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A method of calculating the angle eikonal for curved holographic optical element is presented. As 
an example, a Fourier transform holographic lens is described, where wave fronts of the diffracted 
waves are constructed from the elementary holographic optical elements. The approach to the 
design of holographic lenses can be compared with that of the thin glass lens as its index of 
refraction tends to infinity. From this angle characteristic one can find the Seidel coefficients of the 
third order aberrations.

1. Introduction

The application of holograms as optical elements has been proposed by several 
authors, since their imaging properties are analogous to the lens imaging 
properties in conventional systems. Therefore, the holograms of a point source that 
may be considered as diffractive optical elements are known as holographic lenses. 
The latter are usually compared with thin glass lenses, their index of refraction 
being infinite. In recent years, there have appeared a number of papers [1] —[10] 
related to holographic optical elements (HOEs) imaging properties which proved 
to be useful for different applications. F lE N U P  and LEONARD [1] discuss the 
requirements and the performance of holographic lenses for matched filter optical 
processor, and have shown that the aberrations can be corrected in terms of the 
arbitrary desired aspheric wave fronts. The aberrations were analysed by using 
a holographic ray-tracing programme. Further, a method for analytical deter­
mination of the holographic element phase function is developed [2] —[4], and 
applied to the design of a Fourier transform holographic lens. Usually, the 
holographic optical element was recorded with the aid of a computer generated 
hologram (CGH) and was based on an analytic solution involving optimization by 
minimizing the output wave front deviations. In this paper, we present a simple 
design technique of a Fourier transform holographic lens having spherical wave 
fronts, recorded on a spherical substrate. As we know, a Fresnel zone plate can be 
considered as a special case of the holographic optical element. But zone plates are 
usually prepared on flat surfaces and have recently been investigated by many 
researchers [11] —[14]. In geometrical optics, the eikonal theory is a powerful 
method for the analysis of optical systems [15], therefore in this paper the angle 
characteristic of curved holographic optical element is given. In the determination
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of holographic element, the grating equation is used instead of the law of refraction 
in the conventional glass lenses systems.

2. Spherical holographic lens for Fonrier transform

A Fourier transform holographic lens is an optical element which converts each 
input plane wave having spatial frequencies £, rj into an unaberrated image point 
at the coordinates

=  yf  =  Wv

that are determined in the back focal plane of the holographic lens (Fig. 1). X is the 
wavelength of the illuminating light wave, and /  is the focal length of the lens. We 
see that the coordinates xft yf  are proportional to the spatial frequencies f, rj, 
respectively. In such a lens, any plane wave entering the lens from the left hand side 
should form a corresponding image point in the back focal plane, and likewise plane 
waves emerging from the right hand side of the lens should form the respective image 
points in the front focal plane. As it is well known, amplitude distribution in the back 
focal plane of an aberrationless holographic lens is the Fourier transform of the 
amplitude distribution i(x0,y0) in the front focal plane. For example, the Fourier 
transform of a spatially varying object amplitude transmittance gives the spatial 
frequency content in the object. In other words, if the 1-D object transparency

t{x0) = Acos^2tĉ ,  (1)

which is said to possess a spatial frequency a /lit  =  l/d is inserted in the front focal 
plane of this lens, then it produces two bright spots at a)/2n — ± l/d in the back focal 
plane of the lens. Obviously, the Fourier transform of a cosine function (1) is a sum of 
two delta functions, therefore two spots are produced in the Fourier plane at the 
points xf  = ±Xf/d. This fact reminds that a lens recorded by a single spherical 
converging wave and a single collimated wave will form only diffraction limited 
image point (called further unaberrated image point) in the Fourier plane for the 
single spatial frequency corresponding to that of the collimated recording wave. For 
the other spatial frequencies the points are aberrated and improperly located.

Fig. 1. Ray tracing in the curved Fourier transform holographic lens: /  — focal length of the lens, t(x0, y0) 
— object amplitude transmittance
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As we see, a simple holographic optical element of a point source does not satisfy 
the requirements for Fourier transform lens which has to cover a rather extended 
band of spatial frequencies. Therefore, for some finite set of spatial frequencies, 
a more complex holographic element should be considered, since in holographic 
optics the aberrations are not reduced by the use of well designed multiple-element 
lenses as it happens in conventional optics. Usually, the solutions for holographic 
lens design are restricted to single holographic element on a flat substrate. Here, we 
take into considerations a simple holographic element recorded on a spherical 
substrate, as shown in Fig. 2.

Fig. 2. Set-up for recording of an axial spherical HOE: L -  lens free from spherical aberration, B — beam 
splitter, S — spherical substrate of holographic lens

A holographic lens is a diffractive optical element defined by its phase transfer 
function

y) = y) ~  **(*, y) (2)

where # 0(x, y) and $ R{x, y) are the respective phase functions of the object point 
source and the reference wave fronts used to construct i t  If such a holographic 
optical element is illuminated by a wave front with the phase 4>ln(x, y) s  <PR(x, y \  
then the phase of the output wave front is «P^ttay) =  $ 0{x,y). The set of input wave 
fronts which illuminate a holographic lens is usually described by the phase 
<Pln(x, y: a). Each value of a denotes here the diffraction angle characterizing the input 
plane wave front spatial frequency. If <$out(x, y; a) is the phase for the perfect imaging 
set of output wave fronts [4], then the desired holographic element phase transfer 
function is

y; a) =  tfoJx, y; a) -  J x ,  y; a). (3)

Such a lens transforms perfectly the phase function # in(x,y;a) into ^ ^ (x , y; a) for all 
values of the diffraction angle a. In general, <PH(x, y; a) varies with a, therefore the 
holographic optical element defined by phase function of Eq. (2) performs ideally 
only for one value of a. For other values of a, there exists a difference between the 
two phase functions
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defining the wave front deviation from the Gaussian sphere. The problem is to make 
this difference as small as possible for all values of the diffraction angle a.

a

Fig. 3. Recording geometry for spherical holographic lens (a). Ray tracing of principle rays of the diffracted 
plane wave fronts at the aperture stop (b)

Let us consider the geometry of ray tracing through a holographic lens recorded 
as shown in Fig. 3a. According to this recording configuration, two unaberrated 
wave fronts in the image space are possible: the first spherical wave front is 
transformed from plane wave front, and the second plane wave front that is 
converted from the spherical one. If the centre of entrance pupil coincides with the 
point source used for recording this lens, the principle rays of all the diffracted plane 
wave fronts at the input axial symmetrical transparency are aberrationless after 
passing through the holographic lens (Fig. 3b). Such a readout geometry can be very 
useful in measurements of spatial frequencies of an angular spectrum of plane waves, 
since the images should be located in correct position of the output focal plane of 
the lens.

In the case of spherical substrate on which the holographic optical element is 
recorded, the phase transfer of such a lens depends in addition upon the surface 
function

F(x, y, z) =  z -  (:x2+ y2)/2R -  (x2+ y 2)2/8R3 (5)

and is given by
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*n(x,y) =  2n/X [(x2+ y2)/2{f-z) -  (x2+ y2)2/* ( f - z)3] (6)

where K is the curvature radius of the spherical substrate, and /  is the distance 
between the surface vertex and the point source emitting a spherical recording wave 
front (i.e., focal length of the lens).

3. Angle eikonal

According to the definition of angle eikonal [15], each optical length [Pc Pil of the 
ray between the feet Pc and Pj drawn perpendicularly from the points 0 C and 
(Fig. 4) to the incident and diffracted rays, respectively, is

T= IP cP l+ lP P J .

If the coordinates of intersection point P of the incident ray with the holographic 
element surface are (x,y,z), then the angle eikonal is given by

T= lxpc + y<lc + ( z - z c)mc] - [ x p I +yqI + { z - z I)mI'], (7)

where (pc, qc, mc) and (p^ qIf mx) are direction cosines of the incident and diffracted 
rays, respectively. In general, the interference fringes of the holographic element are 
curved and variably spaced. The grating equation [16] for the first diffraction order 
ray tracing is described by

n x (^ - ^ c )= — rt x(r0 - r R) 
xo

(8)

where n is the unit vector normal at point P of the HOE, and r*, iTc, r] are the
unit vectors along the reference, object, reconstruction and image rays at the 
intersection point P of the hologram surface. The construction and readout 
wavelengths are denoted by X0 and X, respectively. Using the above equation, the 
coordinates of the intersection point P in expression (7) may be eliminated, and the 
direction cosines of the diffracted ray are represented by equations:

Vi = Vc+ y Üo- P r\

<1i = <1c+ 7 ^ 0 - 3 * ) ,  (9)
xo

mi =  ! - ( ? /  + q})/ 2 -  ip} + q})2/ 8,

whereas the direction cosines of the incident ray are connected by the equation

m c  =  \ / l - ( P c  + qc) *  1 - ( P c + 9c)/2-0>c+ 9 c)2/8 . . .  -

To find the normal at the point P(x,y,z) of the hologram surface, the partial 
derivatives of the surface normal are given by
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dF r x . x { x z + yz),
d x ~  |_ * ' 2 R3 '

dF [ y . y(x2+ y2) ,
dy [ ä  ' 2R 3 ’

Fig. 4. Illustration of angle eikonal T — [P c p i \  f°r a curved holographic optical element

According to the general diffraction grating approach by GOTO, KATO and 
TOGAWA [17], we assume that the grating is composed of many local elementary 
gratings and we introduce unit vectors: A , G and n to each point of the grating in 
such a way that A  is perpendicular to the interference fringes, G — parallel to the 
fringes and n — normal to the grating surface, respectively. These vectors are 
connected by the equations:

n x V^hCk̂ z)
\n xV<PH(x,}',z)| ’

Ä = Ü x n . (10)

Here, the spatial frequency of an elementary grating is given by 

co = \n xV #H(x,y,z)|

where gradient of the phase transfer function recorded on the curved surface is 
represented by V#H(x,y,z). Denote by rA, rG and rn the components of the unit ray 
vector 7 C with respect to A , G, and n. Then

Tc = rAZ+rcG'+r,n,
and the unit vector F , of diffracted wave front by applying the grating equation to 
elementary grating is as follows:

F 7 =  t'aA  + r ^ ( T +r; n ,  (11)

where
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r'A- r A = (Ofk, r'G- r G = 0, /„ = y j l - r ' i - t ' i ,

k =  2nfX is the wave number of light used. By solving the grating equations:

where Ax and Ay being quantities of the third and higher orders in p, q, x /R , y/R 
may be neglected. To find the expansion of the angle eikonal up to the fourth order 
terms it is not necessary to evaluate Ax and Ay. Using the notation:

“2 = Pc+ 9c, v2 =  Pi +  qh w2 = PcPi+qc<li>

we obtain the expression of the angle eikonal in the form

4. Conclusion

The angle eikonal for curved holographic optical element has been derived. The 
consideration is based on the theory of elementary grating developed by Goto, Kato 
and Togawa. From these results, the Seidel coefficients of the third order aberrations 
can be determined.
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