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PHENOMENOLOGICAL MODELLING OF BIODEGRADATION
OF MULTICOMPONENT SUBSTRATES

The paper attempts to systematize the mathematical models for processes of bicche-
mical oxidation of organic pollutants in water bodies. Several generalized models have
been offered. All models have been relatively divided into three groups: empirical, formal
and simulation ones. In fact, all these groups of models are phenomenological.

1t is shown that coefficients in the traditional formal models are, as a rule, of imaginary
nature likewise the collective variables such as the total organic matter concentration, bac-
terial biomass etc.

The simplicity of models and the minimum.number of their parameters are an important
criteria of their feasibility. The'paper compares the best of such models and discusses
some of their properties common to all of them. i

1. INTRODUCTION

The classical STREETER and PHELPS’s model [28] describes the biooxidation processes
in rivers assumming the monomolecular nature of organic matter decay as measured by
an integral index such as the biochemical oxygen demand (BOD). The best known models
employed today describe aerobic biological treatment processes in aeration tanks and
biological filters by means of the first order equations [6]. The STREETER and PHELPS’s
supposition that the decay constant is a natural and only temperature-dependent has been
proved as incorrect since the oxidation process depends both on the microorganism con-
centration in water and on the organic pollutant composition.

TiscHLER and ECKENFELDER [31] have shown that the first order of the summary oxida-
tion reaction for the total organic matter may be obtained from overlapping of kinetic
oxidation curves for individual components. Some of the recently published papers demon-
strate that there can be a better agreement between experimental data on kinetic equations
of an order exceeding the first one for the total organic pollutant expressed in such values
as BOD, COD and TOC.

On the basis of a thorough analysis of the models and their most noted modifications
the present paper asserts that the most adequate models of the processes of biochemical
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oxidation of multicomponent pollutants in somewhat “oblique” way contain time. The){
are inevitably of phenomenological nature.

!

1

2. GROWTH DYNAMICS OF PURE CULTURE OF MICROORGANISMS ANd
OF SUBSTRATE CONSUMPTION

It is known that in a wide range of cultivation conditions the microorganisms growt
rate is proportional to their biomass (X):

dX|dt = uX, (1

where u is the specific growth rate.

The p value can be regarded constant only in case of accelerated growth because, i
general, it depends on the concentration of the limiting substrate S, as proposed by M
Nop [21]:

_ BwS
Y EC

Iz @)
where u,, is the maximum specific growth rate, K, is the constant of half-saturation. Mo-
nod’s formula is similar to the Michaelis-Menten’s equation for enzymatic reaction rates.

Simultaneously with an increase in the biomass the substrate concentration change
at a rate

__ "
dSjdt = — X, A3)

where Y = |dX/dS| is the coefficient of substrate transformation into the microorganism|
biomass.

Let us present (1) to (3) as a system known as Monod’s model

MmXS
dX/dt = s
/ K,+S
1 XS
dSjdt = — — Fm™> @)
Y K-8

The characteristic values of Monod’s model constants are as follows: y,, = 0.1-0.5 h™%,
K, = 1-30 mg/dm3, Y = 0.4-0.6.
Monod’s model is a formal description and, naturally, approximates the genuine|
enzymatic processes occurring in a cell. On the basis of the respective kinetic equations [34]
one can derive Monod’s formal model.
TEISSIER’s dependence [29] is sometimes employed instead of Monod’s formula (2)

u = lum(lweﬁks)' (5)

Some other formulas are also used.
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The oxygen demand process occurring during substance oxidation can be described
by the following equation:

dC|dt = (1—Y) dS/dt, (6)

“where C is the dissolved oxygen concentration and S is measured in oxygen units.
| Assuming Y to be a constant value (in some cases it is not true) the following equation
was derived in paper [3]:

1 YK, So KXo+ ¥(So+K) | Xot¥(So—
py \ Xo+YSy S X+ TS, X, f

f=— {~g L P . 0]

In case when S, < K, using (4) one shall obtain

ds/dt ~ — ﬁ’i " S/ Y +5y=5) = ~aS(-$), ®)
wherefrom
S 1 +p)e
Sllr/ ©
l+ye™”
where Y — YSO/XO’ :3 = lu'm(SO +X0/Y)/K\'
For the biological oxygen demand we shall have
- dC [ 1—e
Y= — Audt:—(l—Y) dS—(1~Y)S0 = (10)
. dt l 4= /e ~Bt

SimpsoN [27] derived formula (10) in a somewhat different way. Assuming that
So(1—Y) = S5, we can have three parameters Sy, /5, y in formula (10), where Y is oxygen
utilized (BOD).

Fig. 1 shows dependence (10) for Pseudomonas fluorescens growing on glucose.

Moser’s function [22] occasionally used for pure cultures is an interesting generali-
sation fo Monod’s formula:

_ Mm(S/Sk)'l

S 11
1+(S/S,)" &
where S; = K..
For (S,/S,)" < 1 instead of (8) the equation will be of more general type
dsjdt = — —’é%s"(XO/YJrsO_S) — 4,5"(6—S5). (12)
k

This equation contains a new parameter n which helps to change the inflection point
position. In a general case equation (12) is integrated numerically.

It should be emphasized again that models of Monod’s type can only approximate
(with or without success) the real processes occurring within a bacterial cell.

5 — EPE 3/80
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Equation (10) and the like can fairly well describe only the initial phase of the biochemi- .
cal oxygen demand which ends when the substrate practically disappears. However, the
cell can store some amount of reserved substrate which is utilized when the amount of
external substrate is insufficient. A number of models is offered to describe this phenome-
non [39, 7].

BOD, mg 0,/dm?

200+

™ T T T T T

0 0 20 0 th

, Fig. 1. BOD of the glucose-grown culture of Pseudomonas fluorescens (from [27])
Rys. 1. BZT rosnacej na glukozie kultury Pseudomonas fluorescens (wedtug [27))

3. BIOCHEMICAL OXIDATION OF MONOSUBSTRATE BY A COMPLEX OF
MICROORGANISMS

Processes of biochemical oxidation of organic substances occur most intensively in
man-made biological reactors such as aeration tanks and biological filters. The latter main-
tain high concentrations of microorganisms (activated sludge and biological film) while
the dissolved oxygen content is sufficiently high.

Activated sludge and biofilms are complexes of microorganisms which can ox1dlz§j
substrates both simultaneously and in succession rendering either stimulating or mhlbltmg\
mutual effects. At the same time, it is quite possible to describe the oxidation process by
the same models which were offered for pure cultures (fig. 2). With sufficiently high micro-
organism concentration in such models it may be considered constant. |

Since the activated sludge particles and the biofilm fragment are rather large formations,
mass transfer processes when substrate gets from the solution into the sludge particle or
the biofilm become particularly important in the oxidation of individual substrate- pollu-
tants. Papers [2, 33] have offered some respective stable diffusion models permitting deter-‘

mination of the substrate concentration distribution within a sludge particles and biofilms.
-
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According to diffusion models for high substrate concentrations activated sludge and
biofilms prove to be “saturated”. Due to this the oxidation rate becomes independent of
any further increase in the substrate concentration. Such property is quite typical of Mo-
nod’s and of Teissier’s functions [2, 5] as well as of their extensions, for example, Moser’s

S.mg 0,/dm3
1001
Fig. 2. Kinetics of activated sludge oxidation

of glucose (1), phenol (2) and aniline (3)

X - experimental points from [31), solid lines — dynamic

curves following from the models of: 1 — Moser (umX /Y
= 63 mg/dm3/h, Sk = 72 mg/dm3, n = 1.75), 2 — Monod
(tmX|Y = 8 mg/dm3/h, Kg= 10 mg/dm3), 3 - Teissier 501

(umX]Y = 27 mg/dm3/h, K = 0.02 dm3/mg)
Rys. 2. Kinetyka utleniania gluk czy (1), fenolu (2)
i aniliny (3) w osadzie aktywnym
x - punkty doswiadczalne wedtug [31], linie ciagle — krzywe
dynamiczne wynikajgce z modeli: 1 — Mosera (u,X/Y = 63
mg/dm3/h, Sk = 72 mg/dm3, n=1,75), 2 - Monoda
(umX]Y = 8 mg/dm3/h, Kg = 10 mg/dm3), 3 - Teissiera
(umXY =27 mg/dm3/h, K = 0,02 dm3/mg)

Lfunction [11]. Hereby the coefficients of formal models are, in turn, determined by charac-
teristics of activated sludge particles or of biofilms. In this way VAVILIN et al. [35] have
presented the following assessment of the activated sludge particles under the given con-
ditions

® = Qabtm_ > —,
YD,S. &,
0 D,
K, ~ Sc{(1/3~1/(2)5'3 é F’) (xR)2+1/2}, (13)

where o is the density of dry biomass of the respective microorganisms in a sludge particle,
=S, is a certain critical substrate concentration at which the reaction order gets changed
(from the zero order to the first one), {, is the respective value of the radius, D, and D, are
coefficients of the substrate diffusion in water and within the sludge particle, 0 is the thick-
ness of the diffusion layer, and R is the floc’s radius.

Similarly, in case of a biofilm with the thickness /i we shall have

g 025 +0xD/D)G +1

y = 14
S c 2 ( )

Hereby we have received quite reasonable half-saturation constants K: glucose—
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20 mg/dm? (flocs), 200 mg/dm? (biofilm), ammonium — 0.15 mg/dm? (flocs), | mg/dm3
(biofilm).

According to HARREMOES [13], under certain conditions a kinetic equation of the 1/2
order seems to be adequate for biofilms.

4. BIOCHEMICAL OXIDATION OF MULTICOMPONENT POLLUTANT
IN A BATCH AERATION TANK

Wastewaters, as a rule, are multicomponent substrates. Describing their kinetic expe-
riments some authors were in favour of Monod’s and of Teissier’s models while some others
preferred as more adequate those of the first order and even of higher ones. TISCHLER
and ECKENFELDER [31] have shown that individual components of a multicomponent sub-
strate get oxidized simultaneously. Let us consider Teissier’s function for individual com-
ponents. With its help we shall see that

_ Ve’ S.(f) = S In {1 - (eXiSoi— 1) e~ KoiKiXt
S@= ) xm%}z n {1+ ("%oi—1)e I (13)

dsdt = > ds/di = D o(S) = w()

1

1
g eKiSoi__ 1)e— KoiKiXt
_ Z K(,,.X{ ( ) ] (16)
1

]j; (eKiSOi:l)e‘KOiKin ] g

where Ky; = p,,i/Y:, So; is the initial concentration of an i-component.

Functions (15) and (16) have 3/ parameters (Sy;, K, Ko;» i = 1,2...]). Instead of (16)
we can use a series of approximations, say, Moser’s function (10) which contains three
parameters (K, S, n).

If the components i = 1,2 .../ are innumerated according to their “disappearance” in
the aeration tank (in reality S; becomes smaller than a certain value S;) by the moment
t = 1, then the case n > 1 in Moser’s function employed for the multicomponent substrate
S will correspond to Sp; << Sp;, 1, Ko;j > Kojp1-

Moser’s model with » capable of assuming any positive value can fairly well describe
the oxidation dynamics for municipal wastewaters (fig. 3).

Considering (15) and (16) one can notice that for a multicomponent substrate the time
is a real variable while the variable S is “imaginary” as well as the reaction rate constant
K,, the reaction order n and the value S,.

Dynamic oxidation curves for multicomponent pollutants may be well described by
some extensions of Fair’s and Grau’s models [9, 12]:

o(X, S) = K'XS(S/So)"1, (17)
o(X, S) = K"X(S/So)", (18)
o(X, S) = K'"XS"/S,, (19)
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where o (X, S) is the oxidation rate in the basic equation describing the process of aerobic
biological treatment in a batch aeration tank

dSldt = —o(X, S). (20)

In relationships (17) to (19) the reaction order # is fixed while in Moser’s function (11)
it can change from the zero to a n-one with the substrate concentration decrease. It is obvio-
us that with small value of

S < VK, =S, and Ko = i,y = K'"'|So = K"[SE = K'/S31

Moser’s model becomes identical to those of Fair and Grau.

S,mg 0,/dm*COD

800

Fig. 3. Municipal wastewater oxidation kinetics

X — experimental points from [4], X = 2.92 g/dm3 (1), X = 1.56 g/dm3 (2), X = 1.25 g/dm3 (3)
tmlY = 0.11 h—1, S = 04 g/dm3, n=5
Moser’s model { u#;,/Y = 0.11 h—1, S, = 0.27 g/dm3, n = 6

umlY = 0.06 h—1, St = 0.165 g/dm3, n = 8

Rys. 3. Krzywe kinetyczne utleniania $ciekéw bytowo-gospodarczych
X — punkty eksperymentalne wedlug [4], X = 2,92 g/dm3 (1), X = 1,56 g/dm3 (2), X = 1,25 g/dm3 (3)
,um/Y= 0,11 h—1, St =04 g/dm3, n =5

model Mosera { up/Y = 0,11 h—1, Sf = 0,27 g/dm3, n =6

umlY = 0,06 h—1, S — 0,165 g/dm3, n —= 8
The solutions to equation (20) with functions (17) to (19) and that of Moser’s will

be respectively as follows
k n—1 S
S = So/ V 1+ (n—1DK'Xt, 1)
n—1

S = So/ V 1+ (n—DK"X1/S,, (22)
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S = Sof V 1= DK""S5 21, o)
_ S 1 i o o
(= g VT (oIS —(5/S)' 140/, 5]y 24

Taking into account (21) to (23), the dynamic equation can be written as

ds|dt = —K'XS(S/So)" 1= — EX & (25)
o o T I+m=DKXt "’
ds|dt K"X(S/|So)" = L2 s (26)
= == o S m—-DKXE '
KIIIX'

dSjdt = —K'""XS"|S = —

s 27
82" 4 (n—1)K"" Xt @7

As seen from (25) to (27), the rate constant of the quasi-first order is a diminishing function
of time and with the increasing reaction order this dependence becomes more profound.

S , mg 0,/dm*COD Fig. 4. Multicomponent substrate oxid-
ation kinetics (peptone-starch)
Experimentgl points from [11]: ® - X = 428
mg/dm3, @ - X = 815 mg/dm3, ] - X = 1586
mg/dm3
Theoretical curves: model (27) - K = 0.0024
dm3/mg/h, n = 2; model (28) -~ K = 0.5 h—1,
Ks = 150 mg/dm3/h
Rys. 4. Krzywe Kkinetyczne utleniania
wielosktadnikowego substratu  (pepton
—skrobia)

Punkty doswiadczalne wedlug [11]: ® — X = 428
mg/dm3, @ - X = 815 mg/dm3, [1 — X = 1586
mg/dm3

Teoretyczne krzywe: model (27) — K = 0,0024
dm3/mg/h, n = 2; model (28) — K = 0,5 h—1,

Kg = 150 mg/dm3/h

Instead of Moser’s model one can successfully employ the following extension (modifi
cation) of Mond’s function (fig. 4)

dsjdt = —o(X, §) = —

— (28)

Here the half-saturation constant is a function of the value called loading F/M = X1/S,
which, in its turn, is time-dependent. Model (28) should be solved numerically.

It is interesting to note that with sufficiently large values of time and KS,/X, = 1/n—1
models (25) to (28) prove to be identical.
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So, the reaction rate constant for the quasi-first order which follows from the best
models of the multicomponent pollutant oxidation is a diminishing function of time.
It is logical to interpret this fact by suggesting a gradual disappearance of pollutants in
the course of oxidation and the survival of those which are harder to oxidize. With larger
microorganism concentrations this process occurs faster.

5. BIOCHEMICAL OXIDATION OF MULTICOMPONENT POLLUTANTS IN
AERATION TANKS

The basic equation for a competely mixing aeration tank is
SO_Se—'TQ(X5 S(-) =0, (29)
where Sy, S, are the pollutant concentrations in the influent and in the effluent of the aera-
tion tank, 7 = ¥/q is the retention time of the mixed liquor in the aeration tank (V is the

aeration tank volume, ¢ is the sewage flow).
ApaMms et al. [1] have suggested the following modification of Grau’s model:

Se—.y
So
where y is the correction for nonbiodegradable compounds.

Substituting (30) into (29) one obtains

SO(SO_Se) o ;
502 _ k(5. @31

Relationship (31) fairly well meets the experimental data of [1]. It is considered, however,

that Grau’s and Adams’s model is only one of the many possible approximations of the

real oxidation processes. The following can be considered as some generalization of (31
So(So—S,)

=t K(S,—y)" (32)

which meets the experimental data much better than (31).
Making use of a modified Monod’s model (28) and of equation (29) we can derive the

following equation

XT 1 K XT 1
N T (33)

which is presented in fig. 5. It is obvious to see that this dependence can fairly well describe
the experiment. It should be noted that with X7/S, = F/M — const, i.e. with constant loa-
ding, the classical Monod’s function describes the experimental data pretty well. Formula
(33) can be generalized as

. ' 34)
S (34)

e

XT 1 ;(XT)" 1

So
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When designing an aeration tank one must pay special attention to the value of [34]

XT
Q= — (35)
Y(SO_SL’)
which is called the sludge age. According to model (10), the maximal specific growth rate
of activated sludge can be presented as follows:

I"Iﬂ ,p"l

T 11d0 T 14a*xT)s,’

My (36)

where d* = d/Y, »,, are constant values. Then Monod’s function will give us the following: °

P XS v, X S

o(X, S) = = :
K,+S Y 1+d*XT/S, K,+S

(37)

2¢29 | ;mg/dm3TOC

504

Fig. 5. Equation (33) for a completely mix- |
ed aeration tank \

X -~ experimental points from [11], = K = 0.26

h—1, K; = 2.5 mg/dm3/h, correlation coefficient
r = 0.99, Peptone was used as substrate
Rys. 5. Zalezno§¢ (33) dla komory na-
powietrzania z calkowitym mieszaniem

% - punkty do$wiadczalne wedlug [11], K = 0,2

h“l,K; = 2,5 mg/dm3/h, wspdlczynnik korelacji
r = 0,99. Jako substratu uzyto peptonu

=
SeSo/XT, mg/dm?h
With sufficiently high values of 7 and low values of S relationships (37) and (28) are iden-
tical.

Thus, our correction for the sludge activity decrease in respect of its increasing age,
as a matter of fact, is equivalent to the rate constant decrease of the quasi-first order as
function of time, in full accordance with the gradual disappearance of biodegradable
substrates.

The following equation is the basic one for ideal plug-flow aeration tank

ds|dt = —Toe(X, S), (38)

where & = X/L is the dimensionless coordinate along the axis of the aeration tank (L is
its length).
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The dependences o (X, S) mentioned-above can be well used to describe oxidation pro-
cesses in an ideal plug-flow aeration tank; the solutions in this case will be similar to (21)
to (24).

When designing an aeration tank it is necessary to establish the interrelation between
the pollutants concentration on the inlet S, and exit S, of the aeration tank, the aeration
period T and activated sludge concentration

S, = f(X, T, So, t° a1, @5 ... ap), (39)

where @, a, ... a, are the constants of the mathematical model used to describe the depen-
dence o(X, S). The temperature correction 7° is also frequently considered. As follows
from the above, the type of the function f is determined by that of the aeration tank (an
ideal mixing tank or an ideal plug-flow one). Paper [38] gives a summary of mathematical
models and their modifications most frequently used (tab. 1).

It is evident that a good mathematical model should provide for a minimum deviations
of the design concentration value S, from the experimental S¢* in a wide range of changing
parameters 7, Sy, X, t°. In this way, given series of experimental points 7}, So;, Sei X;s t,-0 in
which i = 1, 2, ..., N being the serial number of the experiment, this model will have the
following value

N
g =D (S5—5.) (40)
i=1

which must be minimal. It will be so at certain values of the constants @ = aj, a, = a5, ...,
a, = a; found in calculations.

There are two models giving the same error in calculating the concentration S, but
the preference should be given to the one which is more simple and which contains fewer
constants. In view of this the adequacy degree of a model is usually determined by the
value ¢ = ¢/(N—K) or 0 = l/(_p, where & is the number of constants. The value @ is called
the root-mean-square deviation, and ¢ is the dispersion which shows the absolute error
at a certain determination of the concentration S,.

Tables 2 to 3 present sets of experimental values T}, X;, So;, S,; obtained during inve-
stigations of biological treatment processes in large municipal wastewater treatment plants
[15, 18, 43]. One can see that the deviation range of 7, X, Sy, S, is rather wide.

Employing these experimental data for each of the models presented in tab. 1, paper [38]
tries to describe the numerical minimum of the dispersion value ¢. The results of such
numerical processing are given in tab. 4*. For some of the best models the calculated values
S, are presented in tabs. 2 and 3.

Let us now consider the design of a completely mixed flow (CMF) aeration tank.
In this case most of the models make almost the same mistake in calculating the concen-
tration S, (¢ &~ 7 mg/dm?®). The model with function (19) has shown the best agreement
with the experiment (¢ &~ 4.55 mg/dm?).

* The temperature correction was neglected.




Table 1

Basic types of models used for design of aeration tanks

Podstawowe typy modeli uzytych do projektowania zbiornikow napowietrzajacych

Name of the model

Oxidation rate

Equation for pollutant concentrations on the aeration tank exit ‘
So — initial pollutant concentration, X — activated sludge concentration, 7 — aeration period,
a = KXT, b = KXT|S,

(X, S)
CMF aeration tank PF aeration tank
1 2 3 4
1. Zero order 7.05.4 S, = So—Ko XT S, = So—KoXT
S
2. 1st order Ky X8 R S, = Spe—4
1+a
3. n-order K, Xxs" (So—S)/S"—a =0 Se = {Si—"—a(l—m}i/1=n
4. Grau’s * So
' K XS/S = S, = -b
1st order 1 / 0 € 1+b e Soe
3. Grau's KoX(S/So)? Sy= 0 o/ iTa5-1) sy 220
2nd order : i 2b 1+b
6. Grauw's  morder gy (So—5.)(So/S.)"—a — 0 o {S""—— a(l1—n) }1/1—n
generalized* L € & g 0 st
7. Grau’s n-order
generalized ** K*XS"/S, So(So—Se)/S"—a =0 Se= {§3~1-b(1 —m)}V/1~»
8. Grau’s 1st order S—y ) So+yb
Ki*X = S, = —y)e—b
with correction ! ( So ¢ 1+b e =yt (So=2)e
9. Grau’s 2nd order
with correction s s S — 9
H o * =y 0 e
for nonbiodegra ok’ (_____ g, =y 20 l/1+4b (l— _J_’_) 3 g, e So+by(So—)
dable compounds Sy 2b S So+b(So—»)

0ge
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1

2

3

10.

13.

14.

15.

16.

17.

18.
19.

20.

Monod’s

. Moser’s

. Moser’s

modified

Haldane’s

Ierusalimsky’s

Teissier’s

Tudek’s

1-9 — models of fixed order, 10-15 — models of Monod’s type, 16-20 — empirical models.

K, XS/(K;+S)

K, X (SIS
RN
K, X(S/Sp)"

1 (S/S™

K,XS
K,+S+S5%K;

K,XS
(K;+ S)Kx+K)

K, X(1—e—5/5k)

P = (SO—'KX"")/z

Se = P+ 1/;)2#“1(550
(So—Se) [1+ (Se/Sk)")

— —= —a=0
(SIS ,
(So—So) [1+ (Se/Si)™]
—a =0
(Se/Si)"

(So—Se) (Kot Se+SelKi)
Se
a
P= (SO—KS— Txﬁ) 2
S, = P+ P+ K8,
(So—So/(1 —e~ 5/5k)—a=0

=0

P
1+a"

So
T 1t
S, = Spe~ %"
S, = Spe— %"

S2+0S,+¢=0

o and g are determined
by the parameters of the
system and by 4 constants

So
S,—Sp+Kn < —a=0

€
S
T (S0/S1 T (Se/S T So— S —a = 0

1—n J'(S /S )l—n—{-mf(s /S .)I——n-}rm}_x_(s /S )1———n
i W20/ Dk el Dk A0/

1+m—i
+(suist—n— 2820
. Sy

So-}—Se) So
So—S.) {14 +KIn— —a=0
(So e)(T 2K) sin - a

a

So— S.+ KIn Sy/S,— =0
0— Se+ KiIn So/ S, Ko+ X

S, = SiIn{l+(eSo/Sk—1)e—4/Sk}

S, = SiIn{l —i—(es()/sk._ ])e—aS/k}

S, = SiIn {1+ (eSo!Sk—1)e—aS/k}
S, = SiIn {1+(eSo/Sk—1)e—a/Sk}
S, = SiIn {1+(eSo/Sk—1)e—4/Sk}
S, = SiIn{l +(eSo/Sk—1)e—a/Sk}

0
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Table 2

Experimental data on domestic wastewater treatment in completely mixed
aeration tanks and calculated S, values for model (19) (after [18, 43])
Dane doswiadczalne oczyszczania $ciekow bytowo-gospodarczych w komo-

rach napowietrzania z catkowitym mieszaniem oraz obliczone wartosci S, dla
modelu (18) (wedlug [18, 43])

So S. — effluent BOD

T X s [mg O,/dm3] [mg O,/dm?]

[hours] [mg/dm*] BODs experiment. model (19)

2.13 3930 ‘ 123 13.5 13.3 ‘
9.0 2830 123 6.2 7.55

2.38 3440 167 15.0 18.6

2.38 3100 167 15.0 19.6

2.38 3360 142 17.0 15.8

2.38 3200 142 9.9 16.2

1.08 3460 139 23.6 22.5

1.08 3510 139 25.0 22.2

1.07 3460 115 24.2 18.5

1.09 7900 204 18.4 22.4

1.08 7700 161 17.7 17.8

1.05 7900 345 27.6 39.9

0.89 8800 379 53.0 45.4 ‘
0.84 5900 242 339 35.3 '\
0.83 10200 167 21.7 18.3 |
0.73 8900 224 31.4 28.5

0.71 11200 147 23.5 16.5

0.65 8900 141 22.6 18.5

0.89 4200 141 18.3 22.9

0.60 3900 141 254 28.6 |
0.67 4800 84 11.8 14.2 |
0.43 3600 138 34.5 33.8 ‘
043 3900 99 22.8 229

0.39 4200 141 38.0 18.4

0.31 6000 84 21.0 33.7 \
0.30 4200 141 35.3 37.9 |
0.26 5100 141 40.9 371

K}*=0.0125 h—1, n=188, o=4.55 mg/dmd.

The processed experimental data for a plug-flow (PF) aeration tank have shown the
accuracy of the calculated S, value to be greatly dependent of the type of the model used.
Thus, the values o for different models can differ by 2 to 3 times. The empirical model
(fig. 6) has proved to be the best one (6~ 4.9 mg/dm?) ‘

So



Table 3

Experimental data on domestic wastewater treatment in plug-
-flow aeration tanks and calculated S, values for model (18)
(after [15]))

Dane doswiadczalne oczyszczania $ciekOw bytowo-gospodar-
czych w komorach napowietrzania z przeptywem tlokowym
oraz obliczone wartosci S, dla modelu (18) (wedtug [15])

T ¥ CS): /dm?] Se [mg Oz/dm]as BOD;
[hours] [mg/dm?] BOD experiment. model
53 1844 142.6 19.0 17.5
4.1 1850 132.4 13.0 17.8
9.27 937 181.4 14.0 26.9
5.9 1930 91.1 11.0 8.0
3.3 2330 71.8 8.0 6.8
5.3 2400 79.5 6.0 6.7
4.9 2000 64.0 6.0 5.0
52 2190 76.7 9.0 6.1
4.9 2230 72.0 11.0 5.66
6.2 2180 75.7 12.0 5.43
714 2420 127.4 14.5 10.2
4.4 1325 59.9 8.0 6.0
6.7 1808 201.2 33.0 26.3
7.2 2196 93.1 11.5 6.9
8.28 2400 145.4 9.0 12.1
7.9 2600 112.1 14.0 7.9
8.9 2800 110.5 12.0 7.0
5.9 2800 103.0 6.0 7.9
4.34 2625 105.4 14.0 10.0
8.45 3000 269.4 18.0 27.6
7.88 3000 276.5 17.0 30.0
4.77 1200 105.9 12.5 14.8
6.4 1680 89.3 6.0 8.0
5.5 1580 55.8 8.0 4.32
6.6 1863 106.0 13.0 9.7
6.0 2218 193.8 32.0 23.7
8.44 1500 80.2 100 * 6.2
2.3 360 164.0 714 75.3
1.6 850 95.9 26.2 27.1
1.6 990 101.1 37.8 272,
4.88 384 135.4 35.2 38.6
2.56 626 129.2 44.8 39.0
4.82 580 113.3 32.0 24.0
2.35 634 94.1 32.2 25.2
2.28 365 95.0 31.7 34.0
2.5 505 85.5 24.0 23.7

Kp =032 h=1, n=271, ¢=35.77 mg/dm3.
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Minimum values of dispersion ¢ for models from tab. 1 and for experimental data from tabs. 2 and 3
Minimalne wartosci dyspersji ¢ dla modeli z tab. 1 i dla danych doswiadczalnych z tab. 2 i 3

Table 4

Values of constants . o[mg/dm3]
Name of the model Units
CMF* PF! CMF PF
1 2 3 4 5 6
Zero order Ko = 0.0157 Ko = 0.0522 h-t 95 17
1st order K; =0.0014 K; = 0.000796 dm?3/mg/h 7.6 13.9
n-order K, = 0.00012 K, = 0.000002 (dm3/mg)*h-! 6.26 8.8
n=173 n =243
Grau’s
1st order Kr = 0.265 » K:‘ = 0.11 h-t 7.5 15.2
Grau’s
2nd order K, =117 K, =0.18 h—1 7 8.6
Grau’s
n-order K* =0.757 K* =032 h-t 7 ST
extended * ) n=1.57 n=2717
Grau’s n-order K** =0.0125 K** =0.00189 “(dm3/mg)* h—! 4.55 8.7
extended ** n =188 n=1.914 '
Grau’s Ist order K;" =0.3 K:‘ = 0.126 ht
with correction y==6 y=294 mg/dm?3 7.4 8.98
Grau’s 2nd order Ky =34l Ky =023 h-!
with correction y = 8.34 y = 6.88 mg/dm?3 6 5.3
Monod’s K, =034 K, =04 h-! 8.55 143
K, =200 K; =405
Moser’s K, =0.69 K, =0.0122 h-t 6.42 7.45
S, =128 Sy =57 mg/dm?3
n = 1.85 n=23.92
Moser’s modified K, =0.67 K, =0.215 =
S =139 S =174 mg/dm?3 5.54 7.54
n =175 n = 3.6
m = 3.05 m = 4.68
Haldane’s K, = 0.236 K, =0.148 h-!
K, = 129 K, =120 mg/dm?3 9.17 15.2
K; = 3.9%x107 K; = 108 mg/dm3
Terusalimsky’s K, = 15500 K, =10 h-!
K, = 1470 K5 = 250 mg/dm?3 5.51 14.7
K, = 1950 Kx = 41000 mg/dm3

1 CMF and PF are, respectively, completely mixed flow and plug flow aeration tanks.
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i 3 3. 4 5 6
Teissier’s K, = 0.117 K, = 0.169 h-t
Sy = 65 Si = 169 mg/dm? 9.2 14.47
K = 0.00165 K = 0.0023 dm>3/mg/h 6.29 4.91
n = 0.864 n=0.614
K =0.253 K =0.234 h-t 7.76 5.8
n=1.012 n=0.718
K =0.00174 K = 0.00086 dm?/mg/h 551 514
= 0.366 n =033
K =043 K =0.109 h-t 7.26 6.27
n=0.28 n = 0.375

Tudek’s . 7.2 5.3

It should be noted that a model similar to that of Grau’s of the second order with only
one constant can agree with the experimental results much better than the classical microbio-
logical models of Monod’s type.

s

Fig. 6. Relationship (41) for a plug-flow
‘ aeration tank treating municipal waste-
water
@ - cxperimental points from [15], K = 2.33
dm3/g/h, 7= 0.62

Rys. 6. Zalezno$¢ (41) dla komory napo-

‘ wietrzania z przeplywem tlokowym,
w ktorej zachodzi oczyszczanie S$ciekow

bytowo-gospodarczych

@ - punkty doswiadczalne wedtug [15], K =233 0 é 1b 1'5 2;0 2'5
dm3/g/h, n = 0,62 XTx1000, mg-h /dm?3

When compared, the processed results showed that the “sludge activity” (the respective
values of rate constants) was about twice as high in the CMF tank as that in the PF one.
That is why the efficiency of a CMF aeration tank can be practically higher than that of
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a PF one even though the latter may have a very high rate due to great current concent-
rations of pollutants.

6. BIOCHEMICAL OXIDATION OF MULTICOMPONENT POLLUTANT
IN A BIOLOGICAL FILTER

The hydraulic regime in a biological filter is close to that in an ideal PF aeration tank.
Therefore equation (38) can be used for a biological filter in which the contact time T is
proportional to [26]:

T aH N aH @) .
(q/A)m Qm 2
where H is the biological filter height, A is the cross-section area, a is the filter media specific
surface area (m?/m?3).

In an ordinary 1st order equation with o(S) = K,S we shall have the well-known model

S, = Soe” K1eHIe”, 43)

Solutions to the basic equation which are similar to (21) to (24) and obtained through
the functions discussed above can describe the biological wastewater treatment process in
a biological filter much better than the first order model does. It can be attributed to the
fact that these functions reflect the decrease of the reaction rate constant of the quasi-first ‘
order in respect of time and, consequently, in respect of the biological filter depth. i

In some cases the experimental results can be better described by the modifications of }
OLEszKIEWICZ’s and ECKENFELDER’s models [24]

OLeszkIEwICZ and ECKENFELDER considered relationships (44) and (45) at n = 1.
It is easy to see that in such case formulas (44) and (45) follow from Grau’s model (22)
of the Ist and 2nd orders, respectively, at 7= H/Q.
In designing a biological filter the general task will involve the definition of the interrela-
tion
S, =f(a, H, Q, So, t°, @y, a3 ... @) (46)

which is similar to (39). Selection of coefficients is made with the dispersion numerically
minimized

N
2 (87 —S8,)?
g = 14.____,‘_ .

|
S, = Soe“(Ka/L)" (44)
and
S (45)
" 14+(Ke/L)*’
where L = S H/Q is the organic loading and » is any positive number.
N—K
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Table 5 presents the values obtained for some models while processing the experimental
data of KEErer and MEISEL [17].

The empirical model of the type of (41)
So
S = 4
° 1+[KeH|Q™ G

has proved to be the best (0 ~ 6.1 mg/dm?3).

Table 5

Processed experimental data for biological filter (after [17])
Przetworzone dane doswiadczalne dla zloza biologicznego (wedtug [17])

Name Oxidation B o Val i
of the miodel S quation for S, alue ¢ Values of constants
1. 1st order K;S S, = Spe—K19H/Q 16.8 mg/dm3®  K;a =129 days—1!
3%, m
2. Ist order* — 8= 50eT1" 3 5mgldm®  KPa = 2.381/mx (m/day)™
m = 0.31
3. Oleszkiewicz's, K,S/So S, = Sye 1“5 171 mo/dm?  Kja — 1600 mg/(dm3-d)
Eckenfelder’s
ok - ,
4. Modification — S, =Soe 1800 139 meidm3  Kja = 355 mg/(dm®-d) (m/day)™
of model 3 m=0.4
: So
5. Fair’s and KyS2/Sg Sp= ———— 9.6 mg/dm?3 Kra = 27.91/da
28%/So S 11K, aHIQ g/ 2 [day
Geyer’s
: s S
6. Modification — S, = ... N, 7.7 mg/dm3 K3a = 7.691/m x (m/day)™
1+K3aH/Q™
of model 5 m = 0.46
7. Empirical — S, =—~——S°—— 6.1 mg/dm3 Ka = 26 1/m x (m/day)™
’ ¢ 14 (KaH/Q™)"
model n=20..6
m=0.7
Total number of data points are 48.
Transforming (44) we shall have the following (fig. 7):
So—3S,
Ig {—is—} = lg (KaH)'—mnlg Q = a—blg Q. (48)
(-4

According to KORNEGAY [19] the classical Monod’s model can be also used to describe
the oxidation process in a biological filter if the constant K, is regarded as inversely pro-
portional to the specific sewage flow Q, i.e. as proportional to the contact time 7.

6 — EPE 3/80
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The models discussed above can account for the temperature effects upon the bioche-
mical oxidation rate by a dependence for the reaction rate constant suggested already by
STREETER and PHELPS [28]

K = Koo (%) 2. i (49)
e (1S5S
o3
1.0 :
054
T T T
0 05 1

lg{Q m3m2day}

Fig. 7. Relationship (48) for a biological filter treating municipal wastewater
|

experimental points from [17]: @ —(H = .21 m,a = (KaH)" = 18 (m2/d-m3)b, b = mn = 0.55); X —(H = 1.68 m, a = (KaH)n
2= 15.6 (m2/m3)b, b = mn = 0.58) {

Rys. 7. Zalezno$¢ (48) dla ztoza biologicznego, na ktorym zachodzi oczyszczanie éciekdw bytowo-gos
|

podarczych
punkty doswiadczalne wedlug [17]: @ — (H = 2,21 m, a = (KaH)n = 18 (m2/d'm3)b, b = mn = 0,55); < - (H = 1,68 m, a
— (KaH)" = 15,6 (m2/m3)b, b — mn = 0,58)

Those authors chose » = 1.047. This value is very often used to account for the tem-
perature correction but it is not legitimate. In reality, x is an additional parameter and its
value can be found within the minimization of ¢ described above. Depending upon the wa-
stewater composition and on other parameters, the value x may vary from 1.0l to 1.2.
In this way, while processing the data on the biological filter cited above, we observed
% ~ 1.1. With the value » inaccurately selected the dispersion ¢ may increase.

On the whole, to account the temperature correction is not as important as the proper
selection of the function g (X, S).

7. BIOLOGICAL OXIDATION OF POLLUTANTS IN RIVERS

Wastewaters entering rivers usually contain considerable quantities of various com-
ponents which can be oxidized by different types of microorganisms present in river water.
The summary process is traditionally measured in the dynamics of the BOD (consumption).

As a rule, two stages in the BOD curves are identified (fig. 8). At the initial stage of
the process the BOD curve practically repeats the one of the microorganism growth.

-
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By the moment at which biomass reaches its maximal value practically the entire substrate
proves to have been utilized for its growth and the further BOD increase is due to the endo-
genic oxidation of the cellular matter (the end of the Ist stage).

BOD, mg O,/dm3

—_—x 0
/x
204 /

Fig. 8. Relationship (19) for a typical BOD

/
curve s
X — experimental points from [5]: 0 - total BOD, 1-
x
x

nitrogen BOD (nitrification processes), 2 — carbon BOD

(with inhibited nitrification); 1 — {(I—Y) Sop= 16.2

mg/dm3, f = 0.65 day—1, p =130}, 2 - {(I-Y) So 104
= 7.4 mg/dm3, f=0.16 day—1, y =0}

BESEDERSS

Rys. 8. Zaleznos$¢ (19) dla typowej krzywej
BZT e

x — punkty doswiadczalne wedlug [5]: 0 — calkowite
BZT, 1 — azotowe BZT (procesy nitryfikacji), 2 — weglo-
we BZT (z zahamowana nitryfikacja); 1 - {(1—Y) So
= 16,2 mg/dm3, f = 0,65 dzien—1, y = 130},2-{(1-Y) L r

So = 7,4 mg/dm?, f=0,16 dzien—1, y = 0} 0 10 20 t. days

The further rise of the BOD curve can be attributed to the oxidation of ammonium
nitrogen salts by nitrifying bacteria (the 2nd stage). BOD changes may be also due to the
activity of protozoa.

The Ist stage is usually correlated to the decay of biodegradable organic compounds,
and the BOD is called carbon BOD in such cases. Table 6 presents the basic types of
equations describing the Ist stage.

Traditionally the BOD curves are expressed as

y = Ly(1—e~%% ; (50)

with two coefficients L, and K. Equation (50) follows from (16) at (I1—y)S, = L, and
v = 0, i.e. with an ordinary lIst order equation.
PHELPs offered equation (50) at the beginning of our century [25]. Later on equation
50) was found to disagree with experimental data and instead a 2nd order and a n-order
equations were proposed (tab. 6). HEWITT et al. [16] have shown that those could best
gree with the experimental data at larger values of n and L, (tab. 6), i.e. in cases when
o lost its usual physical interpretation as the ultimate BOD.
The n-order equation does not describe the auto-acceleration of the oxidation process
hich is usually related to the increase in the microorganism biomass. The traditional
growth models of microorganisms discussed in section 1 permit deriving more adequate
quations. Relationships (10) employed for a heterogeneous population of microorganisms
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Table 6
Formal models of BOD dynamics
Formalny model dynamiki BZT

Models of fixed dS/dt = —K,S"; y= Lov[(nfl)K,,H-Lé""]l/(l—") n=1 [25]
reaction order S = Lg—y n=21[42,44]

n >0 (any) [16]
Modified models
of 1st order y = Lo(1—e—K*(t—10)) [30]; v = Lo (1—e~K*)fyoeK* [40]
Models with K
variable rate  dS/dt = ——>S; §=Lo—y; y=Loll4(1+at)~K1i/e] (8]
constant 1+-at

growing on a mixed substrate can fairly well describe the 1st stage of the BOD curve [3].
Some other models can be also used [27].

The 2nd stage in the BOD curve (fig. 8) is usually correlated to nitrification processes
which can be also formally expressed by function (10) or by some others.

Describing the total BOD curve including both the 1st and the 2nd stages one takes
down the sum of the functions which were mentioned above. In this way under consideration
happen to be multistage BOD models [20, 23]. For example,

y = Lo (1—e™ ) f-(1—e*i=10)), (51)
carbon . nitrogen

Hereby the 2nd function is accounted beginning with the moment ¢ = #,. More com-
plicated functions of individual stages can be also included but in such cases the number
of parameters increases.

An interesting model for nitrification processes has been proposed by HARLEMAN [14].

8. DISCUSSION

Mathematical models describing processes of biochemical oxidation of organic pollu-
tants can be fairly relatively divided into three groups [37]: empirical, formal and simula-
tion ones.

An empirical model does not claim at getting too deeply into the “black box”. It descri-
bes the outlet (exit) variables as functions of the inlet ones and, as much as possible, mini-
mizes the number of empirical coefficients.

A formal model is written as differential equations with their right parts chosen in
such a way that the solutions could be presented as elementary functions. It considerably
limits the number of possible models. In such models the number of variables likewise
that of coefficients is usually selected to be small. Formal models already claim, in a way,
to describe the “mechanism” of the phenomenon. These models originate from the respec-
tive equations of formal chemical kinetics.
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A simulation model involves a great quantity of presumable links and considerable
numbers of variables and coefficients. It is numerically solved by computers.

As a matter of fact, all three groups are phenomenological. They are approximations
of the real processes occurring in nature.

Several levels of biochemical oxidation processes have been discussed above, namely:

some pure bacterial culture growing on a monosubstrate,

a heterogeneous population of microorganisms growing on a monosubstrate,

a complex of microorganisms growing on a mixed substrate, such as wastewater.

As a rule, the traditional formal models offered for the growth dynamics of pure cul-
tures can be also employed for a complex of microorganisms. As indicated by BRAUN [3]
the classic Monod’s model utilized for self-purification processes in rivers has some coeffi-
cients of fictitious nature. This model cannot be interpreted in the way it is for pure microor-
ganism cultures.

It has already been noted before, that the genuine (real) variable within the limits of
schemes available for describing processes of biochemical oxidation of multicomponent
pollutants is time. All other variables, such as the total concentration of the organic matter,
the microorganism biomass and the like are only collective notions. Solutions to differential
equation systems for extended variables are usually adapted to the respective experimental
points. In selecting the models one should primarily consider their simplicity and the mini-
mal number of their parameters.

As already shown above, the better agreement between the experimental data and the
formal n-order models can be attributed to the fact that the quasi-first order rate constant
derived from such models is a diminishing time function. In this way, time, somewhat
obliquely, is included in the right parts of these models.
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FENOMENOLOGICZNE MODELOWANIE BIODEGRADACJI WIELOSKELADNIKOWYCH
SUBSTRATOW

Praca podejmuje proby usystematyzowania modeli matematycznych dla procesu biochemicznego utle-
niania zanieczyszczen organicznych w masie wodnej. Zaproponowano kilka modeli uogélnionych. Wszystkie
modele podzielono w sposéb relatywny na 3 grupy: empiryczng, formalng i symulacyjna. W rzeczywistosci
wszystkie, te grupy modeli sa fenomenologiczne.

Wykazano, ze w tradycyjnych modelach formalnych wspéiczynniki majg z reguly charakter imagina-
cyjny, podobnie jak zbiorcze zmienne takie jak ogélne stezenie substancji organicznej, biomasa bakteryj-
na etc.

Prostota modeli i minimalna liczba ich parametrow sa waznymi kryteriami ich wykonalnosci.
Praca pordwnuje najlepsze z takich modeli i omawia ich pewne wiasciwosci wspolne dla wszystkich.

PHANOMENOLOGISCHE MODELLIERUNG DER BIODEGRADATION
MEHRSTOFFSUBSTRATE

* In der vorliegenden Arbeit wird eine Systematik fiir mathematische Modelle vorgestellt, die die bio-
chemische Umsetzung organischer Inhaltsstoffe im Wasser beschreiben. .

Im Laufe der Zeit wurden verschiedene generelle Modelle entwickelt, und diese wurden in drei Gruppen
unterteilt: empirische Modelle, formale Modelle und Simulationsmodelle.

Es lisst sich zeigen dass die in den traditionellen formalen Modellen enthaltenen Koeffizienten, gena-
uso wie die summarischen Messgrossen fiir die gesamte organische Verschmutzung, die vorhandene Troc-
kensubstanz als indirektes Mass fiir die biochemische Aktivitit und anderes mehr, die Wirklichkeit nur
unvollstindig wiedergeben.

Da in der Handhabung der Modelle ihre einfache Struktur als wesentlich ersheint, zielen wir in der
vorliegenden Arbeit darauf ab, sozusagen ,,die geringste Zahl von Parametern” bei Ausschopfung des
(ex post) vorhandenen Informationsgehaltes abzuschdtzen damit (ex ante) auch eine verldssliche Vorher-
sage gewihrleistet ist. In der vorliegenden Agbeit wird dabei der Versuch unternommen, gemeinsame
Eigenschaften verschiedener Modelle herauszuarbeiten und sozusagen ,,das beste Modell”” unter den jeweils
gegebenen Bedingungen zu beschreiben.
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XAPAKTEPHOE BPEMA U ®EHOMEHOJIOTMYECKAS ITPUPOJJA MATEMATUYECKUX
MOJEJIEN TTPOILIECCOB BMOXMMMYECKOIO OKMCIEHUSI MHOTOKOMIIOHEHTHBIX
3ATPA3HUTEJIEN

B cratbe naercsa CHCTeMaTH3alHs MAaTEMAaTHYECKHX MOJENeH NpOIECCOB OMOXMMHYECKOTO OKHCIIEe-
HUSI OPraHAYECKHUX 3arpsA3HUTENed BogoeMoB. IlpenararoTcs HEKOTOpble 0006IIEHHBIE MO/IEH.

Bce mMozmenu MOTyT GBITH YCIIOBHO pa3ZieiIeHbl HA TPHM IPYNNbI: 3MIOMpPHYECKHE, GOPMAILHBIE ¥ WMHU-
TagoHHble. ITo CyTH, Bce MOZeNH SBISAIOTCS (DEHOMEHOJIOTHYECKHMH.

IMokasbiBaercst, 4TO KOIQ(GHUIMEHTHI TPaAMIHOHHBIX (OPMABHBIX MOJENeH, KaK MPABHIO, HMEFOT
(GUKTHBHBIH XapakTep, TaKKe KaK H TaKde 0GOOGIIEHHbIE MepeMeHHbIC KaK 0o0mas KOHI[CHTpAaLAs Oopra-
HHYECKOTO BeIllecTBa, Omomacca GakTepuii M T. 1.

TIpocroTa Mozeneil ¥ MHHAMANIBHOE YHCIIO HAPAMETPOB SBISIOTCS BAXHBIMH KPHTEPHSME HX TIpa-
KTHYeCKOH moub3bl. B craThe maerca cpaBHeHMe Mozenel u 06CYKAAIOTCS HEKOTOpbIE OOIIME CBOMCTBA
JYyYIIMX MOJENeH.



