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This paper is concerned with the performance of apodized optical systems with spherical
aberrations. The assumed apodization was radially symmetrical and the taken into
account aberrations of the third, fifth, and seventh orders have Zernike representation.
The following performance criteria were considered: the point intensity distribution,
second moment of the point intensity distribution, encircled energy distribution,
Strehl ratio, two-point intensity distribution in partially coherent illumination, point
image contrast, and the resolutions due to both Rayleigh and Sparrow conditions.
For all the mentioned criteria analytical formulae were derived.

1. Introduction

The purpose of apodization is to improve performance of the image forming
optical system. Many apodizing problems and their solutions have been re-
viewed by Jacqgtjinot and Roizen-Dossier [1]. These problems can be devided
into two general groups. First group contains all the problems in which the
performance of apodized systems was examined by trial and error method, i.e.
was investigated for the selected filters [2, 3]. Second groups [4, 5] includes
the problems which allows to calculate the optimal apodizing filters under
specified assumptions. Most authors have considered only apodizers in diffrac-
tion limited systems.

In the paper [6] we have calculated the optimal filter, for which the second
moment of the point spread function in the optical systems with spherical
aberrations takes the minimum value. Biswas and Boivin [7] examined the
influence of the Straubel and Lansraux-Boivin apodizers in optical system
with the first and second orders spherical aberrations. The only performance
criteria considered in [7] were the point spread function, Strehl ratio, the
relative encircled energy and the resolution due to Huber-Hopkins condition.

In the present paper we have derived the formulae for the second moment
of- the point spread function, the two-point intensity distribution in partially
coherent illumination, the point image contrast, and, finally, the equations
which must be satisfied by Sparrow and Rayleigh resolutions.

* This work was carried on under the Research Project M.R. 1.5.
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As the third and fifth order spherical aberrations are not satisfactory for all
optical systerms, these criteria were derived not only for primary and secondary
but also for tertiary aberrations. The criteria considered in [7] were additionally
derived for seventh order spherical aberration. They were also recalculated
for secondary aberrations, since the series expansion of the point spread function
up to the seventh term contains the linear combinations of the Zemike poly-
nomials up to the F&4[p] and not up to Ru only as was written in [7].

2. General considerations

The far-field effects due to a circular aperture in an optical system can be
derived from its amplitude respouse. The diffracted light amplitude associated
with a rotationally symmetric pupil is given in [8]

1
A{u)ct ; f(Q)IAUQadQ (1)

where f(g) is the pupil function, JOis the zero-order Bessel function of the
first kind, g denotes the normalized radial coordinate in the pupil plane, and
u describes the normalized distance from the diffraction head expressed in
diffraction units.

For systems with spherical aberration the pupil function has the form
fie) =/o(e)exp[t*TF(e)], ()

where /0(e) denotes the transmission of the pupil, W(q) describes wave aber-
ration and k is the wave number.

If, for diffraction limited system with uniform transmission of the pupil,
the amplitude A(u) at u = 0 is normalized to unity, then egs. (1) and (2) yield

1
Au) = 2(1; fo{Q)exv[ikw(Q)]JO(UQQ6. ©)

Let us consider optical systems with radially symmetrical transparences
of the general form

p——o

where ap —the power expansion coefficient.
The spherical wave aberration, according to the Zermike-Nitbcer [9, 10]
theory, can be written as follows:

w(e) = — K(e), &
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where ftiDis the aberration coefficient, and Bn(Q is Zernicke circle polynomial.
Indices n = 4, 6, 8... correspond to primary secondary, tertiary, and higher
aberrations. Inserting (4) and (5) into (3) we obtain

@® 1
A(u) = 2j§:01 ; ap pxyli(l, MK ((1T13° (ue)ep+de. 6)

This formula will be the fundamental one for further calculations.

3. Primary aberration

For primary aberration we must set n = 4 in formulae (6). Expanding the exp
function up to the fifth term we have

00 1

M») = 2j?ap fl + *A,.-Bi(e) + -ir (£ «(e)2
1 0L

+- ~ 3(iiS(?)3+ -"~(-B5(e))4+--] J,(ue)Q™'dQ. )
Using the following relations [8] for circle polynomials:
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where s —integer number > 0; all the powers of R\ can be rewritten as a li-
near combination of circle polynomials. Hence, form (7) and (8) we, finally,
have

00 8(4)

A(u) =2 2d<f sUe)J,(«e)e2g+ds, (©)]
p=0 »=0 0

where 8 (4) over the summation sign denotes that the summation over v goes
with step 4 (i.e. for v = 0, 4, 8) only, and coefficients dvhave the form

1

o = 280 >
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To calculate the integral in (9) we use the exact forms of BV(q) and J O(mq)
[8, 11]

ao)
and
ao)
Substitution of (10) in (9) and integration yields
8(4) 2V 0
A{u) = 2JTJT £ apdvevaapkv8{ufifk, an
where e\8 a8 are general coefficients of the form
« * = <_|)* 1 (113.)
VT T (feh2[2(p + fe-s + 1) + ]t

Hence, the point intensity distribution, as a square modulus of A(u), has the
form

00 8(4) in iv

I(ny=4 £ 2

apkv8aqmanL|tfiV|2)&’q-”‘>1 (12)
where * —complex conjugation.

In order to asses imaging properties of the apodized optical system some
important criteria will be derived from the fundamental formula (12).

3.1. One-point object criteria

These criteria can be obtained directly form (12), Strehl ratio (S.R.) being
equal to the intensity at u —0 has the form

00  84) in v
8B.- 1(0) =4 £

P,a»=0/ti,v=0«=0 r=o0

ap ap0v8 QE'Qlegndv" (13)
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The function describing the energy scattered in the point object image is
the encircled energy distribution

E(v) = ) I(u)udu. (14)
0
From (12) and (14) we have
« @ h Vv
E(v) =8 .1 | acenresagkBagir

pakM=0pv=0«=0 -0

TEmg VID2km). (15)

The second moment a of the point intensity distribution can be alternatively
used as a measure of the scattered energy, and is defined as follows:

00

a—J I(u)u3du. (16)
0

As it was shown in [6] it can be presented in form of integral in the pupil plane

It should be added that a is convergent only for apodizers vanishing at the
edge of the pupil, i.e. for/0(l) = 0. By combining (4), (5), (10), and (17) we get
® —2jp-1
a=2" + aofto efirera(v-28) (/i-2r)
p,5=1 ,F 80 r=0

f°+ " tphv+p-2(s+r-p) + " w@v+/M-2@8+r-q-p) J}7 "

with v, = 4 for primary aberrations.

The summation procedures over s, r were reduced to 5 v—l and ?/4—1,

respectively, because the last term in the derivative of Rv({>

d a V=8\V—29 ., » |

(19)

equals zero.
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3.2. Two-point object criteria

In this part resultant intensity in the images of two-point objects along the
line joining geometrical images of the objects will be the fundamental relation.

Assuming that the isoplanatism condition is satisfied and that the point objects
are identical we have

i
S \|2+ A(u— 1uA\\I

+2>12Bejdjit+ JWA (a-y «,|J, (20

where A (u+ -l-ua-tA —i w0 represent the complex amplitudes due to

points objects whose geometrical images are at = —u0,/i12 is coherency

factor, Be is the real part and asterisk denotes a complex conjugation.
From (11) and (20) we obtain

00 8(4) \Vv ift
J(«)=4j t 7 BeseTiksagmr
Qkm-0/iv—88=0"r=0
K uw%% i 4 \Afewm) [/ u\k/  UA*ml 1|
X U+1) frf) +2%4 “+¢) (*-T I~ 1 @)

The point image contrast can be immediatelly calculated from (21). It is
defined as follows

x J(nJ2)-300) n JO
(0 J{*02) 3(ud2)

We see that in order to determine C(W0) the resultant intensity should be deter-
mined in two points only, i.e. u = 0, and u = W/2. From (21) we have

@2

J(0) = 2(1+ all)J(«0/2) (233)
and
00 8(4) i ili
J(uol2) =i 2
P.3=0/1,»=0*=0r=0

ou

X[2(1 + lgap08alr | akB<W <c/2)it+"} (230>

The limit of resolution can be calculated from (23). If the Eayleigh criterion
is applied then it suffices to solve the following fundamental equation

J{0) = 0.736J (u012), (24)
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but the Sparrow resolution uOmust satisfy the equation

— = 25
( du* }uzo 0 (25)
Combining (21) and (25) and carrying out simple calculations we get
00 8(4) P [e']
2 2 2 2 1 ',+'-enrapkv8aqmnr __
p,q=0 v,ft*=Q8—0 r—0 k,m =1 "0

x{(m + JQ[2(m + fc)-1] + /il fc(2fe-w-1)-m (A + m-D]}(i04) 2k ) = 0

4. Secondary aberration

For secondary spherical aberration the sum (6) takes the form

00 1

A{u) =2 £ apf exP[ it (e)Fo(w?)?4,+1de. (27)

If we take the first seven terms in exponent function expansion and replace
higher powers of jRj(") in this expansion using eg. (8) and the following known
formulae [12]
K K 5 (s+D(s+2)(s+3) Bo ,5 *+D(*+2)2
T2 (25+1)(2s+3)(2s+5) 246 2 + 1)(2« + 3)(2s + 5)
s2s+ 1) : (s+1) 3 (*+i) IK P
@+ 1)(2s-1) T (2s+1)(2s+3)  5(2* +1)J

S8+1)2 8(8-1)2
+

(28)

+

'2'1((25+|)2(2s--i) *
3 g |\ 5 S(8-1)(8-2)
5 (2511 5282 (@254 1)(25-1)(25-3)
then we have
@ 2 1
A(u) = 2 2 @ K(e)Jo(ue)elp+de. (29)

P=0 f=0

Notation 24 (2) over summation sign means that the summation goes up to 24
with step 2. Coefficients d depend on fikb and are related to those coefficients
Cv evaluated by Sam [12]

J -1'0- for , 10,4,8,12, 16,20,24
NG, u (2.6, 10,14, 18" 2 (2%)
The integration of (29) gives
00 24(2) if
A{U)—2 JT 2’y '«iaA.aM,.(«/2)!*, (30)

p,k=0f0 «—
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The last relation is more general than that obtained for primary aberration.
If dvis replaced by dv and additionally

dv=0 forall v, except v=0 4 8, (31)

then (30) is reduced to (11). This remark allows to rewrite automatically all
desired expressions for secondary aberration. In order the relations (12)-(15),
(18), (21), (23), and (26) could be applied in systems with secondary spherical
aberration the notation 8(4) should be replaced by 24(2) and dvby dv.

5. Tertiary aberrations

In the case of tertiary aberration we apply the alternative method of image
criteria evaluation those considered in the previous part of this paper. To this
end higher powers of the exponent function expansion will not be expressed as
a linear combination of the Zernike polynomial but simply by a binomial
expansion. This expansion has the form [11]

n\

WO AZE - 892 T s .

Pl $B i 32

under the following condition:
&+ &+ .- +K =n.
Since the 8-th order Zernike polynomial is equal to

22R(E) = 70e8-i40e6+90e4-20e2+ i, 33)
therefore, the r-th power of (33) gives
WGt 5
BT — M A2A*  ASv, k3v, 2 ..., B)
*1>*2..... *5=0 (34)

X Q21 k 1+3k2+2ki+k4)-

where Ax —70, A2= —140, A3—90, A4 — —20, As= 1, and

OUKA,...A,r, 1) - . . (34)

In evaluation of the diffracted light amplitude we apply n-th order expansion
of A{u). Prom (4), (6), (10), and (34) we finally have

00 N n=*i+*2+*"-"i:5 "
A(u) —2 AP apdvQ{AX, A2, -, AT, IR, .-,

p,k v=0 kvKk2...*5=0

(35)
...fcs, le,p)(nl2fk,



Image quality of the apodized optical systeme... 239

with

(k)2(4fe1+ 3fc2+ 2fc3+ \ + k+p) Q
and

| = (”i}IUY forv=0,1,2, n.

The required image criteria can be directly obtained from (35) and have
the following forms:
— Intensity point spread function

p=kl+k2+...k5

00 N **=*6+fc7+"-*10
> = l |  Pppagdvdx
p.q,k,m=0 mv=0 klfk2,..., k107 (36)

X 0 UI) -A25...) -A55V5A1) A2} .. 4> A572 A 1P)

xQ(ALA2 ..., As v, k6 &7, 10 m, q){uBf(n)

— Strehl ratio
00 n Y¥=*6+*7+”-+*10
* k. .92 2 2 ap agdvdp
P.g=0u,v=0 ky,k2,..,k\Q—C (37)
XQ(AL A2 ASlv, k3 k2  150,p)
Xi5(~ 11, A S, P ABL AT> *%%> 510, 6, g) .

— Encircled energy distribution

® » :*61#(?[)

E(u) =2 V1V g™ ana,d,ds

7 p lc+ m + 1
p,g*=0u,v=0 kvk2,...,kI0 (38)

XQ(AIFA2L  As W)t k& ks, k)P)
xO(A!, J-2,  M5/1, 16 &7, 0 m, q)(ul2)2 mH).

— The second moment

A 6+.*0D
_2P,9:Oi*,é0kle,...,k10 ft-fim+2 (39)
xa(Alt ARASLVtKITf. kSp)U (AIf A9

o &> W, q)(U/2)itkHTK
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The two-point Bayleigh resolution must satisfy the equation

&£ aaQifiv
P.=6 +3,_a1B=°
XQ(Al  As,fi, k@), &0 0, 3) (40)
+0.264 =:>AB) - Aj) e» M5)K, p)
k,m=l

xa{Alt A By[+ &>+, *10, *», «)(M2)AfH)] = 0,
and finally, for Sparrow resolution we have

*1+ .+*5=
fc6+ ... + *10=M

22,320 N,v=0 fcw=1 Ki.....*io =0 (41)
x{(W + fO)[2(m + 1) —I] + M2[fo2 —m—1) —m(fe+ m—)]}i*/4) 2+ ) = o,

6. Final remarks

The performance criteria obtained in analytical forms are very useful and
convenient for numerical investigations of the imaging properties of the sym-
metric optical system with circular apodization. This convenience lies in the
fact that the calculation of the considered criteria requires only the summation
procedures. By carrysing the summations over k and m it is easy to decide
when they should be finished. Considering that two adjacent terms in the power
expansion have opposite sign the error made by contraction of the mentioned
summation procedures can be easily estimated. For all apodizers cf the poly-
nomial form the maximal index in the corresponding summation procedure is
strictly determined. In order to compare the influence of two different apodizers
with the expansion coefficients ap, ap then in all derived criteria it suffices to
replace the coefficients ap by the differences Aap(Aap = ap—ap). For systems
with uniform aperture all ap, expect for a0, are equal to zero. In this case, the
summations over p and g are automatically removed. When the performance
of apodized optical systems without aberrations is explored, we have to set

»
dp=dM=dp=0, for F~+0
and
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It should be noted that the formulae derived enable a simultaneous calculation
of the desired distributions for different values of the variable u (the general
factors have the same values). Summing up, the derived formulae are a powerful
tool for inspection of the imaging properties of circularly symmetrical optical

systems.
The numerical illustration of the criteria proposed above are hoped to be

delivered in the next future.
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XapaKTepucTUK 0TOGPaXKeHUSI anoAn3MpPOBaHHbIX OMTUUYECKUX CUCTEM
co ctepuueckoii abbepalueil Npu 0TOGPaXKEHUM OfHO-M [ABYTOUEYHHbLIX MPEAMETOB

PaboTa KacaeTcsl KaueCTBa aroAu3vipoBaHHbIX OMTUUECKMX CUCTEM CO cihepuyeckoli abGepauyeit. Boina
NPVYHSTA anoauysaumsl ¢ pagvasbHON CUMMETpUeil. AGGepaumy MPYBELEHbI B MPeACTaBNEHN 3epUHKE.
OBCY>KEHDBI CIEAYIOLLME KPUTEPUM OTOBPKEHNS: TOUEYHAS (lyHKUMS PasMbITUS, BTOPOA MOMEHT Toue-
UHOFO PasMbITUSA, paavasbHOE pacrpeaeneHVe 3Hepruv, uvcnio CTpens, pacrpedesieHrie MHTEHCUBHOCTY
U306PaKEHVIS IBYTOUEUHOMO NMPeaMETa, ToUeUHast KOHTPACHOCTb M30GPayKeHUs], a TAKOKe PacripesesisieMocTy
Peiinsiira n Cnapposa. [151 BceX 0TMeYeHHbIX KPUTEPVEB GbU MOJTyYeHbl aHaIATUYECKVIE 3aBUCMOCTU.
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