
transmission mode, see Fig. 1. However, other alternative geometry in CSM is that
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corresponding to the reflection mode (see Fig. 2). When calculating different PSFs in 
such a case we have to take into account two facts. First, in reflection mode the same 
lens works as illuminating and collecting lens, hence p fp )  =  p2(fi) =  PÍP)- Second, in 
reflection mode the object for the collecting set is the reflected image of hi (v,u). 
Taking account of these facts, the 3-D intensity PSF of a radially-symmetric 
reflection CSM can be written as follows:

I(v,u) = \h(v,u)\4. (16)

Point

source

Fig. 2. Schematic layout of the reflection-mode confocal scanning microscope

The major motivation for confocal microscopy is the optical sectioning, or depth 
discrimination. The axial intensity PSF presented in Eq. (12) gives a measure of the 
depth discrimination for the objects whose main features are points. However, when 
the main object features are some others it is necessary to define other functions for 
evaluating the optical sectioning. In this sense, the use of the so-called integrated 
intensity function is appropriate. It is defined as

Jiat(u) = 27cJ/(v,u)vdv. (17)
o

This function evaluates the power in the detected image corresponding to variable 
axial positions of the object, and give us information on how the microscope 
discriminates between different parts of the object which are out of the confocal plane.

In the case of objects, whose main features are planes, the responses are evaluated 
in terms of the so-called z-function. This function, defined only for CSMs working in 
the reflection mode, is obtained by evaluating the intensity detected when a perfect 
planar reflector (PPR), which is placed perpendicularly to the optical axis of the 
device, is axially scanned through the focus (see Fig. 3). For calculation of the 
function, z, which will be denoted here as J(u), it has to be considered that for a given 
axial position u0 of the PPR the amplitude distribution generated by the illuminating 
system over the confocal plane, i.e., the amplitude distribution that is imaged by the 
collecting system, we have h(v,2u0). So the amplitude distribution at the detector 
plane is
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Planar
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Fig. 3. PPR placed at the axial coordinate u0 provides an amplitude h^v, 2u0) over the confocal plane

t f3(v;u0) =  Mv,2U 0 )  <g> /l(v,0). (18)

Particularizing now Eq. (18) for the axial point detector v =  0, we obtain

U3{0; u0) =  J h(v, 2 u 0) h(v, 0 )v d v . (19)
0

If we take into account the power theorem [11] that states that the area of the 
product of two functions is equal to the area of the product of their spectra, Eq. (19) 
can be rewritten, apart from a constant factor, as

1 o.s

t /3(0;uo) = Jp(p)exp^- i^2u0p2̂ p(p)pdp =  J [?(C)]2ex p (-iu 0C)di (20)

0  - 0.5

where the geometrical mapping defined in Eq. (14) has been introduced. Finally, the 
squared modulus of Eq. (19) provides the formula for the function z

V(z) = I(u) = | l / 3(0;u)|2 = Y  [<z(í)]2exp(—HiO dí
- 0.5

2

(21)

This formula indicates that when a PPR is axially scanned through the confocal 
volume of a reflection mode CSM, the detected intensity is given simply by the 1-D 
Fourier transform of the square of the mapped version of the amplitude transmit­
tance of the pupil.

3. Symmetrical defocusing

In order to increase the axial resolution capacity of CSMs, there is proposed a quite 
simple technique consisting in introducing a slight symmetrical defocusing in both 
parts, illuminating and collecting, of the confocal setup. From a practical point of 
view, the symmetrical defocusing in the setup can be introduced either by a slight 
axial mispositioning of the collecting set with respect to the illuminating one, or
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Fig. 4. Schematic layout of the transmission-mode di sad jus ted confocal scanning microscope

simply by a slight symmetrical axial displacement of both the point source and the 
point detector. In both cases, the displacement implicates that the point which 
focalizes the illuminating beam does not coincide with the point whose image due to 
the collecting lens is in the point detector (see Fig. 4). From the mathematical 
point of view the symmetrical defocusing implicates that the effective pupil functions 
are

Pjip) =  P ;(p )e x p ^ - i^ y p 2̂ , 7 =  1, 2 (22)

where the parameter ud represents the axial displacement between both parts of the 
setup, and can be positive or negative.

Now, the axial intensity PSF is given by the squared modulus of the product 
of two independent amplitudes PSF that are relatively displaced along an axial 
distance ud, that is

1(0, u) = |hi(0,u)h'2(0, —w)|2 (23)

where

1

h'i(0,u) =  2 |p 1( p ) e x p |^ - i ^ u + ^ p 2Jpdp 

o
0.5

=  |  9l(0«aP[ —i |( « + ^ ) c ] d C  (24)

- 0.5

and

1

h'2(0, -u )  = 2 |p 2( p ) e x p j^ i^ u - ^ p 2Jpdp

o s ’ ~

0.5

- 0.5  ”

(2 5 )
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Fig. 5. Normalized axial intensity PSFs for displaced illuminating and collecting setups

In the case of two clear circular pupils, the mapped functions are £) =  
q2(0  =  1, and then the axial intensity PSF of the CSM is given by the product of 
two sine functions but separated by an axial distance ud (see Fig. 5). When the 
product is performed, it is obtained an axial intensity PSF in which the width of the 
central lobe is given by the distance between the first zero “at the right” of hi(0,u) 
and the first zero “at the left” of h'2(0, — u). Then the magnitude of the narrowing 
generated, in comparison with the width of the central lobe for the non-disadjusted 
case, is precisely equal to ud. It is clear that simply by a continuous variation of ud, 
i.e., by gradual axial mispositioning of collecting set, we are able to control at will the 
width of the axial intensity PSF, and then to obtain tunable axial superresolution in 
confocal scanning microscopy. For illustrating this effect, in Fig. 6 we have plotted

Fig. 6. Normalized axial intensity PSF for disadjusted scanning confocal microscopes with variable 
values of disadjusted parameters
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the axial intensity PSF for some values of disadjusted parameter ud, including the 
non-disadjusted case ud = 0. The plots obtained prove that as the value of 
disadjusted parameter ud increases the central lobe of the normalized axial intensity 
PSF gradually decreases.

It should be pointed out that behind the narrowness of the central lobe of PSF, 
two collateral effects appear. On the one hand, the amount of energy collected by the 
point detector in this case is much lower than in the non-disadjusted case. However, 
due to the special nature of confocal scanning microscopes, this loss of energy has no 
essential importance because in such systems the source of power can arbitrarily be 
modified, within certain limits, of course. The second collateral effect is a substantial 
increase in the strength of the secondary lobes. This limits, in practice, the maximum 
value of ud that can be used. From Fig. 6 it is apparent that for the values of ud 
lower than 2n the relative strength of lateral lobes is still admissible, while for 
ud > 2n the strength fast increases as ud increases. This fact implies that, in practical 
terms, our method permits the reduction of the width of the central lobe up to 
a factor 1/2.

Axial coordinate u

Fig. 7. Integrated intensity function for confocal and disadjusted system

As for the behaviour of the integrated intensity parameter, in Fig. 7 we have 
depicted the function Jint(u) representing the disadjusted parameter value ud = 2n 
in comparison to the non-disadjusted parameter value. It is apparent from this figure 
that the curve corresponding to the disadjusted setup falls off much faster. 
Consequently, the proposed method provides an important improvement in the 
capacity of discrimination between different parts of the object which is not in the 
confocal plane.

With regard to the function V(z), it is easy to show that the symmetrical de- 
focusing does not affect its value. Then it is concluded that the proposed method 
provides no changes in the axial resolution for objects whose main features are planes.
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Fig. 8. Transverse behaviour of symmetrically-defocused system in comparison with confocal one

Finally, we would like to emphasize that due to the hellyptical nature of 3-D 
intensity PSF of a lens there are not found crucial differences between its transverse 
PSF in the focal plane and a slightly defocused plane. Consequently, when the 
product of displaced PSFs is carried out, a transverse intensity PSF is obtained for 
the CSM whose slope in the confocal plane is quite similar to that obtained in the 
corresponding non-disadjusted setup, as it is shown in Fig. 8, where we have 
compared the cases ud = 2n and ud =  0. Then, it is concluded that our method 
practically does not affect the resolution of the device in the transverse direction. 
This fact allows us to recognize that symmetrical defocusing permits obtaining 
a 3-D intensity PSF in which the area covered with the central lobe can gradually 
be reduced. Thus, in this sense, it can be stated that the method permits us to 
improve the 3-D resolution in CSM or, equivalently, that it provides a 3-D 
superresolution effect.

4. Use of superresolving pupil filters

As it is pointed out in previous section, the proposed method is based on the fact 
that the width of the central lobe of axial intensity PSF for disadjusted system is that 
of the adjusted one minus the value of disadjusted parameter ud. Thus, it is clear that 
if we deal with confocal system with axial PSF that has been narrowed by other 
methods, a higher axial superresolving effect can be achieved when the symmetrical 
defocusing is introduced.

On the basis of this fact we propose to combine the symmetrical defocusing with 
the use, in both parts of confocal system, of purely-absorbing axially-superresolving 
pupil filters. Since a practical implementation of continuously varying pupil filters is 
not an easy task [12], [13], the filter we propose to exemplification of the method is 
one of the family of axially-superresolving filters composed of two annuli of equal 
areas [8] whose mapped amplitude transmittance can be expressed as
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q(0  = rect(i)—rect(£//i) with ft =  1/3, 

and whose 2-D actual form is represented in Fig. 9.

Fig. 9. Member of the family of axially superresolving pupil filters: a — mapped function q{Q, b 
2-D representation

Fig. 10. Integrated intensity function for confocal, disadjusted, and disadjusted and apodized

(26)

actual

systems

Fig. 11. Integrated intensity for the three setups under study



224 M. Mart£nez-Corral et al.

In Figure 10, it is shown the axial intensity PSF for an apodized and disadjusted 
(ud = 2n) confocal system in comparison with those corresponding to nonapodized 
systems. This figure illustrates the fact that the axial resolution can be improved by 
introducing a pair of axially superresolving masks. In Figure 11, we have plotted the 
integrated intensity for the three geometries described above. This figure cor­
roborates the proper combination of apodization and symmetrical defocusing 
increments in the sectioning capacity of confocal systems.

Fig. 12. Transverse behaviour for the three setups under study

Fig. 13. Central lobe of the function V(z) suffers a narrowing when apodizers are used

In Figure 12, it is depicted the transverse intensity PSFs for the three described 
setups. This figure indicates that the introduction of proposed filters does not affect 
the transversal resolution of the confocal system. Finally, in Fig. 13 we present the
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function V(z) for apodized and nonapodized setups. From this figure it is clear that 
the most important feature of combining symmetrical defocusing with apodization is 
a significant reduction in the dimensions of the central lobe of the function V{z), and 
consequently a noticeable increase in the capacity of discrimination between different 
planes in the reflection mode.

5. Conclusions

We have presented a quite simple method for tuning at will the axial resolution of 
confocal scanning imaging systems. The method simply consists in a controlled axial 
disadjustment of both parts of the confocal setup. It is also demonstrated that the 
method does not affect the transverse resolution of the system, providing an effective 
3-D superresolution effect. The performance of the system can even be improved by 
combining the symmetrical defocusing with a proper use of axially-superresolving 
pupil filters.
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