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The numerical properties of the direct recovery method are discussed from the 
viewpoint of their importance in the problem of the image intensity reconstruc­
tion from the discrete and finite set of measurement results obtained by a square- 
law sampling system. The effect of many factors like: number of sampling 
points, value of sampling step, sizes of the integrating element and the like, on 
the numerical aspects of the procedure considered is examined. Both one- 
and two-dimensional cases are analyzed. It has been shown that the direct 
recovery method is very sensitive to even very small changes in the intensity 
spread function.

Introduction
In the most considered reconstruction procedures it is assumed that the 
amplitude or intensity distribution is known within the whole region of 
the image or in its chosen part (see [1 ,2 ], for example).

Under typical experimental conditions this assumption is not fulfilled 
and the image is represented by a finite number of measurement results 
that depend on the measurement system and the configuration of measu­
rement points.

This situation was discussed in the works [3-6], where a method of 
image intensity distribution from the discrete and finite set of the meas­
urement results was proposed. This method was called the direct recovery 
method to emphasize its direct connection with the measurement results. 
Since the results obtained from the measurement performed by locating 
consecutively the measuring system with a square law detector at the 
respective points of the image plane are not identical with the image 
intensity distributions, the basic task of the reconstruction procedure is 
to recover the latters.

In this paper we Will discuss some properties of the direct recovery 
method which are important for numerical examinations.

Direct recovery of the image intensity distribution for the inco­
herent imaging
For the sake of convenience we will remind in this section some ideas 
and notations used earlier in the works [3 ,4 ]. Let the unknown incoherent 
object intensity distribution I ob(a,/?) placed at the plane P I (fig. 1) be
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Fig. 1. Schemes of the imaging (I) and measuring (II) systems, respectively

imaged onto the plane Pu  by the optical system I producing the image

In the image plane N  measurements of the image intensity distribution 
are performed by the measuring system II located consecutively at the 
respective N  points of this plane.

Assume that the measuring system consists of the optical part imaging 
the object intensity distribution I ^ p ^ q )  onto the plane II and of an 
integrating element (square-law-detector) located in this plane, which 
transduces the whole incident light energy into a signal of different nature 
(an electric signal, for instance). In the simplest case the measuring system 
II may be reduced to the integrating element alone placed immediately 
in the image plane P n .

As it is well known the operation of a linear stationary optical system 
with incoherent illuminator may be described by an integral operator 
associating the object intensity distribution I oh (a, /?) with the image 
intensity distribution I^ip^q)  by the formula

=  f  lob (a, P)q>i (p -a ,q -P )a a d p .  (1)

The kernel of this integral transformation is the incoherent point 
spread function for the magnification of the imaging system normalized 
to unity.

Analogically, the imaging by the optical part of the measuring system 
may be described as

I (u ,v )  =  J I im(p, q)<pu [ u - ( p - p k) , v - { q - q k)]dpdq, (2)

where <pu [u — (p — pk), v — (q— qk)] denotes the incoherent point spread 
function for the imaging system II positioned at the point (pk, qk) ’, the 
magnification of this system being also normalized to unity.

In order to determine the correlation between the measurement result 
and the real intensity distribution in the image I im(p,q)  if suffices to
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notice that the functional [7]:

® ( p - p k, f f-& ) =  J <PU[.U-(P -P k ) i  v - ( q - q k)]dudv (3)
E

informs by definition what part of energy coming from any image point 
(p , q) reaches the integrating element at the position (pk, qk) of the measuring 
system.

If the measurement result at the image point is understood as the 
value of the energy reaching the integrating element (pk, qk) then the 
measurement may be written in the form of an integral transform of the 
object distribution Job(P,q) [4], he.

yiPk, &) =  /  ff) du dv =  J l im(p , q) ® { p - p k,q -q k) dp dq. (4)
E

By assuming that an unknown object consists of an array of finite 
number of lighting points

N

i=i
and substituting this expression to the eq. (1) and next the resulting ex­
pression to (4) the dependence relating the measurement results with the 
quantities characterizing the imaging and measuring systems is obtained

N

y(Pk, Sk) = 2 ]  f  c y i p - o t ,  Q .-P i)x® (p -Pk,q -qk)dp  dq, (6)
i= 1

or shortly
N

y(Pk,qk)=
1

where the matrix

№ .*} dP dq\ (8)

called the reconstruction matrix [4] has the elements defined completely 
by the properties of the imaging system I and measuring system II.

The order of this matrix is defined by the number of sampling (meas­
uring) points h =  1 , . . . ,  N.

The solution of the system of linear eqs. (7) with respect to the unknown 
weighting coefficient Ci allows to reconstruct the real intensity at the 
discrete points of the image [4] as:

N

I(Pk Uk) =  2Jci<p1(ai - p i , P i-qk). (9)
i=i

It is evident that this solution is unique if and only if we know that 
the object has exactly the structure assumed in (5), i.e. if we know exactly 
the positions of the lighting points. It is usually not the case. In the general
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case in order to find the extreme (maximal and minimal) possible a posteri­
ori image intensity distributions still consistent with the same set of measu­
rement results y(pk, qk) let us first assume that the subsequent positions 
of the measuring system II coincide with the local maxima of the intensity 
distribution to be recovered. Let us additionally assume that the recovered 
intensity distribution is generated by an object of the form (5) with 
suitably positioned lighting points (fig. 2a). Under such an assumption 
the respective reconstruction matrix will be called the upper bound recon-

Fig. 2. The mutual configuration of the sampling points ( x )  and imaged points (O )
in the case of:

a. upper bound reconstruction (the sampling points coincide with the imaged points), b. lower bound  
reconstruction (the sampling points lie between the imaged points)

struction matrix [4]. The corresponding image intensity distribution 
estimated from eq. (1) will assume the possible values of the light intensity 
at the sampling point (pk, qk) 4, i.e.

N

«*)=■ Zcr'v̂i-v*,ft - f c ) .  (10)
i— 1

When considering an opposite situation, i.e. when assuming that the 
same positions (pk, qk) of the measuring system coincide with the local 
minima of the sought image intensity distribution (fig. 2 b) (again assumed 
to be generated by the suitably positioned object of the form (5)) also 
consistent with the same measurement results, we obtain the other extreme 
(minimal) intensity distribution by using the same recovery procedure. The 
matrix of this recovery procedure will be called the lower bound recon­
struction matrix and the reconstructed image intensity distribution 
at the points (pk, qk) given by
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N

9m ) =  ^ C T ^ ^ - P m, & - Q m) ( 11 )
i = l

will be respectively the lower bound image intensity distribution. From 
eqs. (10) and (11) it is evident that by applying the above recovery proce­
dure we may obtain many solutions, i.e. many image intensity distribu­
tions at the sampling points which would be contained between the above 
extreme cases represented by qk) and r oin{pk, qk).

The knowledge of the extreme values of the image intensity allows to 
determine in a natural way the reconstruction (measurement) error defined 
as

at each sampling points (pk1 qk), as well as the average reconstructed 
image intensity distribution defined as

The method and the algorithms useful in numerical calculations 
of the matrix elements Bki for the aberration-free optical systems of 
rotational symmetry have been presented in [6] under the assumption 
that the imaging and measuring systems are space-invariant.

Numerical properties of the direct recovery method

In this section we will discuss some numerical properties of the direct 
recovery procedure important from the practical viewpoint. In particular, 
we shall examine the effect of such factors like: the number of sampling 
points, the step of sampling, the size of the integrating element and the 
like, on the construction procedure. Both the one-dimensional and two- 
dimensional cases are analysed.
Calculations were performed for the diffraction-limited system of /-number 
4.5 under assumption that the object was located at infinity.

The measuring system was reduced to a circular integrating element 
of BE =  0.0016 mm radius, while the wavelength of the incident light 
beam was A =  0.00058 mm. As it will be shown later the reduction of the 
measuring system to a uniform integrating element only has no essential 
influence on the reconstruction results for the diffraction-limited systems.

The distance between the sampling (measuring) points in the image 
intensity distribution was assumed to be equal to the Bayleigh resolution 
distance.

(12)

< I > = j  Ittai(PM,PM)+Im<■ (13)
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For the one-dimensional objects the reconstruction procedure has been 
examined for k =  2 , . . . ,  5, and k =  10 sampling points (table 1), while 
for two-dimensional objects the respective numbers of the sampling 
points were k =  4, 9, 25, and 49 (table 3). For numerical purposes we 
have postulated the measurement results y{pk, qk) at the sampling points 
to be equal to unity, except for the boundary sampling points (tables 1

T a b le  1

Postulated distribution of the sampling results for one-dimensional 
object for different numbers of the sampling points

Number of 
sampling 

points

Postulated distribution of the intensity
results

2 1 0.5
3 1 1 0.5
4 1 1  1 0.5
5 1 1 1 1 0.5

10 1 1 1 1 1 1 1 1

measurement

1 0.5

T a b le  2

The influence of the number of sampling points on the reconstruction 
of the intensity distribution in the one-dimensional objects

Number of 
sampling 

points

Reconstructed upper bound image intensity 
jm a x

distribution

2 0.188 0.086
3 0.184 1.187 0.087
4 0.185 0.173 0.179 0.087
5 0.185 0,174 0.174 0.179 0.087

10 0.185 0.174 0.175 0.175 0.175
0.175

i
0.175 0.175 0.178 0.087

Number of 
sampling 

points

Reconstructed lower bound image intensity
jm in

distribution

2 0.136 0.066
3 0.136 0.136 0.068
4 0.136 0.134 0.136 0.068
5 0.136 0.137 0.137 0.138 0.068

10 0.137 0.137 0.137 0.137 0.137
0.137 0.137 0.137 0.136 0.068
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T a b l e  3

The postulated intensity distribution in the two-dimensional objects 
depending on the number of sampling points. For the values underlined 

the reconstructed intensities are represented in table 4

Num­
ber of
sam- Postulated distribution of intensity measurement results
pling
points

49 1 1 1 1 1 1 0.5
1 1 1 1 1 1 <15
1 1 1 1 1 1 0.5
1 1 1 1 1 1 0.5
1 1 1 1 1 1 0.5
1 1 1 1 1 1 0.5

0.5 0.5 0.5 0.5 0.5 0.5 0.2
29 1 1 1 1 0.5

I I I 1 0.5
1 1 1 1 0.5
1 1 1 1 0.5

0.5 0.5 0.5 0.2 0.5
9 1 1 0.5

1 1 0.5
0.5 0.5 0.2

4 1 0.5
0.5 0.2

and 3) for which the half-values were assumed. Such an assumption is 
connected with the accepted configurations of the sampling and imaged 
points, respectively (fig. 2). Hovewer, by comparing the situation of the inte­
grating element, as positioned at the points k =  7, and k =  10, for instan­
ce, it may be seen that at the point k =  7, the result of measurement 
is influenced by the contributions coming from a greater number of neigh­
bouring image points than e.g. k =  10. Thus, it may be expected that the 
result of recovered image intensity will be greater for k =  7 than for k =  10, 
since it is only one of many contributors to the respective measure­
ment results. Of course, the postulated results of measurements (tables 1 
and 3) are some of infinitely many possible free terms of the reconstruction 
eq. (7). It should be noticed that for physical reasons all the solutions of this 
equation fulfil the condition 0. This condition is fulfilled automatically, 
when the real measurements are performed, however, it may be violated 
when the measurement procedures are simulated. In the later case the
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T a b l e  4

The influence of the number of sampling points on the image 
intensity reconstruction for the two-dimensional objects. In this table the 

results for selected points from the table 3 are used

Num­
ber of 
samp­
ling 

points

Reconstructed upper bound image intensity distribution I max

49 0.175 0.166 0.166 0.166 0.166 0.171 0.083
0.083 0.080 0.080 0.080 0.080 0.082 0.030

25 0.178 0.169 0.170 0.174 0.185
0.085 0.082 0.082 0.084 0.031

9 0.178 0.175 0.082
0.085 0.083 0.034

4 0.185 0.085
0.085 0.027

Reconstructed lower bound image intensity distribution P 11111

49 0.071 0.073 0.073 0.073 6.073 0.071 0.032
0.032 0.034 0,034 0.034 0.034 0.033 0.017

25 0.079 0.081 0.081 0.079 0.041
0.041 0.042 0.042 0.041 0.017

9 0.078 0.079 0.040
0.040 0.041 0.017

4 0.163 0.057
0.056 0.022

appearance of the negative solutions signals the inproper assumption of 
the measurement results.

From the calculated examples it follows that the reconstructed image 
intensity distribution depends only weakly on the number of sampling 
points.

This property of the direct recovery is worth noting due to its practical 
importance. It eliminates the necessity of solving a great number of 
linear eq. (7) (in order to obtain the sufficient accuracy in the reconstruc­
tion process) which would have a disadvantageous influence on the nume­
rical calculation accuracy.

Except for reconstruction reduced to two measuring points in the case 
of one-dimensional object (table 2) and for the reconstruction of four 
measuring points in the case of two-dimensional objects (table 4), the other 
examples of the calculated intensity distribution differ slightly from one 
another, in spite of the fact that the number of measuring and imaged 
points increases. In the case of the linear object recovery the changes of 
the reconstruction errors do not exceed 1 % for Jc> 2, while for the
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two-dimensional objects the reconstruction error stabilizes for h >  4. 
In the examples discussed the increase of the number of sampling points 
causes an increase of the reconstructed region. The opposite case, i.e. the 
increase in the sampling point number occurring within the same region, will 
be discussed in details in the next section.

T h e in flu en ce o f the sam pling step on th e im age intensity  recovery

Similarly as in the previous cases, the calculations were performed for 
the imaging system of the/-number 4.5 and the integrating element of the 
circular shape and the radii BE =  0.0032 mm and BE =  0.0016 mm, 
respectively.

The discrete (punctual) image intensity distribution has been reconstruct­
ed in a two-dimensional region by using 25 sampling points located as 
indicated in fig. 2.

The changes of the reconstructed upper and lower bounds of image 
intensity distributions due to the increasing sampling step (d — 0.0032, 
0.0038, 0.0064 mm) are illustrated in figs. 3-8. The subsequent numbers 
denote the sampling points, while the primed numbers denote the reduced 
upper bound intensity. The reconstructed upper and lower bound values 
of the intensity are mutually connected with some arrows. For instance, 
for the point 16 the result of sampling is assumed to be equal to 1 (table 3). 
As a result of reconstruction two values of the extreme admissible image 
intensity at this point are obtained (joined with an arrow in fig. 3). This 
should be understood so that all the possible values of real image intensity 
corresponding to the given sampling result lie within this interval.

From the figures 3 ,4 ,  and 5 it may be seen that with the increase of 
the sampling step the values of AI =  £|Zmax — Imin| increase, while the 
differences between the reconstructed average values of the image intensity 
are small for the middle points of the reconstructed region. By reducing 
the integrating element radius to its half-value (figs. 6-8) for the same 
sampling steps the observed diffraction effect of the reconstructed intensity 
distributions is much lower, in spite of the fact that the result of sampling 
in both the cases is the same. The greatest changes in the reconstruction 
error AI =  \\I max — Imin| are observed for the middle points, while the least 
ones occur at the edge points, i.e. for Tc =  1, 5,15,  20, and so on (fig. 3). 
It turns out that the diversity of the reconstructed image intensity distri­
butions depends on whether the energy contributions from the object 
points, reaching the integrating element at its given position, come from 
the central region (spread up to the first minimum) of respective spread 
function and called further the region I (of radius B\) or from its boundary 
regions only.

By comparing the estimates of the reconstruction errors AI given in 
table 5, for the integrating elements BE =  0.0032 and BE =  0.0016 mm

4 — Optica Applicata X/4
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Fig. 3. The upper and lower reconstruction of the image intensity reconstruction. 
The /-number of the imaging system 4.5, the radius of the integrating element Be  

=  0.0032 mm, the sampling step d =  0.0032 mm

and the same sampling steps d =  0.0032 it may be easily noticed that, 
despite the fact that the number of image points contributing to particular 
results in both reconstruction processes is approximately the same, the 
reconstructed image intensity distributions in the second case (fig. 7) 
are much less diversified than in the first one (fig. 4). Similarly, by com­
paring the results given in table 5 for E =  0.0032 mm and d =  0.0064 it 
may be seen that the reduction of both the sampling step and the integra­
ting element radius by the factor 1/2 causes an essential increase of the 
number of image points taking an immediate part in the image intensity 
reconstruction procedure at the ft-th sampling point, but it only slightly
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Fig. 4. The upper and lower bound reconstruction of the image intensity distribution. 
The /-number of the imaging system 4.5, the radius of the integrating element Be  

=  0.0032 mm, the sampling step d =  0.0038 mm

affects the diversity of the reconstructed image intensity distributions 
corresponding to this situation (graphs in figs. 6 and 7). Thus the dominant 
effect on the reconstructed intensity distribution does not depend so much 
on the number of the image points taking immediate part in the reconstruc­
tion but on the fact that the energy contributions from these points come 
from the region limited by the first minimum of the spread function (as 
within this region the spread function changes most rapidly). This is 
explained in fig. 9 which illustrates the mutual positions of the inte­
grating element and the spread functions associated with the positions of 
two closest image sampling points in the case of the image intensity 
reconstruction presented in figs. 3 and 5, and in figs. 6 and 8.

If the energy contributions from the closest neighbours come from the 
regions II of the respective spread functions, i.e. if the condition d <  RE -\-R\



362 R. Nowak, I. W ilk

Fig. 5. The upper and lower bound reconstruction of the image intensity distribution. 
The /-num ber of the imaging system 4.5, the radius of the integrating element Be  

— 0.0032 mm, the sampling step d =  0.0064 mm

is fulfilled (fig. 9ab and the graphs in fig. 3) then the reconstructed 
upper and lower bound intensity values are the more diversified the 
greater the energy contribution coming from the region I of the spread 
function. The degree of diversity of the reconstructed image intensity 
distributions lowers with the decrease of the energy contributions from the 
region I of the spread function. For the reasons discussed above the effect 
of differentiation of the reconstructed intensities for particular sampling 
points is much more distinct in the case of the upper bound reconstruction 
than in that of the lower bound reconstruction. When the energy contribu­
tion comes from the periphery regions of the spread function, i.e. when 
the condition d >  (figs. 9cd) is fulfilled, the reconstructed
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Pig. 6. The upper and lower bound reconstruction of the image intensity distribution. 
The /-number of the imaging system 4.5, the radius of the integrating element Be  

=  0.0016 mm, the sampling step d =  0.0032 mm

values of intensity are the same for all the points (except for the marginal 
ones) or differ only slightly (fig. 5).

The example presented in fig. 8 requires a separate analysis. Here the 
effect of inversion of the extreme intensity distributions is observed. It 
appears namely that the reconstructed lower bound intensity distribution 
turns out to be greater than the respective reconstructed upper bound
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Fig. 7. The upper and lower bound reconstruction of the image intensity distribution. 
The /-num ber of the imaging system 4.5, the radius of the integrating element Re  

=  0.0016 mm, the sampling step d — 0.0038 mm

intensity values. For the sampling steps much greater than the sizes of 
the integrating element and the radii jRJ, of the first minimum of the 
spread function (which is the case in the example given above) the
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Fig. 8. The upper and lower bound reconstruction of the image intensity distribution. 
The /-num ber of the imaging system 4.5, the radius of the integrating element Re  

=  0.0016 mm, the sampling step d =  0.0064 mm

lower bound reconstruction process is based only on small energy 
contributions from the boundary region of the spread function. These 
contributions are very small in comparison with those coming from the 
region I of the spread function (and having the decisive influence on the 
upper bound reconstruction process) and additionally suffer from a greater 
numerical error. That is why the solution of the reconstruction equation
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T a b l e  5

The influence of the number of imaged points on the reconstruction 
error A I ; B E — radius of the integrating element, k — sequential 

number of sampling points, d — sampling step, 8nPPer, $ lower — number of 
the image points taking immediate part in the intensity reconstruction 

at the ft-th sampling point

d == 0.0032 mm d — 0.0064 mm
k B e

#apper ^flower A I
X 10~2

gupper flow er I  =  10~2

1 8 13 4.06 3 4 5.62
2 11 16 0.98 4 4 5.56
3 a 13 16 2.06 4 4 5.56
4 a 11 13 3.19 4 4 5.60
5 eo 8 9 0.40 3 2 2.78
7 oo 15 20 1.60 5 4 5.50

13 o' 21 21 1.03 5 4 5.50
19 15 13 2.47 5 4 5.56
25 8 6 0.85 3 1 1.66

1 8 9 4.92
2 11 12 4.34
3 a 13 12 4.45
4 a 11 9 4.66
5 to 8 6 2.22
7 o 15 16 3.88

13 o' 21 16 4.05
19 15 9 4.99
25 8 4 1.32

(7) obtained for the same postulated results of sampling are inconsistent 
with physical intuition. The intensity inversion caused by the decrease of 
numerical accuracy may be observed for great sampling steps and small 
integrating elements (BE 4  B\) both for the single points and the whole 
reconstructed region. However, in the case of aberration-free systems the 
inversion is always a signal that the accuracy of numerical calculations 
is insufficient.

T he in flu en ce o f th e im agin g  system  f-n u m b er an d  the sizes o f the integra­
tin g  elem ent on the im age intensity  distribution

The change of the imaging system /-number may cause the respective 
changes of the conventional domain of the intensity spread function.

The effects observed by increasing the /-number of the imaging system 
should be similar to those occurring for increased sampling steps. In fact, 
the graphs of the lower and upper image intensities (fig. 10) as well as the
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Fig. 9. Changes in the mutual position of the spread function and the integrating 
element (detector) vs. the sampling step

a — upp er reconstruction, b — lower reconstruction, c -  upper reconstruction, d — tlower reconstruction

changes in the reconstruction error caused by an increase of the /-number 
confirm this supposition.

The changes in the extreme recovered intensity distributions caused 
by an increase of the integrating element sizes may be interpreted in 
a similar way (fig. 11).

The course of these curves may be also justified in another way by 
comparing the average reconstructed values of intensity with the correspond­
ing average intensities calculated as

/ „ , / ^  „  y ( P k i  Q.k) m - 6
<y(Pk1 ff*)> =  -------« ---------1 0  ’ (14)
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Fig. 10. The influence of the change in the /-num ber of the imaging system on the 
upper and lower hound reconstruction of the image intensity distribution (for Jc points 

from the reconstructed region diagonal, Be  =  0.0032, d =  0.0032)

where y(pk, qk) is the result of sampling in the k-th sampling point normed 
for numerical reasons by the factor 10-6 , and SE denotes the area of the 
integrating element. From the eq. (14) it may be seen that for fixed results 
of sampling the increase of the integrating element should cause the 
respective decrement in the average reconstructed intensity distribution, 
which may be also observed in fig. 11.

The numerical results in table 6 indicate very good agreement of the 
average intensity values calculated from (14) with those of the average 
reconstructed intensities. These agreement becomes poorer for greater 
distances between two successive sampling points. In the case of inversion 
of extreme intensity distributions caused by diminishing estimation 
accuracy of the reconstruction matrix elements the average reconstructed 
intensity may be several times greater than that calculated from (14).
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Fig. 11. The influence of the changes in the size of the integrating element radius 
on the upper and lower bound reconstruction of the image intensity distribution 
(for selected image points from the diagonal of the reconstructed region). The /-number

4.5, d =  0.0032 mm

Fig. 12. A comparison of the reconstruction errors for unreduced and reduced measuring 
systems (for the points lying on the diagonal of the reconstructed region)
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T a b l e  6

A  comparison of the average postulated intensity distribution with the 
average reconstructed one

B e  =  0.0016 mm /-num ber 4.5 d =  0.0032 mm

Average postulated intensity 
distribution

0.124 0.124 0.124 0.124 0.062
0.124 0.124 0.124 0.124 0.062
0.124 0.124 0.124 0.124 0.062
0.124. 0.124 0.124 0.124 0.062
0.062 0.062 0.062 0.062 0.037

Average reconstructed intensity 
distribution

0.128 0.125 0.125 0.125 0.063
0.125 0.123 0.123 0.124 0.062
0.125 0.125 0.124 0.124 0.062
0.125 0.124 0.124 0.125 0.062
0.063 0.062 0.062 0.062 0.038

E ffect o f the m easu rin g system  reduction  on the reconstruction  process

The intensity measurement in the image plane may be carried out in two 
ways: either with the help of the measuring system (optical part plus the 
integrating element), or by locating the integrating element immediately 
in the image plane at the respective sampling point. In table 7 and in fig. 12 
the reconstructed errors for both these cases are compared under assump­
tion that the /-numbers of both the systems are the same and the radius

T a b l e  7

A comparison of the reconstructed intensity distribution obtained with the 
help of unreduced and reduced measuring system. The /-numbers of the imaging and 

measuring systems are assumed to be the same

Unreduced measuring system Reduced measuring system

Upper bound image intensity distribution 
I max x 10-1

Lower bound image intensity distribu­
tion I max x 10-2

1.739 1.672 1.676 1.710 0.837 1.604 1.608 1.608 1.606 0.804
1.674 1.596 1.599 1.638 0.798 1.608 1.612 1.612 1.610 0.806
1.676 1.596 1.601 1.640 0.799 1.608 1.611 1.612 1.610 0.806
1.710 1.637 1.640 1.676 0.821 1.606 1.610 1.610 1.608 0.805
0.837 1.798 0.799 0.821 0.306 0.804 0.806 0.806 0.805 0.323

Lower bound image intensity distribution 
pnin x 10-2

Lower bound image intensity distribution
jmin x 10-3

5.548 7.384 7.384 5.548 3.511 2.597 3.433 3.433 2.597 1.633
7.348 9.183 9.183 7.384 4.618 3.433 4.268 4.268 3.433 2.134
7.384 9.183 9.183 7.384 4.618 3.433 4.268 4.268 3.433 2.134
5.548 7.384 7.384 5.548 3.511 1 2.597 3.433 3.433 2.597 1.633
3.511 4.618 4.618 3.511 2.611 1.633 2.134 2.134 1.633 1.188
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of the integrating element is four time less than the sampling step. The 
magnification of the system II is assumed to be equal to unity. As a result 
of the image intensity reconstruction from the sampling data obtained 
with the reduced system (integrating element) the recovered intensity 
distributions and the reconstruction errors are less than those obtained 
by using the nonreduced measuring system, but the general character of 
the changes in both cases remains the same. This results is only an example, 
which should not be generalized without due criticism.

Conclusions

In summing up the examples discussed it may be stated that:
a. The direct recovery method is very sensitive to the changes in 

intensity distribution within the aberrational spot.
b. There exist some limitations in the selection of sampling steps caused 

both by diminishing accuracy of numerical calculation for large sampling 
steps and by some objective properties of the imaging system.

The direct recovery procedure for the sampling steps not less than the 
respective Rayleigh distances may be suecesfully performed. By choosing 
the integrating elements to be small enough it is possible to make the samp­
ling steps even smaller than the Rayleigh distance with the recovery 
procedure still working. For instance, for the imaging system of the /-num­
ber 4.5 by reducing the radius of the integrating element to its half-value it 
is possible to diminish the sampling steps to the value d =  2 · 10~4 mm. For 
the further reduced sampling steps there appear negative roots of the recon­
struction eq. (7) which is inconsistent with their physical sense and may be 
considered as a signal that the applicability limits of the recovery procedure 
have been overcome. This limitation of the least admissible sampling 
step is comprehensible. It may not be less than the distance corresponding 
to the cut-off frequency of the system. For instance, for the aberration-free 
system of the /-number 4.5 and the wavelength A =  0.0058 mm the cut-off 
frequency is / co =  382 mm-1 and the corresponding sampling steps is 
d =  0.0026 mm.

There exists also some limitation of the maximal sampling step. This 
follows from the fact that for numerical reasons the domain of the spread 
function is reduced to the second (or third) minimum, i.e. the sampling 
step must fulfil the condition

d <  2RE +R*Imin,

where RIlmm is the radius of the spread function domain. In reality, the 
reduction in the numerical calculation accuracy of the matrix elements 
for the border values of the spread function makes this distance still 
lower.
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By changing the sizes of the integrating element it is possible to shift 
the limiting value of the sampling step. For the small integrating elements 
the achieved sampling step may be slightly less than the Rayleigh distance 
but then the upper admissible value of the sampling step is lowered (to 
the distance close to the second maximum of the spread function). For the 
large integrating elements small sampling steps may not be realized*. 
For instance, for the imaging system of /-number 4.5, and the integrating 
element radius BE — 0.004 mm the last sampling step is d =  0.0045 mm 
but then the maximal admissible distence between the sampling points 
is much greater.
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Численная реконструкция распределения интенсивности 
в некогерентном изображении. I . Дифракционные системы

Обсуждаются свойства метода непосредственной реконструкции распределения интенсив­
ности в изображении. Этот метод даёт возможность воспроизвести предмет наблюдения 
на основе его измерительных данных. Исследовали с помощью численных данных вли­
яние многих факторов, таких как число точек испытания образца, шаг испытания, размеры 
интегрирующего элемента на обсуждаемый способ реконструкции. Рассмотрен случай как 
одномерный, так и двумерный. Показано, что метод непосредственной реконструкции очень 
чувствителен даже на небольшие изменения распределения интенсивности в аберрационном 
пятне.

* The remarks are valid for the numerical reconstruction, especially if applied 
to the numerically simulated experiments considered in this paper. They have to be 
reconsidered if applying the recovery procedure to the sampling of the real images.


