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The aberration coefficients of Fourier holograms*

Anna Pulka

Institute of Physics, Technical University of Wroclaw, Wroclaw, Poland.

In this paper an attempt of determining the aberration coefficients of Fourier
hologram is made taking account of the fact that both recording and reconstruc-
tion of this type holograms involve the action of a phase element (a lens). For this
purpose the optical path travelled by the light beam should be analysed between
the focal planes of a thin lens. Next, the coordinates of the reconstructed image
were determined. Finally, the aberration coefficients of the images reconstructed
from the hologram were determined. The conditions for correcting the spherical
aberration have been discussed.

Introduction

Tire paper by Meier [1] being fundamental in the field of hologram
aberrations, deal» with the case of free propagation of the light waves
emitted by the point object, the reference, and the reconstructing sources
to hologram plane. In the present paper an attempt is made to determine
the aberration coefficients of the Fourier holograms which appear during
the recording and reconstruction due to the presence of the phase elements
{lenses).

For this purpose the course of the light ray between the focal planes
of the thin lens was analysed. Next, the coordinates of the images recon-
structed from the Fourier hologram were determined under assumptions
that both the changes in the used wavelength and the hologram scaling
are admissible.

At the final stage of the consideration the aberration coefficients
for the reconstructed object wavefront were represented as a function
of the lens parameters and the extraaxial coordinates of the points P, B,
and O.

The correction conditions for spherical aberration were also given.

The determination of the phase changes occurring during the
passage of the ray between the focal planes of a thin lens

In the figure 1 a thin lens L is schematically presented together with its
both focal planes. An arbitrary point P of coordinates (xP, yP) is chosen
in the object focal plane. Two rays were led out of this point. One hits
the lens plane at the point M of coordinates (u, v) and reaches the chosen
focus plane at the point Q of coordinates (x',yf). The other ray, being

* This work was carried out under the Research Project M.R. 1.5.
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Fig. 1. The auxiliary figure to determine the phase during the passage between the
focal planes

parallel to the optical axis of the lens L in the object plane, hits the image
focal plane at the point 0 of the coordiantes (0,0). MO0 denotes the point
of incidence of the second ray at the lens plane, its coordinates being
u0 = xP, and v0 = yP.

These two rays will be used to determine the phase changes correspon-
ding to the passage of the light wave between the points P and Q with
respect to the point 0. The phase change of interest may be defined in
the form of the following formula:

<Pp@®, y") = (PM+MQ) + /Ne,,] - 1, (@

where PM, MQ,PMO0, M0O —denote the paths travelled by the light rays
between the respective points, A&M — the phase change introduced by
the lens at the point M{u, v), AOMg — the phase change introduced by
the lens at the point MO0O(u0, v0), X —the wavelength of the light emitted
from the point P.

The paths travelled by the rays in the regions of free propagation are
estimated geometrically. Next, the expression under the square root are
expanded into series by taking account of three first terms of the expression.

Let us notice that between the coordinates of M , P, and Q the following
relations are valid

u=x+f tan cp= tf'-fFXp, v = y-\-f tan =y +yP. (2)

where aP is the angle created by the collimated light beam with the
z axis in the plane x’z behind the lens, and, analogically, fiP is the angle
created by this beam with the z axis in the y'z plane.
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Thus, the paths travelled by the rays in the regions of free propagation
may be written as follows:

PM = [(u-Xpf + (v-ypf +f f3%/+
X'*+2xfy'2+y'*
St 3)
mqg = w -uf+(y-vyY+fr =f+n
(4)
PMO = [(u0-xP)2+ (VO-y P2+ f2f 2 =/, (5)

aP -\3P XP +2 xPyP -{-yP

MOO = Jul+vI+f2lI2=/+
[ 2 8/3 (6)

Basing on the works [2,3] we will determine the change of phase
given by the lens at the points M, and MO. For our purposes we shall
take account of the three first terms in the square root expansions into
power series. As a result we will obtain the relations written below

2T 1 (u2+v2)2 20
AOM

AL 2 + 89 ~Y

[ (x'"+xP)2+ {y’+yP)2 (cc'+xP)4+2(x' +xP)2(y'+yP)2+ (y'+ypy

2/ + Sg

2n "<+Vz K+vir "i (7)
A&mo "'Y L 2/ J

2n F4+2/p | xp+2xpyp+y*p

ai 2/ + % ®)
where T = (w—1) ——i———l——;—,4]d g_ = (n—)(— r[[—fly n is the refractive

index, and r15r2are the radii of the respective lens curvatures.

The first term of the series (7), similarly as that of the series (8), is
interpreted as the phase shift resulting from the focussing action of the
lens. If a plane wave falls upon the lens considered then a spherical wave-
front appears behind the lens the phase of which is described by this term.
The second term of the infinite sum (7) or (8) has the sense of the aberra-
tions ascribed to this lens; it describes the deviation from the sphericity
of the transformed plane waves in the third order of approximation.

If the first terms of the expansion of each of the expressions (3) to (8)
are substituted to the formula (1) we shall obtain the first order approxi-
mation of the phase change associated with the point P. After some

+
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algebraic rearrangements it will take the form:

Zn afxp+y'yP
*gV.,y') = - ; 9)

If, however, the third terms of the respective expansions is substituted
to the formula (1) we shall obtain the third order approximations of the
change of its phase in the form:

= +2XHY 24y )+ E{X XD YYD
+X'XPY'2+X'2y'yp)+2{3x 2@+ 3y '2yp+y'2Xp+X,2yp+4:X,y00pyp)
+4 {X'xp+y yP+y'xpyp +x'Xpyp)] - (10)

The obtained relations (9) and (10) will be next exploited to determine
the coordinates of the image points reconstructed from the Fourier holo-
gram and the aberration coefficients.

A system for recording and reconstruction
of the Fourier holograms

The system in which the Fourier hologram of a point object P is recorded
is shown in fig. 2. The reference point source is located at the poit B of
coordinates (xR, yR). The light waves of the wavelength A emerging from
the points P and B hit the lens L of the focal length/ and create the plane

Fig. 2. Recording of the Fourier hologram for the object point P: H — hologram

object reference waves in the image space of this lens. The interference
pattern of these waves is recorded on the hologram located at the (a?,y")
plane. At the stage of chemical processing of the recorded hologram it is
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assumed that the hologram scaling due to the formula

X =mx', y=my' (11)
is admissible. Reconstruction of the hologram is performed in the system
presented in fig. 3. At the point C of coordinates (xc, yc) the reconstructing

point source is located, the wavelength Xof which may, in general case, be
different from the wavelength X used during recording, i.e.

1=M", (12)

Fig. 3. Fourier hologram reconstruction: H — hologram, I — image plane

where fx ™ 1-The function of the lens L tis to create a plane reconstructing
wave illuminating the reconstructed hologram, while the lens L 2 located
behind the hologram (but close to it) performs an inverse transform of
the waves diffracted at the hologram during the reconstruction [2]. The
local lengths are considered to be arbitrary.

The determination of the coordinates of the images reconstructed
from the Fourier hologram

Basing on the formula (9) derived in the section The determination of the
phase changes occurring during the passage of the ray between the focal
planes of a thin lens we may write the phase change in the first-order
approximation as follow:
2n 00'xR+y'yR

<PgV, V) . . (13)
The plane object wave interferes with plane reference wave in the
hologram plane producing the fringes described by the phase relation
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We restrict our attention to a detailed discussion of the two last terms
which are responsible for the images created during the reconstruction

27 xX'xR+y'yR

(15)
A /
27 x'XP-\yyP  2n x'xR+y'yR
0JW )* =] ][r ; (16)

By the analogy to the formula (9) the phase change of the reconstructing
wave has the form

271 xx0+yy0
~vay = - A (17)

The secondary image of a point-object P creates a wavefront the phase
of which is determined by the equality

+ (18)
where = - NP is a first order change in the phase caused
by the lens L2 By admitting the possibility of hologram scaling and the

change of the wavelength of the reconstructing light beam, after some
algebraic transformation we obtain

- N1 e aoe @,
T 2~L m T m f
e yP V Vr

vi m ¢ ' om )] (182)

This is the phase of a spherical wave convergent to the point (x3R, y3R, z3R)
of coordinates

3R — AJ

~XP
19

hR= A mf m (19)
, G. P Ww , PV

YR = -AJr’yy+ ------- Pyl "

The primary image is created by the wave, the phase of which is de-
scribed by the relation

(xc @ v

B+
AA ™M T m ./
ve L Ji. P Vv
(A M f m ;7
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Thus the coordinates of the primary image are described by the for-
mulae

av —
\XC+ Xp_“_ XRA
~u L/i mT m f T

-
yp V VW
y$V_A|H+mf m of

X3V =

From the formulae (19) and (21) it follows that both the images occur
in the focal plane of the lens L2 and are positioned symmetrically with
respect to the axis passing through the reference point-source C and the
centre 0 of the hologram.

Third order aberration of the Fourier hologram

Basing on the formula (11) the phase changes of the wave emitted by the
reference and reconstruction point sources occurring at the hologram plane
may be determined up to third order approximation. For this purpose it
is necessary to replace the coordinates (xP, yP) by the coordinates {xRyR)
of the reference source or by the coordinates (xc,yc) of the reconstruc-
ting source

=-Nn (_’\[(Jr +i)(*"™*+N'4+2a'V )

++£{x ,3XR+y'yR+x,y,2XR+Xx"'2y'yR)
+2{3X" AR +3y " ¥R +y " 2%R +X " 2yR +4; X,y "XRYR)

+4 {X’XBR+y'YR+Yy'XRYR+®/®iiyi)J, (22)

+1)(*4+ [+ 2*2)2)+4(*3C
+y3yc +®y2xc +x2yyc)+2(3x2xt +Sy2yd +y?2
+ X2 +4 xyxcyc)+4 (xx8 +yy8 +yx2yc+~c2/c)d - (23)

The third order phase change of the lens creating the inverse Fourier
transform is

AEB = AN (--Nj(a 44204+ 2tFV), (24)

The algebraic sum of the phase changes &P, 03, 0%, and A0K
forms the third order approximation of the wave producing the secondary
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image obtained from the Fourier hologram at the reconstruction stage
<fg) = 0(>-&W +$>0g)+A0 &\ (25)

The phase of the Gaussian sphere convergent at the point coordinates
Zz3) is gi™“n by the relation

#Q = [(x4+y*+2 x2y2) ~ H x3x3R+Yy 3y3R+Xxy 23R

+X2yy3R)+2{3x2xIR+a?yIR+3y2y R +y 2XIR+4xyx Ry3R)
-4 pOAR+YY\R+xx3Ry3R+yxIRy3B)] - (26)

The wave aberrations of the hologram are here defined (analogically
as it was proposed by Meier [1]) as a phase difference in the third order
approximation between the Gaussian reference sphere and the real wave-
front at the hologram plane. The obtained aberration coefficient will be
called analogically to those of a lens. By replacing the Cartesian coordinates
x and y by the polar coordinates gand g@we obtain

Pig. 4. Fourier hologram reconstruction using the divergent lens L2: B — hologram,
ly — virtual image plane
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From the above equation it follows that the aberration coefficients depend
on the focal lengths of the lenses used in both recording and reconstruction
process as well as on the coordinates of the object, reference and recon-
struction rays in the plane perpendicular to the axis. The expression (27)
may be represented as follows:

W = N-A~-"Q*S + "Q*(Cxcoa<p+Cyam (p)-~ Q@{Axco&zp+ A yamzp
+2 A sin(pcos(p) — | azF —i g(1)xcos<p+.DISing>)], (28)

where 8, Cx, Cy, Ax, Ay, Axy, F, Dx,D yare the aberration coefficients defined
by the formulae (29) — (33b) below. It is worth noting that due to the
symmetry of the problem with respect to the coordinates x, y it suffices to
consider only the aberration coefficients indexed with x or xy.

— Spherical aberration coefficient:

1 1 1 1 1 1 1
J—— S = S (=T (29)
z

ox  fl 9 9i /1 92+ fI'
— Coma:
1 .\ b1 1 XR “c
Cx= - 5T m3gxp m3gxr ZR 91  f8r)
LB\ I'b 140 _ (30)

— Astigmatism:

x MV oagom Il g NI L o+ —
J\é oo V2@l 1 a2 ¢

m2 o zIr /\il fj
Vol i 1Ji_ 11 xg
N
fu m 2 m2/2a mZ 9
-2 (XpXC—®R®c) “ 2 —— 2 XpXR (31a)
™ ffJi m2 /7a

11 X 1 x 1 1 \
Xy = T xcV e~ g]*/\ § Xpyp + g err—Z~3h~ x3rV3I3|

I x 1
=(M+TFeHO+@2rr  ma)  OPPONT
% AThRY
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A
w 'k ) T
— Field curvature:

iyR-yP)xc- (31b)

F=57(4420- 7.7 (4ot g (4+a) - “T'(Sotypn)

~ 4 g+ 7L ~NT)(E2))
J

+\‘2n|2_gi +im|2_/72 ("p2lp) 7 L, 71, (@PXC +2/p2ip)
$27- A QUCHA - 28 A OPRIYPYR. 42
— Distortion:
Dx = - yi (xc +®cVec) + ™ a(®P+#p#p)- W —J-f(4 +7p2/p)
2 (#3#+"3p 23) - (334a)

To simplify the formulae we may assume that yR = yc =0
Then we obtain

~37 7T70p~FMp3” 77 " 3»77 P

111 A1 "ﬁ—’éi&
m2 f (a % - M f Xp)l m2

Concluding remarks

Basing on the expression (29) which define the value of the spherical
aberration coefficient 8 we see that it does not depend upon the position
of the object point P and the recording source B as well as on the parame-
ters m and jil This results from the principle of the Fourier holography
which requires that both the points P and B be positioned at one focal
plane of the lens L used during the recording. Consequently, the terms
responsible for the spherical aberration and describing the phases 0$ and
0 $ have the same form as they depend only on the longitudinal coordinates
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(being simultaneously independent of the transversal coordinates). Since

and appear with opposite signs in the expressions describing the
phases of the primary and secondary images they compensate each other.
As a result we record on the hologram the freinges without spherical
aberration. In order to remove the spherical aberration also from the
reconstructed images the lenses used in the setup shown in fig. 3 should
be of long focal lengths, since for/-> 0o, the expression for 1 jg

1 jL\
— = (n-1)

34
9 nr2+ r\/ (34)

tends to zero. Physically, this means that the reconstructing light source
is located at infinity and that the observation of the images also takes
place at infinity. On the other hand, this means also that the optical power
of the system used to the reconstruction should be equal to zero. For the
case of finite values of the focal length of lenses L If and L 2the elimination
of the spherical aberration is obtained if the conditions

t_ 1 (35a)
fl

L - ! (35b)
9 9

are fulfilled. In the face of (35a) we may state that the focal lengths of the
lenses L j, and L 2mentioned above have the same absolute values differing
only by the signs. Therefore, it is possible to consider two reconstructing

Fig. 5. Reconstruction of the Fourier hologram by using the convergent lens La:
H — hologram, IB real image plane, Oy — virtual reconstructing source
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systems. One of them is shown in fig. 4 (see p. 458), where the lens L 2giving
the transform of the waves diffracted on the hologram is negative. Then we
observe two virtual images, which lie in the plane of the lens Lx. This
allows to observe immediately the holographic images by locating the eye
in the divergent beam. In the system shown in fig. 5 the virtual reconstruct-
ing source is obtained by using the diverging lens Lx. Both the images
are real and lie in the focal plane of the lens L2,

Now we will consider two equations (35a), and (35b) jointly but first
we will transform them to the form given below:

o+ @ = 01402 = —(4+"2)> (36)

where it is assumed that nx= n2 = n, and ox, @2denote the reciprocals
of the radii of the lens L x, while £If and £2 denote the reciprocals of the
radii of the lens L 2. In this way we get the system of two equations with
four unknowns (the four radii of curvature of the lenses L xand L 2). When
solving it, the parameters ox, and o2 are expressed as the functions of
li and $2. This means that the radii Rx, and B 2 of the lens L 2 are accepted
to be known, while the radii rx, and r2 of the lens Lx are sought. Note
that the reverse problem may be also considered, where we seek
and as the functions of pj, and 2. The obtained solutions are presented
in the table.

Table
The parameters The parameters
of lens L2 of lens L\
- ~ = FE\ ri =
*1 = * ©
2= -£1 A = " »
ei= —£1 ri = ~E1
% o =
h > * BX>B 2 o o= r{ = -B2
1 *
02 = -£1 = "«
= <% N\ = -B2
02 — —h = =2
h<h Bx< B2 ei=z —g ri' - -BX
ei = -£2 =~

Summing up, it should be noticed that the filfillment of the conditions
(36) is physically possible, since the assumption of the constructional
parameters of one of the lenses used in the reconstructing system allows
to determine the parameters of the other lens, so that the spherical aberra-
tion be corrected in the reconstructed images.
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KoadhhumumreHTbl abeppauunm rosorpammbl Pypbe

B HacTosLeli paboTe NpeanpuHATa MOMbITKa ONpefesTb KoadhULMeHT abeppauyn roorpaMmmbl
dypbe AN pernctpaummv H PeKOHCTPYKLMW, B CUCTEMe KOTOpOK TpebyeTcs Haimume (hasoBbixX
3/1EMEHTOB — JINH3bL.
Ansa aTol uenn 6blN McCefoBaH XO0f CBETOBOrO Jiyda MeXAy (PoKaslbHbIMW MI0CKOCTAMM
TOHKOM NUH3bL. 3aTem OblM onpedeneHbl KOOPAWHATbl PEKOHCTPYMPOBaHHbIX W306parkeHWiA.
B KOHe4yHOM 3Tamne O6blIM onpefeneHbl KoadhduLMeHTbl abeppaumn N306paKeHU, PEKOH-
CTPYMPOBaHHbIX U3 rosiorpamMmmbl. O6Cy>KAeHbI Tak)Ke YCI0BUS KOPPEKLM cdepryecKoi abeppaL .



