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Solution of ray trajectory equation in a gas lens*

Ewa Sienkiewicz

In stitu te  of P hysics, T echnical U n iversity  of W roclaw, W ybrzeże W yspiańskiego 27, 
50 -3 7 0  W roclaw , P oland.

An analytic m ethod of solving the ray trajectory equation for a gas lens in  cylindric  
coordinate system  is presented. A n approxim ate solution has been found for th e  integral 
equations b y  em ploying the m ethod of successive approxim ations. An analytic  form  
of the solution  is very sim ple and allows to  calculate quickly the m ain param eters  
of the gas lens.

1. Introduction

Gas lenses, as elements of the waveguides, are essentially nonuniform media 
characterized by refractive index gradient in gas, induced by changing such 
parameters like temperature or pressure. Thermal gas lens is composed of a brass 
tube of constant temperature Tw with a chrome-nickel wire reeled on it to 
heat the gas flowing through the tube. The gas of the room temperature T0 < Tw 
flows into the lens and is heated by its walls. Since the refractive index changes 
inversely proportionally to the temperature it reaches its greatest value on the 
lens axis. The flowing gas acts a converging lens and focusses the light rays 
passing through the tube.

The analysis of the light propagation in the gas lens may be carried out 
within the geometric optics approximation, since the changes of the refractive 
index along the distance comparable with the wavelength value are negligable 
with respect to the value of the refractive index itself.

In the uniform media the light propagates along the straight lines, while 
in the heterogeneous media it travels along the curved trajectories. Deformation 
of light ray trajectory in the nonuniform media may be easily determined by 
using numerical methods. However, for theoretical discussions of the ray trajec­
tory properties the knowledge of an analytic (even approximate) solution of the 
ray equation is more desirable. In the case when the refractive index of the 
gas medium is a function of only one variable the analytic solution of the ray 
equation is reduced to solving a relatively simple differential equation of the 
second order [1]. If two variables are taken into account (it is assumed that 
the optical system is of rotational symmetry) the initial form of the differential 
equation is more complex and the rigorous analytic solution of this equation 
for the refractive index distribution existing in the gas lens is impossible. Sodha, 
Ghatak, Malik and Goval developed the theory of electromagnetic wave pro-

* This work w as carried on under the Research P roject M .R. 1.5.



262 E. Sienkiewicz

pagation in the gas lens by using the geometric optics approximation [2, 3]. Ho­
wever, the analytic form of the solution obtained by them is rather complex; 
therefore an analytic method of solving the ray equation with the help of 
integral equations proposed in this work is based on iterative method.

2. Differential equation of ray trajectory 
in the cylindric coordinates

The light ray trajectory in the isotropic medium of arbitrary distribution of 
the refractive index is described by a vector ray equations [4]:

i ( №ir) = gradB’ (1)
where r (a?, y, z) — travelling radius of an arbitrary point of the light ray, 

s — arc length of the light ray,
dr ¡ds — unity vector, normal to the wave surface, 
n (x ,y ,z )  — refractive index of the isotropic medium.

By passing from the ray eq. (1) in the Cartesian coordinates to the ray equation 
in the cylindric coordinates q and z (under assumption that the gas medium 
is of rotational symmetry around the z axis, in other words that dn\dq> — 0 
the following relations are obtained:

(2)

d_
ds

dn
dz

By eliminating ds from those equations and taking account of the rays lying 
in the meridional plane the following differential equations are obtained:

dV_Q_ = I f
dz2 4  U I J U  dz dz]

3. Analytic solution of the ray equation in the medium 
of refractive index depending on one variable

By considering the medium of refractive index being a one variable function 
a simple differential equation is obtained which may be solved analytically. 
In the case when the refractive index changes only with the distance q from
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the lens axis the equation (3) has the form 

dz* » [  \ dz ; J dg 1
(4)

and the solution is

z(q) =  *o± / [«0 n2(Q0)
n*(e) - i (5)

If the refractive index depends only on the lens length z then by solving the 
equation

<?e - 1 L  . ¡d g V ldndg  
dz* n [  + \dz}  \ d z  dz

=  0, («)

we get

Л
l  z *1-1/2

(7)

»0
The values z0, g0, (dg/dz)0 - correspond to the initial conditions: z0, g0 — point 
coordinates of the light ray at the input to the lens, (dQlde)0 — tangent of the 
ray inclination angle at the input. For the ray entering at z0 = 0 parallelly to 
the axis ((dQ/dz)0 — 0) the point coordinates of the ray change according to 
(5) as follows

z ( q) == db
n*(e)
n 2{Q0)

(5a)

or, in the face of (7), according to the following formulae

e(*) =  Qo± (7a)

If the light ray entering parallelly the lens at the height q0 is focussed, the 
minus sign is taken in formulae (5a) and (7a), while if it is defocussed the plus 
sign should be accepted.

4. Analytic solution of the ray equation in the gaseous medium 
o f refractive index distribution n (p vz) == n0( z ) ( l— a2(z)p2)

Since the gas lenses are of great focal lengths in relation to their transversal 
sizes, the quantity (dgjdz)* is negligible in comparison to the number 1, and then

d?g 1 Idn dg dn\
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By introducing the dimensionless quantities u and x

x

where q — distance from the tube axis, 
a — tube radius,
v0 — axial velocity of the gas flow, 
z — length coordinate,

k
a — parameter defining the gas properties: a = —  {Tc — coefficient

Qcp
of thermal conductivity, cp — specific heat at constant pressure, 
q — average density of gas): 

we get from (8)

i n - i l k
dx2 n |_

dn(u, x) du dn{u, x)
du

,2

dx dx 

aL

]· (9)

wherejc=(?Ii)§l>
re distribution [3]:

T (u ,x)  =  Tw — (Tw—T 0) ( l —u2)e~ix

V(L) = —- , L  — lens length. The following temperatu- 
a2

( 10 )

(Tw — temperature of the tube walls, T 0 — temperature of the gas the tube 
entrance) is identical with the exact values of temperature in the gas lens 
and fulfills the energy balance equation and its limiting conditions in such a lens. 
By assuming the radial parabolic change of refractive index [2] in the form

n(u ,x )  =  n0(x) [1 — a2a2(z)u2] (11)

and substituting the temperature distribution (10) to the expression relating 
the temperature and refractive index

n(u, x) = 1 + (np —1) T n

T(u, x)

the following formulae for n0(x) and a2(x) are obtained:

».(*) = l + (l-e-“)j,

a2(x) =
2(np - l ) ( T w- T 0) e_ 

a*n0(x)T0

( 1 2 )

(13)

(14)

where np — refractive index in gas for T (0, 0) = T 0. By eliminating n0(x) 
and a2(x) from (11) the distribution of the refractive index takes the form

n(u, x) =  n 0+p( 1 - u 2)e~4x (15)
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where
T , - r ,

n0 = np (np 1) , 
i 0

(15a)

^ T w-T „  
P =  (** !) r  · (15b)

If a new variable y = u /]/k  is introduced and if notation m(y, x) 
is accepted, the eq. (9) is led to the form

=  In n{y, x)

d?y dm(y, x ) dy dm{y, x) 
dx2 dy dx dx ’

(16)

and the refractive index is

n{y, x) =  n0+ p( 1 —K y2)e~4x. (17)

The partial derivatives of the function m appearing in (16) are equal to

dm(y,x)
dy

Sm{y, x)
dx

2 K P V  c - 4 *

n(y, X)

4 p (l-K y * )  
n(y, x)

= h (y , x),

e 4* =  K {y ,x ).

(18)

The solution of (16) is sought in the form y = y(x). By substituting this solution 
to the formulae (18) the variable y may be eliminated and in this way the partial 
derivatives of the function m (y,x) become only the functions of one-variable 
x. Denoting by

9(%) =

f(v) =

2Kpy{x) _ 
e 4x

n[y(cc),x]

4 p [l-K y* (x )]  c_ 
n[y{x),x]

(19)
4x

the eq. (16) is reduced to a nonuniform linear differential equation of second 
order

d2y 
dx2 +/(<*)

dp_
dx -9 {v ) =  0. ( 20 )

By lowering the order of equation a nonuniform linear differential equation 
of first order is obtained
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where z(x) =  dyldx. The functions/(a?) and g (x) are continuous within an interval 
of the variable x. The solution of this equation is the following

X* X
x  S f (x )d x  S f(x ')d x '

z{x) ={z0+ J g{x')ex° da/je“*0 (22)
*0

The solution of the differential equation of second order (20) with the initial 
condition x  = x p , y = y0 is

x"
x  -  f  f (x ')d x ’

y(x) = Vo + Zo J e *° dx"

x  — /  f(x ')d x ’ x "  /  f (x )d x

+  / ( 0 *° /  sr(»')e*° dx’jd x" . (23)
Xp x0

iNow, coming back to the function h± and h2 (eq. (18)) depending upon x  and y, 
which were temporarily assumed to depend only on x, we obtain an integral 
equation of the type

x ”
x  — /  h2 ( v ,x ’)d x ’

y(X) =  Vo±Zo /  6 2:0 dx"
Xp

x  — s h2(v ,x ')d x ' x "  /  h2(y ,x )d x

^ / ( e * 0 S  h i(y ,x ')eX° dx')dx". (24)
Xp x0

The solution is also an equation of ray trajectory y =  y(x), which is found 
by applying the method of successive approximations due to Picard. In the 
first step of iteration it is assumed that the functions h±(x, y) and h2(y, x) 
are almost equal to zero. Then from (24)

y(x) =  yo+*o0* - ^ ) ·

By employing the initial conditions: x = xp,y  = y0J (dyldx)x=Xp =  Owe obtain 
y — y0· This is true since, as it is well known, in the case of constant refractive 
index of the medium the parallel ray incident at certain height y0 moves in 
this medium along the straight line y =  y0. The solution obtained in the first 
approximation y(x) =  y0 is substituted into (18) in the second iterative step

K {yo,x) =

± p (l-K y l)  _ix _e 4* = f(x ) ,

2Kpy

My0,x)
— e"*4x = 9{x)>

(25)

where n(y0,x )  =  n0+ p ( l - K y 20)e~*z .
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Since n(y0, x) differs only slightly from n0 it is allowed to assume n(y0, x) =  n0 
in the nominator, getting

K (y ^ x )  =  — - p ( l - K y l ) e  ix = 4«e to, 
n 0

2
h (yo ,x )  = ------K py0e~4x = —2be~ix\

n 0

where
p ( l - K y 20)

a  = ----------------------- ,
n 0

b =  K py0 
n 0

(26)

(27)

By calculating the particular integrals in the formula (24) we get the solutions
y(&)

y ( x )  =  y»+(*»+ i ) e' TO"“1(* - ^ - l [ ( w  + T ^ r  + "·)
/ ae p

„ —BXna2e p

\ 1 1 ! f  2-2! + ■ i  ( * - * ) · (28)

The further iteration consists in resubstituting the known solution y — y(x) 
to (18) and finding, according to (24), the solution for new functions hx and h2, 
and so on. However, the next substitution leads to a very troublesome calcu­
lation of integrals and therefore the actual analytic calculations have been stop­
ped at this point.

From the formula (22) the first derivative of y(x) function is calculated

and the initial condition x — xp, (dy\dx) =  0 and (29) yield

*0 + 2^ ”  SÏ®
-a e ~ ixP „ae~iX° (30)

By eliminating the value z0 +6/2« from the functions y(x) and dy {x) jdx we have

y(«>) =  y °~  ^ { ^ 1 ~ e~ae ***) (x ~ xp)

4- A  G~ ™ '* Xp l a e ~ *Xp , a 2 e ~ * Xp , \
8« \ 1 1 !  +  2-2! /

dy(x)
dx

8 a

>)·

U - l !
«2e ix 
2 21 + (31)

W)
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Beturning to the variables u and x  and replacing the constants a and b with 
constants p  an n0 determining the refractive index we get relations that deter­
mine the position u(x) of the point on the light ray, and the slope du/dx of 
this ray with respect to the axis

u ( x )  =  Uq — K
u

p(u ¡J-l)
— 4x„

U r

8 « - l )

2 « - 1 )

4
n0

[1 — e~ «ü * ”](® -œ ,)

- g("»-1> e-^r P«-D, 1 l)2
L U r

■ — e p-j-----4 n:

+
U r

8 « - l )

du(x) K uq 
dx

x f i W z i L · -  +  A -A M z A ! e_ite+
L w;

» + · · · J

• 1

2 K - 1 )
1].

' (33) 

(34)

It is sufficient to. use only two first terms of the series, since the next one 
is only of the order of 10“1S. The form of these expressions is very simple and 
the main parameters of the lens may be found quickly. This solution may be 
applied with success as a first estimate of the focal length and position of the 
principal surface.

5. Final remarks

The formulae (33) and (34) enable to define the properties of the gas lenses. 
If the directions of the light ray and that of the gas flow are consistent, then 
the initial conditions are the following: xp =  0, u — u{0), {duldx)x=Q — 0. 
In the case when these directions are opposite: xp =  xL, u = u(0), (du\dx)x=XL 
=  0. The focal length and the principal surface shape are defined by the rela­
tions [5]:

% ( 0 )
( du Idx)x=XL

y{L) u+ (0 ) - u +(xL) 

v0 {duldx)t=XL ’

( ® l )

(duldx)~=0 ’

(35)

_ _  u_(xL) - u _ ( 0)
XH ~  (du/dx):_0 ’

where the indices “ - f” and ” denote the consistence of the light ray and 
gas flow directions, respectively.
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The analytic expressions (33) and (34) are useful especially for calculation 
of focal lenght xF (the distance of the principal surface from the lens input 
deviate from the exact values).

It should be remembered that when looking for analytic solution of the ray 
equation we have stopped the procedure after the second iterative step. If we 
did not of it and calculated the separate integrals according to (24), the values 
of parameters would be presumably much more accurate, compared with those 
calculated with the paraxial approximation [6] in the off axis region [7].

The values of the focal lengths may be estimated with sufficient accuracy 
for the distances w(0) from the axes and contained within the interval 0 <  u(0)
<  0.7, and for the normalized gas velocities within the interval 5 <  v0/V(L)
<  10. The values of n0 and p  for np = 1.000273, Tw—T 0 =  50 K, T 0 =  293 K 
have been found from (15a) and (15b). For the above values the principal 
parameters have been calculated. For instance, for a — 0.3 cm, v0/V(L) — 6.25, 
u(0) =  0.1, and L = 20 cm, — zF /L =  3.2697, while for non-axial approxima­
tion the value obtained is zF fL — 3.3761 [7].

The form of the integral eq. (24) may be employed to find the light ray 
trajectory in a cylindric nonuniform medium of arbitraty distribution of refrac­
tive index, in the case when the transversal sizes of the lens are much less than 
the its longitudinal sizes.
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Решение уравнения траектории радиуса в газовой линзе

Предложен метод аналитического решения уравнения траектории радиуса в газовой линзе в цили­
ндрических координатах. Приближённое решение было найдено с помощью интегральных уравнений 
на основе метода последовательных приближений. Анализ ическая форма решения очень проста 
и позволяет быстро рассчитать главные параметры газовой линзы.


