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Structural information in volume holography*

Tomasz Jannson

Institute of Physics of the Warsaw Technical University, Warsaw, Poland.

For the weak diffraction problem in volume holography, the quantization of 
three-dimensional Fourier space is introduced. The Ewald’s construction is gen­
eralized over the case of volume gratings, then the structural optical informa­
tion, for many-exposure case, is discussed.

Introduction

The problem of optical information storage and reconstruction is of par­
ticular interest in holography. One of the most important parameters of 
holographic system resolution is structural information, connected with 
the number of degrees of freedom for interference field recorded in medium. 
The structural information, for isoplanatic optical systems, was first 
introduced by Toraldo di F rancia [1] and then developed for plane ho­
lography [2-3]. However, since the influence of material thickness on 
the information capacity is very significant, a more general analysis for 
three-dimensional materials is required. These developments are discuss­
ed in this paper, on the base of weak diffraction approximation. Such 
an approximation is formally analogous to that in quantum scattering 
theory and X-ray diffraction analysis.

According to the well-known fact, that an arbitrary distribution of 
refractive index can be represented as a three-dimensional Fourier spec­
trum of elementary sinusoidal structures (gratings), it will be shown in 
the present work, that limitation of grating sizes induce the “uncertainty” 
of grating vector. This fact implies, moreover, the quantization of the 
Fourier space. Every quant of this space corresponds to one complex 
number connected with one of the gratings.

In this paper a new approach to determination of structural information 
capacity in volume holography is proposed for many-exposqre case. For 
our considerations, the Ewald’s construction in a generalized form is 
used.

* This paper has been presented at the Fourth Polish-Czechoslovakian Optical 
Conference in Rynia, near Warsaw, Poland, September, 19-22. 1978.
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Uncertainty problem in volume holography
The problem of scattering of light on volume diffraction gratings, and 
their superpositions — volume holograms — is difficult, particulary 
in the case of high diffraction efficiencies. The most complete analysis 
of this problem was reported by Kogelnik [4], who considered the dif­
fraction on one elementary sinusoidal volume grating, under assumption, 
that the sizes of the grating are restricted in one dimension only, and the 
modulation of refractive index is small. However, for structural informa­
tion analysis the Kogelnik method is not sufficient, because the most 
interesting effects are connected with diffraction on volume holograms 
the size of which are restricted in all three dimensions. Since only the well- 
known methods based on the first Born approximation can be applied 
in such a case, our analysis will be given for small diffraction efficiencies. 
Moreover, for our purpose the Wolf method [5] concerned to the scat­
tering of light on three-dimensional phase objects is particularly usefull.

When the scattering medium with refractive index n =  n0+ n x (x, y, z), 
where nx n0, is restricted by two planes 0  =  z±, then, in the case of 
plane incident wave for two-dimensional Fourier transform of scattering 
field amplitude Us in plane z =  z±i respectively, we get the following 
equation

P {U ,(h x, * =  **)} =  ~ 2^ ” ° X

xexp ( ± i k zz) j j j  n(r)exp(ik0r )exp(—ikr)d3r ,  (1)
{s~<z<z+}

and k =  (Tcx, ky, Tct),
where: k0 and k are wave-vectors of incident and scattering wave, re­
spectively (in medium), and kv is a wavenumber in vacuum.

Assuming the scattering structure to be a sinusoidal grating, we can 
write n =  n0-{-n2cos(K-r-\- 0 O), where K  is the grating vector, and n2, &0 
are constant values. For rectangular symmetry and for hologram sizes 
Tx, Ty, Tz, from eq. (1) we recive the following equation for one of the 
modulating terms:

K m * * ,* .} ·-* )} TxTyT3 x

x ^ i ( K x  +  ̂ x - K ) T x] sin[(koy +  K v-Jcy)Ty-] x
(Kx +  K x ~ K ) T x { k ^ y  +  K y  —  ^ T y

sin [(fc0 s+ K z- k z)Tz] 
{k0z +  K z- k z)Tz

(2 )

Therefore, restriction of grating dimensions gives the spread of Bragg 
condition. However, from the physical point of view, it is equivalent to 
vector K  spread. So, in our considerations, we shall assume that vector
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K  is spread but Bragg law is fulfilled strictly. Such an approach would 
appear to be more convenient in our case. Hence, according to formula 
(2), the spread for K  vector components is given by:

. _  2n 2

x  x  -L  V

* „  2tt

LK̂ i r · (3)

In agreement with relation (1), both the three-dimensional Fourier 
space (Kx, K y, K s) and configurational space (x , y , z ) are canonical 
conjugate ones. The uncertainty theorem (3) has the fundamental meaning 
in further analysis.

Generalized Ewald’s sphere
The conventional Ewald’s construction was introduced in connection 
with the problem of X-ray scattering on periodic structures (see e.g. [6]), 
but its meaning was rather didactic for graphical determination of “re­
flected” beam directions. Since, the volume holograms can be regarded 
as a superposition of periodic structures, thus, the Ewald’s construction 
can be adapted also to this problem. Moreover, in our case, there appears 
a very interesting fact, namely, that the characteristic dimensions of 
holograms are comparable with period of the gratings d =  2n/K,  [7]. 
Therefore, using the new geometrical construction based on Ewald’s 
sphere with addition of uncertainty theorem (3), we can get some new 
results; for example, structural information capacity which would be 
difficult to calculate without application of this construction.

In order to désigné the generalized Ewald’s construction we must 
introduce the Fourier space (K x, K y, K z) of the grating vectors K. Then, 
for each vector fe0 of the restoring plane wave, the sphere with the radius 
k0 is constructed, as in fig. 1. This is so-called Ewald’s sphere. In consequence 
of Bragg law, this sphere determines the loci of the ends of grating 
vectors, which are registrated during one exposure by the same vectors 
k0, as the restoring one.

In fig. 1 the both cases of transmission (B ) and reflection one (G) 
holograms are presented. The spherical bowl B (or C) represents the 
geometrical locus of vector ends of the angular spectrum plane waves 
of object beam. It is usefull to introduce the second coordinate system 
(kx, ky1 kz) — translated with respect to the first one — for the spherical 
bowl the projection on the (kx, kv) plane determines the so-called 
Fourier area of an object beam (the hologram plane fulfils the equation 
z =  constant). Moreover, the conjugate Ewald’s sphere corresponding 
to the conjugate image is plotted.

Generalized Ewald’s sphere connected with uncertainty relation (3) 
is presented in fig. 2 (we assume that Tx, Ty > Tz, and Tz =  T ). This 
figure shows, in (K y, K z) plane, the illustration of two-exposure recording,
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Fig. 1. Ewald’s construction adapted to volume holography

Fig. 2. Application of generalized Ewald’s construction to colour holography
(Tx, Ty Tz =  T)
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using two wavelengths Xx and A2 simultaneously (this analysis is usefull, 
for example, in colour holography). We can see that the uncertainty 
relation effects the spread of Ewald’s spheres, so, it may be the reason 
of the information disturbation. The angles A&x and A 02 determine the 
intervals of angular spectrum of plane waves for which the information 
may be recorded without disturbance.

The example of colour selectivity analysis, based on the generalized 
Ewald’s sphere, is presented in fig. 3. We assume that the reconstruction

*kx

Kz

2 .?v/d

Fig. 3. Application of generalized Ewald’s construction method to colour selectivity
calculation

a) illustrating geometrical considerations b) illustrating the grating vector spread

may also occur for the wavelength Xx. In our accounts we also assume that 
Tx, Tv > Tz =  T, and that d 4, T. Then W 4  1 and AO & rc/d; hence 
Xx aa 2d cos 9p, and X 2d sin 6. Therefore, in that approximation:

AX =  X ( A  _ i \  =  ------------- - . (4)
\ X I 2Twosm0tan0

This expression agrees, in its order of magnitude, with the relation 
recived on the basis of Kogelnik theory (see e.g. [8] p. 282).
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Structural information capacity

The structural information capacity is determined, in our case, by the 
number of degrees of freedom which can be recorded in material. Its 
maximum value depends on sizes of permissible domain of Fourier space 
(Kx1 E v, K e). Using the generalized Ewald’s construction it is easy to 
show that this quantity equals:

where A — average wavelength in medium.
According to uncertainty theorem (3), the spread of grating vector K  

determines the sizes of elementary cell Q0:

Q0 =  (2«)» (TxTyTs)-K (5)

Therefore, the maximum number of degrees of freedom, for rectan­
gular sizes of hologram, is given by:

N m ^  = ·%=■ = -  K(4Î 2 , T W T,.
max Q0 3 U /  * v z

Unfortunately, after many-exposure recording (using different values 
of k0 vector), not a full information stored in deep even ideal material 
can be restored without disturbance, because of the following restrictive 
conditions :

1. For each exposure there are two (not one) Ewald’s spheres (see 
fig. 1). Hence, the number of independent degrees of freedom decreases 
two times.

2. Information from one diffraction grating may be reconstructed by 
the set of the wave-vectors k 0 situated on the cone surface, which is obtain­
ed by rotating the vector k0 about the grating vector K. Due to this fact, 
in order to get the independent degrees of freedom we must take into 
account only these vectors k0 which lie on one plane perpendicular to 
the hologram plane [8]. Finally this restrictive condition reduces the Fou­
rier space domain to the torus with identical radii r =  2n/X.

3. Since thé object beam can be represented as a combination of plane 
waves components, the latter produce the additional interference terms 
in recording process. Those terms can be restored only in many-exposure 
case. To avoid such disturbing effects of second order, we must limit 
Fourier spectrum of each object beam. From the generalized Ewald’s 
construction it may be shown that in this case the angles between K  and 
k0 vectors must range within 120-240°. Finally, this condition permits 
to reduce the volume of torus to a part restricted by the sphere with ra­
dius ]/3 r, as in fig. 4.
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Pig. 4. Limitation of Fourier space domain. Intersection of torus is restricted to SF
surface

The resulting permissible volume of Fourier space is then given by

Q =  (Il2)27ir-SF, (6)

where SF is result of intersection, as in fig. 4.
Finally, the maximum number of independent degrees of freedom which 

can be recorded in many-exposure case is given by

3.74
N 0 = — TxTyTz. (7)

For optical frequencies we get approximately N 0 =  1010/nim3.
The above result has been derived under the assumption that MTF 

of material has no influence. It is equivalent, in our case, to cut-off fre­
quency of material / >  4750 lines/mm, for Av =  0.63 ¡rm (He-Ne laser 
radiation) and n =  1.5. On the other hand, the optimum capacity for 
many-exposure case, considered above, requires /  >  4050 1/mm. When 
4050 < / <  4750 1 /mm, the MTF induces decreasing of N. For example, 
for /  =  4500 1/mm, we get N  =  0.41 N 0.

The next problem, which may be important, consists in calculation 
of the number of exposures M  in optimum capacity case. If the number 
of elementary cells which are intersected by one Ewald’s sphere is denoted 
by N H, then the quantity M equals the ratio of torus volume divided by 
Qq (see eq. (5)), to NH, because the number of exposure is independent 
of the third restriction considered above. Then, after simple calculations

„  n V 
M =  — — , 

A s ’ ( 8)

where V and S are the volume and the total surface of hologram, respec­
tively.

It is clear, that for the hologram with cubic shape (with side T) we 
get the maximum value of M m T/2A. For example, for Av =  0.63 [xm 
n = 1 .5  )T  = 1 5  [Am we get M =  18, but for T = 1  mm we have M  =  1240.
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Additionally, the ratio N 0/M would be equal to the average number 
of independent degrees of freedom for one hologram. It should be noted, 
however, that for each particular exposure, except for cubic case, different 
values of independent degrees of freedom are obtained. In fact, consider­
ing the third restrictive condition, we get different numbers of elementary 
cells crossed by permissible Ewald’s sphere, the maximum number is 
obtained when the angle between fc0 and hologram plane required is 90° 
(for Tx, Ty >  Ta).

In practice the value of M can be limited by additional effects (non­
linearity of material characteristic curve, influence of geometry of opti­
cal system), our analysis, however, permits to determine the most uni­
form (therefore, the most economic) distribution of energy for several 
degrees of freedom, thus it may be particularly useful for holographic 
memory devices.

Conclusions
Application of generalized Ewald’s construction facilitates immensely 
the analysis of structural information in volume holography, for it leads 
the entire problem to purely geometrical considerations.

The graphical method presented in this paper allows (in many-expo- 
sure case) to determine the number of independent degrees of freedom 
as a function of the following parameters: size and shape of object beam 
Fourier spectrum, size and MTF of material. Only some of them were 
discussed in details. In particular, the most optimal object beam spectrum 
for the case of many-exposure recording case was considered in detail. 
It was shown that the second order disturbances (see eq. (7)) cause a drop 
in of information capacity to 37 %. For this reason, MTF must be suffi­
ciently large ( />  40501/mm, for Xv =  0.63 ¡xm, n =  1.5).

It seems that our results hold even if the diffraction efficiencies are 
large as they have been derived under the assumption of only Bragg law 
and uncertainty relation (3); these assumptions being not discrepant 
with the coupling wave theory [4], at least, for phase materials (see eq. 
(4) and [8], p. 282).
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Структурная информация в объемной голографии

Введено квантование трехмерного пространства Фурье для слабой дифракционной задачи. 
Обобщена сфера Эвальда для случая объемных решеток и обсужден оптимум структурной 
информации для случая мультиэкспозиционного освещения.


