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Image quality criteria of the apidized optical 
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This paper is concerned with the performance of apodized optical systems with spherical 
aberrations. The assumed apodization was radially symmetrical and the taken into 
account aberrations of the third, fifth, and seventh orders have Zernike representation. 
The following performance criteria were considered: the point intensity distribution, 
second moment of the point intensity distribution, encircled energy distribution, 
Strehl ratio, two-point intensity distribution in partially coherent illumination, point 
image contrast, and the resolutions due to both Rayleigh and Sparrow conditions. 
For all the mentioned criteria analytical formulae were derived.

1. Introduction

The purpose of apodization is to improve performance of the image forming 
optical system. Many apodizing problems and their solutions have been re­
viewed by J acqtjinot and Roizen-Dossier [1]. These problems can be devided 
into two general groups. First group contains all the problems in which the 
performance of apodized systems was examined by trial and error method, i.e. 
was investigated for the selected filters [2, 3]. Second groups [4, 5] includes 
the problems which allows to calculate the optimal apodizing filters under 
specified assumptions. Most authors have considered only apodizers in diffrac­
tion limited systems.

In the paper [6] we have calculated the optimal filter, for which the second 
moment of the point spread function in the optical systems with spherical 
aberrations takes the minimum value. Biswas and Boivin [7] examined the 
influence of the Straubel and Lansraux-Boivin apodizers in optical system 
with the first and second orders spherical aberrations. The only performance 
criteria considered in [7] were the point spread function, Strehl ratio, the 
relative encircled energy and the resolution due to Huber-Hopkins condition.

In the present paper we have derived the formulae for the second moment 
of· the point spread function, the two-point intensity distribution in partially 
coherent illumination, the point image contrast, and, finally, the equations 
which must be satisfied by Sparrow and Rayleigh resolutions.

* This work was carried on under the Research Project M.R. 1.5.
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As the third and fifth order spherical aberrations are not satisfactory for all 
optical systems, these criteria were derived not only for primary and secondary 
but also for tertiary aberrations. The criteria considered in [7] were additionally 
derived for seventh order spherical aberration. They were also recalculated 
for secondary aberrations, since the series expansion of the point spread function 
up to the seventh term contains the linear combinations of the Zernike poly­
nomials up to the -R54[p] and not up to R°u only as was written in [7].

2. General considerations

The far-field effects due to a circular aperture in an optical system can be 
derived from its amplitude respouse. The diffracted light amplitude associated 
with a rotationally symmetric pupil is given in [8]

1
A{u)ct J  f(Q)J0(UQ)gdQ, (1)

0

where f(g) is the pupil function, J 0 is the zero-order Bessel function of the 
first kind, q denotes the normalized radial coordinate in the pupil plane, and 
u describes the normalized distance from the diffraction head expressed in 
diffraction units.

For systems with spherical aberration the pupil function has the form 

fie) =/o(e)exp[t*TF(e)], (2)

where / 0(e) denotes the transmission of the pupil, W(q) describes wave aber­
ration and k is the wave number.

If, for diffraction limited system with uniform transmission of the pupil, 
the amplitude A(u) at u = 0 is normalized to unity, then eqs. (1) and (2) yield

1
A{u) = 2 f  fo{Q)exv[ikW(Q)]J0(UQ)Qd6. (3)

0

Let us consider optical systems with radially symmetrical transparences 
of the general form

p—0

where ap — the power expansion coefficient.
The spherical wave aberration, according to the Zernike-Nltboer [9, 10] 

theory, can be written as follows:

w(e) = —  K (e), (5)
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where ftln0 is the aberration coefficient, and B°n(Q) is Zernicke circle polynomial. 
Indices n = 4, 6, 8... correspond to primary secondary, tertiary, and higher 
aberrations. Inserting (4) and (5) into (3) we obtain

oo 1
A(u) =  2 2 1 ap jexyli(l,MK((!ÏÏJ°(ue)e2p+'de. (6)

j}-=0 0

This formula will be the fundamental one for further calculations.

3. Primary aberration

For primary aberration we must set n = 4 in formulae (6). Expanding the exp 
function up to the fifth term we have

oo 1

M » ) =  2 j ? a p f[ l  +  *A„„-B;(e) +  - i ^ l ( Æ «(e))2
1 0 L

+ - ~ 3- (iiS(?))3+ -^~ (-B 5(e))4+ ···]  J,(ue)Q^'dQ. (7) 

Using the following relations [8] for circle polynomials:

7?0 DO" 2» "2

DO DO _1*28 *̂4 —

J i ± i L Äo ,
(2s + 1) ^ s+2 +

s(s +  2)(s + l)

(2s+  1) XL-2s-2  )

3 (2s -f- 3) (2s + 1) 2̂8+4 +
8(8 + 1)

(2 s + 3)(2s —I)
E22 8

3 s ( s - l )
+ ¥ 72» + l)(2s - l )  (8)

where s — integer number >  0; all the powers of R\ can be rewritten as a li­
near combination of circle polynomials. Hence, form (7) and (8) we, finally, 
have

00 8(4) 1

A(u) = 2 2 d< f sUe)J,(«e)e2g+,ds, (9)
p = 0 » = 0 0

where 8 (4) over the summation sign denotes that the summation over v goes 
with step 4 (i.e. for v = 0, 4, 8) only, and coefficients dv have the form

do =
1

280 >

rj ßl40 + - 5 V  
462 Puo+*l

-•Is1o

153 ft*
385 ‘10010 Pl40

(9a)
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To calculate the integral in (9) we use the exact forms of B°v(q) and J 0(mq)
[8 , 1 1 ]

Hence, the point intensity distribution, as a square modulus of A(u), has the 
form

where * — complex conjugation.
In order to asses imaging properties of the apodized optical system some 

important criteria will be derived from the fundamental formula (12).

3.1. One-point object criteria

These criteria can be obtained directly form (12), Strehl ratio (S.R.) being 
equal to the intensity at u — 0 has the form

(1 0)

and

(10)

Substitution of (10) in (9) and integration yields

8(4) 2 V oo

A{u) = 2 JT JT £  apdvevaapkv8{ufifk, (11)

where ev8, apkv8 are general coefficients of the form

«,*. = <-!)*
1

(11a)
(fc!)1 2[2(p +  fc -s  +  l)  +  r ] ‘

oo 8(4) i n  iv

I (n )= 4  £  2

a pkv8 a q m n r  ^ nd 't f iv l2)3<*+”‘>, (12)

00 8(4) in  iv

8 .B. -  1 (0) =  4 £
P,a»=o/ti,v=o«=o r = o

a p  a p 0v8 a q0/i r  ® n  ‘an(\urd,.dv . (13)
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The function describing the energy scattered in the point object image is 
the encircled energy distribution

V

E(v) = J  I(u)udu. (14)
o

From (12) and (14) we have
«, 8(4) J/i \v

E(v) = 8 . 1  I  aq enr evs apkv8 aqm/ir
p,q,k,m=0 p,v=0 « = 0 r— 0

----- ------ (vl2)2{k+m+1). (15)
1c -f- m -j- 1

The second moment a of the point intensity distribution can be alternatively 
used as a measure of the scattered energy, and is defined as follows:

00

a — J  I(u)u3du. (16)
o

As it was shown in [6] it can be presented in form of integral in the pupil plane

It should be added that a is convergent only for apodizers vanishing at the 
edge of the pupil, i.e. fo r/0(l) =  0. By combining (4), (5), (10), and (17) we get

00 |v—1 jp-1
a = 2 ^  + aofto efirera(v-28)(/i-2r)

p,5=1 , “ * 8 = 0 r = 0

{a°+ ^  ttp\- v + p -2 (s  + r - p )  +  ^  ttq v + /M-2(8 + r - q - p )  ]}’ ^

with v, = 4 for primary aberrations.

The summation procedures over s, r were reduced to — v —1 and — /4 — 1,
2 2

respectively, because the last term in the derivative of R°v(t>)

_d_ i-

8 =  0

(V — 8)\(v — 2«) -V—28 —1 (19)

equals zero.
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3.2. Two-point object criteria

In this part resultant intensity in the images of two-point objects along the 
line joining geometrical images of the objects will be the fundamental relation. 
Assuming that the isoplanatism condition is satisfied and that the point objects 
are identical we have

! / 1 \|2 i / 1 \l
— + A \ u -  - u A \

+ 2>I2Be¡.4 jit + ju0j A ' ( a - y  «„|J, (20)

i J.where A ( u + — u0jt A — i  w0| represent the complex amplitudes due to

points objects whose geometrical images are at ± — u0,/i12 is coherency

factor, Be is the real part and asterisk denotes a complex conjugation.
From (11) and (20) we obtain

x

00 8(4) \V i f t

j(« )= 4j £j t Ź Ź “1’*·
yp,Q,k,m—0 /i,v—0 8 = 0 r = o 

u 2̂(fc+m) / 4/ \2(*+m)
+

q evs et*r apkvs aqmpr

K u \Mk+m) i V2(fc+m) / u \2k / UA*ml 1 |

U+1)  + r f )  +2"4 “+ t ) ( * - T  l ^ l  (21)
The point image contrast can be immediatelly calculated from (21). It is 

defined as follows

x J (n J2 )-J (0 )  n J  (0)
( 0) ‘ J{*0/2) J(uJ2)

(22)

We see that in order to determine C(w0) the resultant intensity should be deter­
mined in two points only, i.e. u = 0, and u =  w0/2. From (21) we have

J(  0) = 2 (1 + a.11)J (« 0/2 ) (23a)

and
oo 8(4) i«- i l i

J(u0l2) = i  2
P .3 = 0 / I ,» = 0 *  =  0 r = 0

ou

X |2(1 + /¿12) ap0v8 aq0(ir apkv8 < W <«./2 )i№+ ”’}· (23b>
k,m— 1

The limit of resolution can be calculated from (23). If the Eayleigh criterion 
is applied then it suffices to solve the following fundamental equation

J { 0) =  0 .736 J  (u0I2), (24)
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(25)

but the Sparrow resolution u0 must satisfy the equation

(— ) = 0 .
\  du* fu=0

Combining (21) and (25) and carrying out simple calculations we get
oo 8(4) }>> oo

2  2 2 2 1 ·,+'- e n r  a pkv8 a q m n r  . _ _.
p , q = 0  v,ft*=Q 8 —0 r —0 k , m = l  \ · " 0 '

x{(m +  Jk)[2(m +  f c ) - l]  +  /i12[fc(2 fe-w -l)-m (A ; +  m -l) ]} ( i i0/4)2(*+wl- 1) =  0

4. Secondary aberration

For secondary spherical aberration the sum (6) takes the form
oo 1

A{u) = 2  £ ap f  exP [^ i6o^(e)Fo(w?)?2i,+1de. (27)
P  =  0 0

If we take the first seven terms in exponent function expansion and replace 
higher powers of jRj( )̂ in this expansion using eq. (8) and the following known 
formulae [12]

K K  =
5 (s + l)(s + 2)(s + 3)
2 (2s + l)(2s + 3)(2s + 5)

s2(s + l) , (s + 1)

Bo , 5 ( (* + l)(* + 2)2
2*+6 2 l(̂ + l)(2« + 3)(2s + 5)

+

+

+

+
3 (*+i) I

(2s + l ) (2 s - l)  (2s + l)(2s + 3) 5(2* + l)J

S(8 + l )2

K +2

- i (
2 1l(2s + l )2(2s-- i )
3 8 \ po
5 (2s+ 1 j 2S~-2 AT

OO 24(2) 1

(28)

+ +
8 ( 8 - 1 )2

5 S (8 -l)(8 -2 )
2 (2s + l ) (2s - l ) (2s -3 )

then we have

A(u) =  2 2  apE3J  K(e)Jo(ue)elp+lde . (29)
P = 0 f = 0  0

Notation 24 (2) over summation sign means that the summation goes up to 24 
with step 2 . Coefficients d depend on fiHo and are related to those coefficients 
Cv evaluated by Som [12]

J - I ' 0· for ,  10 ,4 ,8 ,12 ,  16,20,24
’ \iC, u (2, 6, 10, 14, 18, 22

The integration of (29) gives
oo 24(2) i f

A{u) — 2 J T 2 ’ÿ '« ïaA.aM,.(«/2)!*.
p,k = 0 f«*0 « — 1

(29a)

(30)
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The last relation is more general than that obtained for primary aberration. 
If dv is replaced by dv and additionally

dv =  0 for all v, except v = 0, 4, 8 , (31)

then (30) is reduced to (11). This remark allows to rewrite automatically all 
desired expressions for secondary aberration. In order the relations (12)-(15), 
(18), (21), (23), and (26) could be applied in systems with secondary spherical 
aberration the notation 8(4) should be replaced by 24(2) and dv by dv.

5. Tertiary aberrations

In the case of tertiary aberration we apply the alternative method of image 
criteria evaluation those considered in the previous part of this paper. To this 
end higher powers of the exponent function expansion will not be expressed as 
a linear combination of the Zernike polynomial but simply by a binomial 
expansion. This expansion has the form [11]

{Ax + A 2-\- ... +-46)a = ^
n\

Jfejfc,! ... K'.
A *1 A *2  A k£■“■1 -¿*-2 * * * *“·# (32)

under the following condition:

&1 +  &2 +  ..· +K  =  n.

Since the 8-th order Zernike polynomial is equal to

22®(e) =  7 0 e8- i 4 0 e 6+ 9 0 e 4 -^ 2 0 e2+ i ,

therefore, the r-th power of (33) gives

»>=+&2+ · · · +*5
[-®8(f?)!T — JUj A 21 *.., ASf v, k1} v, Tc2, ..., Tcs)

*1>*2.......* 5 = 0

X  Q 2\ k 1+ 3 k 2+ 2 k i + k 4) ·

where A x — 70, A 2 = —140, A 3 — 90, A4 — —20, As =  1, and

(33)

(34)

O U K, A , ....... A „ r ,  ,1.) - „  . (34a)

In evaluation of the diffracted light amplitude we apply n-th order expansion 
of A{u). Prom (4), (6), (10), and (34) we finally have

oo n », =  * i + * 2  +  * " - ’i:5 „  ·

A(u) — 2 ^P apdvQ{Ax, A 2, · · ·, A5y r, Tcx iTc2, . · ·,
p ,k  v=o k v k2......*5=0

...,fcs, le,p)(nl2fk,
(35)
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with

and

l  =

(k !)2(4fe1 + 3fc2 + 2fc3 +  \  + k + p)

(ißiuY

Q,

VI
for v = 0, 1, 2, n.

The required image criteria can be directly obtained from (35) and have 
the following forms:

— Intensity point spread function

ap aq dv d,x

p = k l + k 2 + . . . k 5 

oo n * * = * 6 + fc7 + " - * l 0

*<»> = I I I
p,q,k,m=0 m,v= 0 klfk2,. .. ,k10^(i

X Û U l )  -A  2 5 · · · )  -^5 5 V 5 ^ 1 )  ^2 } · · ·■> ^5? ^  1 P )

xQ (A1, A 2, . . . ,A s, v, k6, fc7, fc10, m, q){ußf(k+m) 

— Strehl ratio

(36)

ap  a q d v dp

p=k̂ +k2+...+k̂  
oo n  »’=* 6 + * 7 + ” -+*10

* * - - 2  2  2 .
p , q = 0 u , v = 0  k y ,k 2, . . . , k \ Q —C

xQ (A1, A 2, AS1 v, k1} k21 fc5, 0 , p) 

x i 5 ( ^ l 1 , · · · )  A $ , P  i  ^61  ^7> * * *> ¿ 1 0 ,  6  , g )  .

— Encircled energy distribution

(37)

E ( u )

p=ki+...+ks
oo » /‘=*6+...+fc10

=  2 \ 1 V  JjT* ana„d„d*
p,q*=0u,v=0 k v k2,. . . ,k l0

P  q t1 p 1c +  m  +  1

xQ(Alf A 21 As, V) fcj, k2y ks, k)P)

xÖ (A !, J-2, 1̂5, /1, fc6, fc7, fc10, m, q)(ul2)2̂ m+1).

— The second moment

Ai =  fc6+...*10 
-00 » *=^+...*5

-2 2 E E
P,9=0 i*,v=-0 kv k2,...,k10

(38)

ft-fm + 2 (39)

x ä (A lt A 2,AS1 vt kl f . kSJ p)Û(Alf A S) ··» s, /i, ft5, 

···» &io> w, q)(u/2)iik+m+2K
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The two-point Bayleigh resolution must satisfy the equation

00 «  * 1 +  . . . + * 5 = ”

P , Q = 0  * 1, . . . , * 1o=°

£  apaQdfldv
=  0 I· ,. _a= 0

(40)xQ (A1, As, fi, k6J · · ·, &10, 0 , 3)
00

+ 0.264 ···>-^5) î) ···» ^5)k,p)
k,m=l

xâ {A lt ^ 5» /+ &6> ···, *10, *», «)(^/2)2(ft+m)] =  0 ,

and finally, for Sparrow resolution we have

* ! + . . · + * 5 =  
fc6 + . . .  +  * 1 0 ==M

2?,3=0 n,v=o fc,w» =  l  k i .......* i o = 0 (41)

x{(w + fc)[2(m + fc) — l]  + /w12[fc(2 — m— 1) —m(fe + m —l)]}(i*/4)2(*+m' 1) = o. 

6. Final remarks

The performance criteria obtained in analytical forms are very useful and 
convenient for numerical investigations of the imaging properties of the sym­
metric optical system with circular apodization. This convenience lies in the 
fact that the calculation of the considered criteria requires only the summation 
procedures. By carrysing the summations over k and m it is easy to decide 
when they should be finished. Considering that two adjacent terms in the power 
expansion have opposite sign the error made by contraction of the mentioned 
summation procedures can be easily estimated. For all apodizers cf the poly­
nomial form the maximal index in the corresponding summation procedure is 
strictly determined. In order to compare the influence of two different apodizers 
with the expansion coefficients ap, ap then in all derived criteria it suffices to 
replace the coefficients ap by the differences Aap(Aap = ap —ap). For systems 
with uniform aperture all ap, expect for a0, are equal to zero. In this case, the 
summations over p and q are automatically removed. When the performance 
of apodized optical systems without aberrations is explored, we have to set

dp = dM = dp = 0, for /* + 0
»

and
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It should be noted that the formulae derived enable a simultaneous calculation 
of the desired distributions for different values of the variable u (the general 
factors have the same values). Summing up, the derived formulae are a powerful 
tool for inspection of the imaging properties of circularly symmetrical optical 
systems.

The numerical illustration of the criteria proposed above are hoped to be 
delivered in the next future.
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Характеристик отображения аподизированных оптических систем 
со сферической абберацией при отображении одно-и двуточечнных предметов

Работа касается качества аподизированных оптических систем со сферической абберацией. Была 
принята аподизация с радиальной симметрией. Абберации приведены в представлении Зеринке. 
Обсуждены следующие критерии отображения: точечная функция размытия, второй момент точе­
чного размытия, радиальное распределение энергии, число Стреля, распределение интенсивности 
изображения двуточечного предмета, точечная контрасность изображения, а также распределяемости 
Рейляйга и Спаррова. Для всех отмеченных критериев были получены аналитические зависимости.
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