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On tolerancing of the refractive index gradient in 
optical systems*

K azimierz P ietraszkiew icz

Institute of Physics, Technical University of Wroclaw, Wroclaw, Poland.

In the paper the effect of the refractive index gradient in elements of an optical 
system  on the Strehl definition has been determined. The final formulae have 
been obtained under assumption that the rays run paraUely to the optical axis 
of the particular elements of the system. This assumption restricts the app­
licability of the obtained results. However, for certain class of objectives the 
derived formulae may offer a basis for tolerancing the gradient.

Introduction

The material of which the optical elements are made is almost absolutely 
uniform; the typical material errors being bubbles, striae, birefringence 
and slowly-varying nonuniformities of the refractive index. The first 
three of the mentioned errors may be relatively easily detected and 
measured. Their influence on the imaging quality has found a wide re­
presentation in the literature, for instance, [1-3]. However, the measure­
ment of the slow changes of the refractive index is relatively difficult 
and expensive.

The literature concerning the effect of this type of errors on the 
imaging quality includes three papers [4-6]. The influence of the gradient 
in the reflecting prisms and systems of such prisms on their focussing pro­
perties has been determined in the papers [4] and [5], while the effect 
of the gradient in lenses and refracting prisms on the Strehl definition 
being examined in [6]. In the present paper the results published in [6] 
have been generalized to include the systems perturbed by aberrations 
consisting of many lenses. The final formulae have been derived under 
the assumption that the rays travel — at least approximately — paral- 
lelly to the optical axis. This assumption restricts the applicability of 
the results to some types of objectives. It seems that a general solution 
of the problem is not possible. Some expectation may be connected with 
the method presented in the paper [7]. This method is, however, very 
complicated and the final formulae would be probably so complex that 
their application to practical tolerancing problems would be very pro­
blematic.

* This work was carried on under the Research Project M.R. I. 5.
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Theory

The following notation for the coordinates in the plane of the discussed 
lens have been assumed:

x \ y '  — rectangular coordinate,
x, y — dimensionless rectangular coordinates,
x =  x'la, y — y'la,
a — the radius of the cross-section of the aperture beam in the lens 

considered.
Let us introduce additionally the polar coordinates

Let us assume that the optical system consists of N  lenses and that 
in each of them there appears a refractive index gradient G{(i =  1 , . . . ,  N). 
The aberrations induced by the gradient in the z-th lens are [6]:

VaS®, V) =  GXixBi(x, y)ai +G ViyI)i{x1 y)at 

=  (<\. cos q> +  Gy. sin?) ra,!), (r),
where:

Gx.y Gv. — are the gradient components in the plane perpendicular 
to the axis of ¿-th lens (fig. 1),

Fig. 1. The decomposition of the refractive index gradient G  into Cartesian com­
ponents:

Ox , Gy — in the lens plane, Gz — in the direction optical axis, Q° — the component of G  vector in the
lens plane

D0 =  Dt (0) — thickness of the i-th lens in its middle,
Db. =  Dt-(1) — thickness of the i-th lens at the edge (fig. 2).

r' — {x'2 +  y'2)112, (p =  tan \ y ’lx'), 

r =  (x2 +  y 2Ÿ'\ =  r'/a, (p =  tan-1 =  (y/x) =  <p'.

Di(x, y) — the function of thickness for i-th lens [6] 

D ^x.y) = D {(r) = D 0. ( l - a ir2)1 (2 )
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Fig. 2. The picture explaining the notation used in the text:
D (r) — thickness function of the lens, — thickness at the lens edge, D0 — thickness In the lens middle

The total aberrations VG{xyy) introduced by the gradient in all the 
lenses are respective sums of aberrations coming from the particular 
lenses

r a (o ,y)  =  2 r 0((x ,y) =  2 v 0(
i  i

=  2  № x i cos?5 +  Gv{sing?)D0. (r — a{r3) a{.
i

The joint aberrations W (x,y)  of the system are sums of aberrations 
coming from the gradient and the own aberrations A{x,y)  of the system

W (x,y)  =  VG(x,y) +  A(x,y)

=  2 ( Gxi c08(P +  Gvi iiin<P):Do{ ( r - a i r*)ai .
i

To evaluate the effect of refractive index gradient on the imaging 
quality we shall use the Strehl definition I, which for small aberrations 
may be described by an approximate formula [8]:

I  =  1 — fc2«TF2> — <TF>2), (4)

where:
1 271

<TT) =  f  j  W{r,  (p)rdrdcp,
0 0

k =  2tt/A, X — wavelength of the light in vacuum.
The aberrations coming from the gradient cause an inclination of 

the reference sphere. To take account of this effect W (x,y)  should be 
completed by adding the terms

.K>sin9? +  l>cos9?.
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We obtain

W '(x,y) =  W(x, y) +  Krsin<p +  Lrcos<p . (5)

In order to determine the optimal vaines of K  and L the formula 
(5) should be inserted into (4) and K  and L calculated from the con­
ditions

d l _  dl
8K ~~ ~dL

( 6 )

Denote K  and L, fulfilling this conditions by E ovt and ¿ opt. Thus, 
the aberrations coming from the gradient are defined by the formula

VG0pt(æ, y) =  V(æ, y) +  K ovtrtim(p +  Lovtrcoii<p . (7)

The formula for the Strehl definition takes the final form

lopt =  ^ - ^ [ < n 0pt) +  2<ZlF(?0pt>], (8)

where
I A = 1  — fc2(<J2> —<J>2) — Strehl definitions in the optical system 

with its own aberrations.
The method presented in this paper is both general and possible to 

application in practice, if the own aberrations of the system are known. 
Only in special cases (for instance, for axial-symmetric aberrations) we
have

(AVGy =  0, thus (A VG(ypt)  =  0,

and then the formula (8) takes the simple form

I = l A-W<V%o pt>· (»)

In this case the parameters K opt and _Lopt determined from the con­
dition (6) are equal to

*0 *  =  1),
i

£„p t =  ^ G ^ B ^  (10)
i

By inserting (10) and (5) into (8) we obtain

lopt GtHai (D0 - D bi)y  +  dD
i  ’ i

Denoting by G° the gradient component in the plane of the i-th lens and 
by ipi the angle of G° vector with the ¿c-axis we obtain

Q ^ Q io o f in ,  G =  G\sinxp{ .
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The formula (11) after transformations takes a simpler form

/opt V  -  Dbt f  +
i

+ 2 ^  Jr ^ ^ { x p i — ‘ipk) G i G ° ka la k { D 0 l — I ) b^ ) { D 0 k — D b } ) \ ,

l,k
l¥=k

l t Tc =  1, N.

From the formula (12) it follows that the gradient effect on the imaging 
quality depends strongly on the directions of the vectors G°. Since, in 
general, their direction is not known, we shall find such one for which the 
Strehl definition reaches its minimum.

It is easy to notice that this occurs when
y>t =  y>0 — for positive lens,
ipi =  y;o+180° — for negative lens.

This means that the component of the gradient vector G° should be orien­
ted in the same way in all the lenses, i.e. parallely in the positive lenses 
and antiparallely in the negative lenses. In this case the Strehl definition 
formula takes the form

Thus, due to the gradient action the Strehl definition never reaches 
any value lower than that defined by the formula (13). The formula (13) 
gives a one-sided estimation of the deformation degree and may be a basis 
for tolerancing the gradient in some types of optical systems. The formula 
(13) is a generalization of formulas given in [6] for single aberration-free 
optical elements.

In the present paper it has been assumed that the rays run parallely 
to the axis of the optical system. In the real optical systems the rays 
subtend certain angles with the optical axis. Therefore, a direct application 
of method proposed in this paper to the real systems is connected with 
some errors. This error may be established as follows:

Let us denote by V0 the aberrations generated by the gradient G for 
the ray running parallely to the axis and by Vy the aberrations for the 
ray subtending an angle y  with the optical axis of the lens (fig. 3). The 
relative error A will be equal to

(13)

A =
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Pig. 3. An auxiliary lay-out to determine the error in the method presented

After detailed calculations we obtain

A =  (-»„ 2 R, 2 B1

(r +  h)2 y

2R2 2-Rj.

Do +

A> +

(r +  hy 
2 B 2 

(r +  h)2

2 R  
r2

2 R,

rl·
(14)

This formula may be drastically simplified for h < Rx, R2. Then we 
obtain:

- f Z-.-\-Z2 '  1
1H--------- - tany) -

(15)

The formula (15) should not be applied to estimate the error for small 
values of y angle, because

limr == 0.
y->0

In this case the formula (15) after respective rearrangements takes 
the form

where: n0 — refractive index in the lens centre, 
p — object distance.

Thus, formula (15) may be used to estimate the error for the rays 
angulary distant from the optical axis, while the formula (16) preserves 
its validity for the paraxial rays.
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An example and final conclusions

Let us consider an collimation objective 400/6 (fig. 4). The wave aber­
rations for this objective being axially-symmetrical and thus we can 
use the formula (13). Let us assume for the sake of simplicity that

Fig. 4. A schematic picture of the collimator objective 400/6

G° =  G°, i.e. that the gradient components in the plane perpendicular 
to the lens axis are the same in all the directions. Then the Strehl definition 
will be expressed by the formula:

I
( w y

72

The expression in square parenthesis in the above formula is calculated 
from the system design data. In our case it amounts to 3.8 cm2. Therefore

AI =  I a~ I  = —  № G o23.8 cm2, 
72

where AI — drop in Strehl definition caused by the gradient action. 
From the detailed calculations it follows

that the error not exceed 4 °/0 in this case.
The dependence of AI upon the value of 

G° for the wave-length A =  632.8 nm has been 
shown in the table. From this table it follows

A I  vs. the value of G° at 
A =  632.8 nm for the colli­
mator objective 400/6

that the values of gradient occurring in prac­
tice [9] may considerably worsen the imaging 
quality. Hence, it may be concluded that for 
high quality objectives the glass should be 
tested for refractive index gradient value. As 
the gradient component parallel to the optical

O °[l06 cm- 1 ]

1 0.0005
2 0.0021
5 0.0130

10 0.0520
16 0.1171
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axis does not affect practically the imaging quality the optical elements 
should be cut out of the glass block in such a way that the optical axis 
coincides with the gradient vector direction.
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Допустимость градиента коэффициента преломления 
в оптических системах

В работе определено влияние градиента коэффициента преломления в элементах оптичес­
кой системы на светлоту Стреля. Конечные формулы были получены при предположении, 
что лучи проходят параллельно оптической оси отдельных элементов системы. Эти пред­
положения ограничивают пределы применяемости полученных результатов. Однако, для 
некоторого класса объективов, полученные формулы могут являться основой допустимости 
градиента.


