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Fractional Fourier transform in optical setups
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The fractional order Fourier transform was introduced into optics on the basis of light propagation 
through a piece of graded-index fiber of proper length. Lohmann reinvented the fractional Fourier 
transform operation based on the Wigner distribution function that can be applied not only for 
wave propagation in free space, but for passage through a lens system, too. In this paper, it is 
shown that optical implementation of the fractional Fourier transform of different orders requires 
optical systems of different (Fourier planes) configurations.

1. Introduction

It is well known that mathematical operation of the conventional Fourier 
transform can be optically implemented by lenses and plays a fundamental role in 
Fourier optics. In recent years it has been shown that optical implementation of the 
fractional Fourier transform exists as a more general operation [1] — [5]. Invented 
by N AM IAS [1], the fractional Fourier transform is well adapted to describing the 
operation of optical wave fronts, in particular through quadratic refractive index 
(GRIN) media, and through discrete refractive elements (i.e., lenses) in optical 
setups of different configurations.

Mendlovic and Ozaktas [2] -  [4] were the first to introduce the fractional 
Fourier transform into optics on the basis of the fact that a graded-index fiber of 
proper length is capable of performing a Fourier transform of the input object. 
Then, Lohmann [5] reinvented the fractional Fourier transform based on the 
Wigner distribution function, the horizontal and vertical shearing of which 
corresponds to wave propagation in free space and passage through a lens, 
respectively.

The Fourier transform of an object amplitude distribution determines a quan­
titative image of the frequency content of the object and is fundamental to the 
processing and analysis of images; it has certain properties which make it 
particularly versatile and easy to work with. In this paper, it is shown that optical 
implementation of fractional Fourier transform of different orders requires optical 
systems of different configurations, whereas conventional Fourier transform can be 
realized between the front and back focal planes of a lens as a particular case of the 
fractional Fourier transform.
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2. Definitions of the fractional Fourier transform

It is often necessary or desirable to describe a function /(x) that is absolutely 
integrable on the interval ( —0 0 , 0 0 ), and has a Fourier transform defined by

F(Z>V) =  j j/ (x ,y )e x p [- i2 7 i(x f+ w )]d x d y ,
—  00

or its inverse (1)

A*>y) = í í  F (<!;,f/)exp[/2tc(x £ + y»/)] d f d»j.
—  0 0

Such an operation called conventional (or classical) Fourier transform can be easily 
implemented by lenses and is widely applied in Fourier optics [6]. The fractional 
Fourier transform, as was mentioned, can also be implemented by optical imaging 
systems, and (because of different orders of this operation) could rather be called 
a generalized Fourier transform.

2.1. Quadratic graded-index medium

The fractional transform can be determined by the integer or by the noninteger 
orders p, and the p-th fractional order Fourier transform of a function /(x , y) will be 
denoted as 3Fp{f(x,y)}. For p =  1 we obtain the first order Fourier transform called 
the conventional Fourier transform.

First of all, the definition of optical fractional Fourier transform was based on the 
optical field during propagation along a quadratic graded-index medium [2], [4]. In 
such a medium propagation and focusing take place simultaneously, because of its 
refractive index profile given by

n2(r) =  (2)

where r =  x 2+ y2 is the radial distance from the optical axis, and nlt n2 are the
graded-index medium parameters. It has been shown that a plane wave front 
incident normally at the input plane is focused at a distance proportional to the 
order p of fractional Fourier transform

(3)

In other words, for Fourier transform of fractional order p =  1 the focal length of 
this medium/ =  =  L. If the object function uG(x, y) is placed in the input plane of
the GRIN medium, we obtain at its focal plane the first order Fourier transform of 
this function in the expression F {u 0(x,y)} given by Eq. (1). Because of uniform 
graded-index medium in the optical axis direction, the fractional Fourier transform 
of the object function uQ(x, y) is expressed at the plane the position of which is 
defined by Eq. (3). The self-modes of quadratic graded-index media are the
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Hermite—Gaussian functions [7] which form a mutually orthogonal set, whereas the 
/-th and m-th member of this set is given by

where Hl and Hm are the Hermite polynomials of orders l and m, respectively, and if 
the wave length is denoted by A, the “spot size” is expressed as

Any two-dimensional function f(x, y) can be expressed as a linear combination of 
the Hermite—Gaussian functions

f(x,y) = I S X . s ' i J * . ) ’)
I  m

(4)

where the coefficient

H m
dxdy,

H m

Tear
and hlm = 2l+ml\m\-—-.  If the propagation constant of the /-th and m-th mode is

described by

_ 27cni r < A fn2/i <xl1/2
(5)

then the p-th order fractional Fourier transform of f(x, y) is defined as

&rr{f(x,y)} = 1 1  y) exp(ifl,mzp). (6)
( m

For p =  1 the distance of propagation zp = L  in the graded-index medium provides 
the conventional Fourier transform described by Eq. (1). If the distance of 
propagation L  is multiplied by p ^  1, we obtain the fractional Fourier transform of 
order p expressed by the above Eq. (6).

2.2. Wigner distribution function

The Wigner distribution function is a function that describes the optical signals in 
the space coordinate and frequency domains, simultaneously. Based on the Wigner 
distribution, Lohmann [5] reinvented the fractional Fourier transform. It appears 
that the description of signals in optical systems by means of Wigner distribution 
function resembles the ray concept in geometrical optics. If the signal is 
a two-dimensional image, the Wigner distribution function is then a four-dimen­
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sional function, because it is defined in the space and in the frequency domains, 
respectively. In the space domain, the Wigner distribution function is defined as

,y ~  0 e x p [ - i2 r c ( x 'f + / ) j ) ] d x /dy',

— 00

and in the frequency domain as

W(xiy;t,ri)=  J J u ( x + ^ , y + ~ ) u *

00

W(x,y,(,n) =  |J  + ’Ç jex p V M x t'+ y ’lW i'à l '
—  00

(7)

where the Fourier transform of the amplitude distribution u (x, y) is denoted by 
U& y) = &r{u(x,y)}, and

\u(x,y)\2 =  f j  W(x,y-£,ri)d€dti, \U(£,rj)\2 = f j  W{x,y;Z,rj)dxdy. (8)
— 00 “ 00

It is known that the Wigner distribution function is always real, and it is possible to 
express this function in the output plane in terms of the Wigner distribution function 
in the input plane. As we mentioned above, the simultaneous space-frequency 
description in the object or image space bears a close resemblance to the ray concept 
in geometrical optics, where the position (space coordinates (x, y)) and the direction 
(frequency (f,fj)) of a ray are given simultaneously, too. If the coordinates in the 
Fourier plane of an optical setup are (xF,yF), then the frequencies of an investigated 
object will be expressed as

(9)

where A is the wavelength and /  — the focal length of the lens.
The Wigner distribution function is very useful for description of any optical 

signals. If we have, for instance, a one-dimensional signal, then it is defined as

W(x;Ç)= J  u ^ x + u*( x— exp(— i2n£xr)dx',

“ 00 
or

W(x-i)=  i  ü ( i + f W i - f )  exp(i2n£x')d{'.

Here, we see that different transformations do not change the values of the Wigner 
distribution function. In fact, the free space propagation, passage through a lens and 
Fourier transformation have no influence on the Wigner distribution function,
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only the independent variables undergo a change. The free space propagation and 
transition through a lens correspond to a horizontal and a vertical shearing of the 
Wigner distribution function, respectively [5], but the conventional Fourier trans­
form is expressed as #  =  90° rotation of the Wigner distribution function in the 
(x,xr ) plane. If the first order Fourier transform is interpreted by the angle $  =  tc/2, 
then the p-th order fractional Fourier transform can be defined by the angle

«? =  *p .  (10)

The coordinates of Wigner distribution function are connected with the angle <P in 
relations

x' =  x c o s#  —xr sin#, y' =  y co s#  —yFsin$,
x'F =  x s in $ + x Fcos$ , yF = y s in # + y Fcos<P. (11)

Now, the fractional Fourier transform of a function u(x,y) can be denoted as 

3rp{u(x,y)} = Up{xF,yF),

and for the Wigner distribution function we have an expression 

3FV { W  (x, y; xF, yF)} =  Wp{x,y;xF,yF) = W(x,,y ’;x'F,yF)

=  W(x cos $ —xFsin <P, y cos $ —yF sin#; xsin # + xFcos # , y sin # + yF cos #). (12)

For example, conventional Fourier transform of the function takes place when p = 1, 
i.e., #  =  tc/2 ; therefore we have .

^ '{ W ix ,y;Xf,yf )} =  W { -x F, - y F;x,y).

3. Fractional Fourier transform in lens system

The fractional Fourier transform as a  generalization of the conventional Fourier 
transform can open up an important area of applications. It can be used not only for 
wave propagation and for signal processing, but also for applications in classical lens 
imaging systems.

We now consider an elementary optical system with the diffracting object placed 
in front of a lens and uniformly illuminated with normally incident monochromatic 
plane wave, as shown in Fig. 1. The source plane and its conjugate are located at 
infinity and in the back focal plane of the lens. The only restriction we impose is that 
the object must lie to the left of the lens and be illuminated from the left. To find the 
amplitude distribution of the field across the observation (output) plane of the 
system, the Fresnel diffraction formula is applied. If the field amplitude transmitted 
by the object is represented by the function u0(x0,y0), the output of the system may 
be written as

CO 00

U ( x z , y z )  =  dxod^o | |  u0(x0, y0)exp|\' ̂ - ( x j + y l )
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UoIxo’ Vo1 (xi.yi) (x2, y 2)

Fig. 1. Optical system with an object transparency in front of the lens for study of the Fourier transform 
operation. P lt P2 are the input and output planes, respectively

exp[ - / ^ (x0x 1+ ^ 1) ] exp [ ^ ( i + i - ^ (x f + y ? )] ex p [ i ^ ( x ! + > ' ! )]

: « p [ - < ^ i * 2+ * * ) } K ld *  0

where k =  ^  is the wave number, and constant phase factor has been dropped since
A

it does not affect the result in any significant way. Substituting the expression

A - i  l _ i  
Z2 /

into Eq. (13), we have

U ( x 2, y 2) =
e x p [ i 2 7 (x ' + y ' )l  r r  r”r r  k 1

-  L \ \dx°dy° J j
- oo -oo

exp[,A (x5+j'0 ]exp{“ikH S’+S)+>if e +S)]}dxidj'1·
But

00

00

=  C z0e x p {—i g [ ( x 0 + ^ 2)  + ( y 0 + ^ a )  ] } ·

If the complex valued constant C is neglected, and the quadratic terms in the 
exponent are expanded, then
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U ( * 2 . y i )  = 1 t â  +>t)] ft U 0 ( X o , y 0 )

X exP [.· (xo+yo) j  exp -  i (14)

Figure 1 shows the basic configuration of the optical Fourier transform for any 
order. The amplitude distribution at the observation plane (x2,y 2) may be found 
from a Fourier transform of the function

“o(*o> y < > ) exp [« +

where the transform must be evaluated at frequencies

* _  zox i  i o n_
Xz1z2 Az1z2

When the exponent function of quadratic terms in the integral (14) is equal to 
unity for any value of zl , i.e., the condition / —z2 =  0 is satisfied, then the first order 
Fourier transform of u0(xQ, y0) occurs in the back focal length of the lens as an 
expression

'  Zl)(x l+ yl)№
Ft, \ z o f . k ( / - Z i

— a

x exp[  ” 1 ^ 2 x ° x 2+ ^

l*o>yo)

(15)

At last we obtain an exact conventional Fourier transform relation by setting the 
second condition: f —z1 = 0 in the above equation.

As mentioned, Lohmann’s definition of the fractional Fourier transform is based 
on the Wigner distribution function of the signal and its Fourier transform. We 
compare the Wigner distributions of these functions by rotation of each other. 
Analogously to Eq. (15), the p-th order fractional Fourier transform of the function 
u0(xo>yo) is defined as [5]

^ pWo(xo:y0)} = U.(x2,y2) =  exp i(
M x i+ y i)

2/1tan4>

xexp
[  Vj sin 1 >]

00

» ] J J U0( *0, y0) eXp [

- 00

M x i+ y l) l  
2 ^  tan# J

dx0dy0 (16)

where C  denotes an uninteresting constant factor that can be neglected, and the 
rotation angle <P of the Wigner distribution function is connected with the fractional 
order p in Eq. (10). In other words, for a special case p =  1, and the rotation of the
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underlying Wigner distribution function is equal to #  =  tc/2; we then obtain the 
conventional Fourier transform relation, as results from Eq. (16). The parameter 

=  / s in #  is an arbitrary focal length and /  is the focal length of the lens. 
Comparing the amplitude distribution at the output plane (as shown in Fig. 1) 
expressed by the two equations (14) and (16) we have

Zoif-Zy) c o s# zo (f-Z 2) COS#
f z 1z2 / s in 2# ’ f z Yz2 / s in 2# ’

^  =  / s in 2#, 
zo

Zl* 2 =  /s in 2# , 
zo

^  J. 1 =  cos# , ~ y - 2 =  cos # .

Hence z l = z2 = / ( 1 — cos#), and the spatial frequencies at the fractional Fourier 
transform plane (x2,y 2) then expressed as

k — 2 „ _  y  2 /'1'7'j
Az2( l+ c o s # ) ’ Az2( 1+ cos# ) ‘

In the Table we can find the values of the distance between the lens of the focal 
length /  =  100 mm and the Fourier plane for different values of the fractional order 
in the range: 0 ^  p ^  2.

T a b l e .  Parameters of the lens for realizing the fractional Fourier transform (the distances in millimeters)

P 0 1/3 1/2 2/3 5/6 1 4/3 3/2 5/3 11/6 2
$ 0 30 ° 45 ° 60 ° 75° 90 ° 120° 135° 150° 165°

oOC
OfH

f t 0 50.0 70.7 86.6 96.6 100.0 86.6 70.7 50.0 25.9 0

0 13.4 29.3 50.0 74.1 100.0 150.0 170.7 186.6 196.6 200.0

Fig. 2. Position of the three different fractional Fourier transform planes

In Figure 2, we see the Fourier planes of three different values of fractional order. 
The considerations show that a lens can produce the image of an object and/or a set 
of its Fourier transforms of different fractional orders. In a special case, when the 
condition: s in # ta n #  =  1 is satisfied, then Eq. (14) is similar to the Fresnel diffrac-
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tion formula describing the amplitude distribution of optical field across the 
observation plane as a function of disturbance u0(x0,y0) in the input plane, by 
assuming free space between these planes. But the Fourier transform of fractional 
order p =  0.576 of the input is observed at the plane distance of z2 = 38.2 mm behind 
the lens ( f  =  100 mm) and is expressed as

V(x2,y2) = C exp ^ jix 2 + yi)] II u°̂x°' y°*exp [* +y°̂~\

xexp
[ -

k f
z2( 2 f - z 2) (Xox 2+y0y2) dxody0.}

The difference between the two operations lies in the scale of these transforms. 
The distance between the two planes in free space that is equal to /  is described 
by Fresnel diffraction approximation and evaluated at frequencies £ =  x2/fX, 
rj = y2ffX, whereas the fractional Fourier transform in the lens operation must be 
evaluated at frequencies

Ç Xz2(7 f- z 2)’ n Xz2{2 f-z 2y

The Table shows that the value of fractional order p =  0 corresponds to z =  0 
and for this case the Fourier transform does not appear, but for p =  2 we obtain: 
z2 =  2 /  that describes the distance behind the lens where the bundle of rays emerging 
from an object point will cross an image point. It has been found that the scale of 
Fourier transform is a function of the axial position of the input object with 
nonparallel illumination. Let an object plane with the amplitude transmittance 
u0(xo,yo) be inserted in the front focal plane of the lens, and the illuminating point 
source at the point S on the optical axis at the distance zs from the focal plane, as 
shown in Fig. 3. We see that the signal plane is now illuminated with a divergent 
bundle of light. The plane located at the image point Pj at a distance zT from the 
back focal plane is the observation plane, where the Fourier transform of the signal 
appears. The point source located on the optical axis emits a divergent wave, which 
gives rise to disturbance at any point of the signal u0(x0,y0) in the front focal plane. 
A portion of the spherical wave front is collected by the object transparency and by 
the lens that transforms it in the form of a spherical wave converging towards the 
appropriate point in the observation plane at Pf. Using the paraxial approximation,

the disturbance at any point in the front focal plane is given by e x p ^ i^ - f r o + y o ^ J ,

where the constant phase factor has been omitted. Therefore the amplitude 
distribution just behind the object plane can be written as

us(xo>yo) = Uo(*o> y0) e x p [ ¿ y o + y b ) ]
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Fig. 3. Ray-tracing in the elementary optical system. S is an illuminating point source and P , is its image; 
u0(x0, y 0) is the amplitude transmittance in the front focal plane of the lens, U(x2,y 2) — the amplitude 
distribution of the field in the image plane of the imaging system

Using the Fresnel formula and the expression of the quadratic phase factor of the 
lens, the amplitude distribution behind the lens may be written as

“ (*i.Ki) =  C(z) J J  us(x o> y0) exP j î Yj (x o + yo J  exp — i y  (x0, x 1)Jd x Gdy0,
—  oo

and after applying the Fresnel diffraction integral in the image space, the amplitude 
distribution at the observation plane is expressed as

00

U ( x 2y 2)  =  C ' ( z )  exp J  J J  u s ( x o> y 0 ) exp ^.(xo *** ̂ o) Jdx0 dyG

xexp

x ..p  { - .1  [>, + / ' · , )  M ,(i>  j ] } d x , d,,

where the amplitude and phase of light at coordinates:

*2  =  ( l + y ) x 0 +  *2 . y ’l  = ( l +  / )"7 J’O +  J’2

are related to the amplitude and phase of lens spectrum frequencies:

(18)

The result of calculating the Fourier transform of the quadratic phase factor in 
the second integral of Eq. (18) leads to an expression of the amplitude distribution 
(18) proportional to the next operation of the Fourier transform in the following 
form:
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00

U(x2,y2) = C'(z) J J u0 (x0, y0) exp j i  ̂  ~*pj(x o + j£ ) J  }

-oo

X exp I - i j ( x 0x 2+ У о У г ^ Х о ^ о · (19)

The above equation shows that in the case when the phase curvature vanishes, 
amplitude distribution in the observation plane represents the fractional Fourier 
transform of the first order of the object transmittance (conventional), because of the 
condition

_1

which for the fixed object and image planes expresses the Newton’s equation: 
zszi — f 2· The two conjugate planes coincide with the point source and its image 
observation planes, and simultaneously the Fourier transform operation between the 
transparency in the front focal plane and the observation plane can be performed. 
For a special case, if zs =  / ,  then Z j = f  too, and the distances of the two conjugate 
planes to the lens are equal. Now, we have the fractional Fourier transform of order 
p =  2, and the condition corresponds to formation of an inverted image that is rather 
inexact.

4. Conclusion

In this paper, an insight into optical implementation of fractional Fourier transform 
is provided. It has been discussed how to simplify the calculations of relations 
between the optical field amplitude distributions in different planes of an optical 
system. It has been shown that the optical implementation of the fractional Fourier 
transform based on Wigner distribution function is a more general operation than 
the conventional one, and can be applied also in optical systems of different 
configurations.
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