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Solution of ray trajectory equation in a gas lens*
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Institute of Physics, Technical University of Wroclaw, Wybrzeze Wyspianskiego 27,
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An analytic method of solving the ray trajectory equation for a gas lens in cylindric
coordinate system is presented. An approximate solution has been found for the integral
equations by employing the method of successive approximations. An analytic form
of the solution is very simple and allows to calculate quickly the main parameters
of the gas lens.

1. Introduction

Gas lenses, as elements of the waveguides, are essentially nonuniform media
characterized by refractive index gradient in gas, induced by changing such
parameters like temperature or pressure. Thermal gas lens is composed of a brass
tube of constant temperature Tw with a chrome-nickel wire reeled on it to
heat the gas flowing through the tube. The gas of the room temperature TO< Tw
flows into the lens and is heated by its walls. Since the refractive index changes
inversely proportionally to the temperature it reaches its greatest value on the
lens axis. The flowing gas acts a converging lens and focusses the light rays
passing through the tube.

The analysis of the light propagation in the gas lens may be carried out
within the geometric optics approximation, since the changes of the refractive
index along the distance comparable with the wavelength value are negligable
with respect to the value of the refractive index itself.

In the uniform media the light propagates along the straight lines, while
in the heterogeneous media it travels along the curved trajectories. Deformation
of light ray trajectory in the nonuniform media may be easily determined by
using numerical methods. However, for theoretical discussions of the ray trajec-
tory properties the knowledge of an analytic (even approximate) solution of the
ray equation is more desirable. In the case when the refractive index of the
gas medium is a function of only one variable the analytic solution of the ray
equation is reduced to solving a relatively simple differential equation of the
second order [1]. If two variables are taken into account (it is assumed that
the optical system is of rotational symmetry) the initial form of the differential
equation is more complex and the rigorous analytic solution of this equation
for the refractive index distribution existing in the gas lens is impossible. Sodha,
Ghatak, Malik and Goval developed the theory of electromagnetic wave pro-
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pagation in the gas lens by using the geometric optics approximation [2, 3]. Ho-
wever, the analytic form of the solution obtained by them is rather complex;
therefore an analytic method of solving the ray equation with the help of
integral equations proposed in this work is based on iterative method.

2. Differential equation of ray trajectory
in the cylindric coordinates

The light ray trajectory in the isotropic medium of arbitrary distribution of
the refractive index is described by a vector ray equations [4]:

i (eir) = gra®’ )

wherer @y, z) — travelling radius of an arbitrary point of the light ray,
S — arc length of the light ray,
drjds — unity vector,normal to the wave surface,
n(x,y,z) — refractive index of the isotropic medium.
By passing from the ray eq. (1) in the Cartesian coordinates to the ray equation
in the cylindric coordinates g and z (under assumption that the gas medium
is of rotational symmetry around the z axis, in other words that dn\dg> — 0
the following relations are obtained:

@
d dn

ds dz

By eliminating ds from those equations and taking account of the rays lying
in the meridional plane the following differential equations are obtained:

Q= If
dz2 4 UIJU  dz dz

3. Analytic solution of the ray equation in the medium
of refractive index depending on one variable

By considering the medium of refractive index being a one variable function
a simple differential equation is obtained which may be solved analytically.
In the case when the refractive index changes only with the distance g from
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the lens axis the equation (3) has the form

d* »[ \dz:Jdg1l “)

and the solution is

z(q) = *ot (lo[ n2(Q0) n*(e) - i ©)

If the refractive index depends only on the lens length z then by solving the
equation

<?¢ -1L . jdgVidndg _ 0
d* n[ +\dz}\dz dz _ («
we get
|z *1-12
1 )
)

The values z0, g0, (dg/dz)0-correspond to the initial conditions: z0, g0 — point
coordinates of the light ray at the input to the lens, (dQlde)0 — tangent of the
ray inclination angle at the input. For the ray entering at z0 = 0 parallelly to
the axis ((dQ/dz)0 — Q) the point coordinates of the ray change according to
(5) as follows

2(q) = n*(€) 5
(a) = db 020 (5a)

or, in the face of (7), according to the following formulae

e*) = Qo (72)

If the light ray entering parallelly the lens at the height O is focussed, the
minus sign is taken in formulae (5a) and (7a), while if it is defocussed the plus
sign should be accepted.

4. Analytic solution of the ray equation in the gaseous medium
of refractive index distribution n(pvz) = n0(z)(I— a2(z)p2

Since the gas lenses are of great focal lengths in relation to their transversal
sizes, the quantity (dgjdz)*is negligible in comparison to the number 1, and then

d?g 1 1dn dg dn\
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By introducing the dimensionless quantities u and x
X

where q — distance from the tube axis,
a — tube radius,
v0 — axial velocity of the gas flow,
z — length coordinate,

a — parameter defining the gas properties: a = —k {lc — coefficient

Qp
of thermal conductivity, ¢ — specific heat at constant pressure,
q — average density of gas):
we get from (8)
. . dn(u, x)  du dn{u, x)
X2 In||_k du dx dx ] ©)
g V(L) = aL L lens length. The following temperatu
wherejc=(?1i)§1> aievy gt g temp
re distribution [3]:
T(u,x) = TWw—(Tw—TQ0) (1—u2e~ix 10,
(Tw — temperature of the tube walls, TO — temperature of the gas the tube
entrance) is identical with the exact values of temperature in the gas lens

and fulfills the energy balance equation and its limiting conditions in such a lens.
By assuming the radial parabolic change of refractive index [2] in the form

n(u,x) = n0(x) [1—a2a2(z)u?] a1

and substituting the temperature distribution (10) to the expression relating
the temperature and refractive index

Tn

n(u, x) = 1+ (np—1) T, %) (12,
the following formulae for n0(x) and a2(x) are obtained:

»(*) =1+ (I-e-*)j, 13)

a2x) = 2(np-DH(Tw-T 0 e_ (14)

a*n0(x)TO

where np — refractive index in gas for T(0, 0) = T0. By eliminating n0(x)
and a2(x) from (11) the distribution of the refractive index takes the form

n(u, x) = n0+p(1-u e~ (15)
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where
T -
no=np (p 1) Or (152)
|

p= e (15b)

If a new variable y = u/]/k is introduced and if notation m(y, x) = Inn{y, x)
is accepted, the eq. (9) is led to the form

d?y dm(y,x) dy dm{y,x)

dx2 dy dx dx (16)
and the refractive index is
n{y, X) = n0+p(1—Ky2e~4x a7
The partial derivatives of the function m appearing in (16) are equal to
dm(y,x) 2K PV c-4* _ h( X)
dy rw,>9 - yl ’ (18)
Sm{y, x) 4p(I-Ky™*) _
dx n(y, X) e 4 = K{y,x).

The solution of (16) is sought in the formy = y(x). By substituting this solution
to the formulae (18) the variable y may be eliminated and in this way the partial
derivatives of the function m(y,x) become only the functions of one-variable
X. Denoting by

2Kpy{x) a—x

M= nly(ce).x] -
ooy = ARIFKYROOT
V)= iy x

the eq. (16) is reduced to a nonuniform linear differential equation of second
order

d2y
o2 (<) g 900) = O 2

By lowering the order of equation a nonuniform linear differential equation
of first order is obtained
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wherez(x) = dyldx. The functions/(a?) and g(x) are continuous within an interval
of the variable x. The solution of this equation is the following

Sx*f(x)dx )S( f(x")dx"
z{x) ={z0+ \]g{x')ex° da/je“*0 (22)
*0

The solution of the differential equation of second order (20) with the initial
condition x = xp,y = y0is

X
- f f(x")dx’

y(x) = o+ 2o J e * dx"

x —/ f(x)dx’ x" [ f(x)dx
+ /(o * [ sr(»)e*° dx’jdx". (23)
Xp X0
iNow, coming back to the function h+and h2(eq. (18)) depending upon x and Y,
which were temporarily assumed to depend only on x, we obtain an integral
equation of the type

X —)/("hz(v,x’)dx’
y(X) = VoxZo / 6 20 dx"
Xp
x —S h2(v,x")dx" x" / h2(y,x)dx
Al(e*0 S hi(y,x)ex dx)dx".  (24)
Xp x0

The solution is also an equation of ray trajectory y = y(x), which is found
by applying the method of successive approximations due to Picard. In the
first step of iteration it is assumed that the functions hxx, y) and h2(y, x)
are almost equal to zero. Then from (24)

y(x) = yot*o0*-")-

By employing the initial conditions: x = xp,y = yQ (dyldx)x=¥p = Owe obtain
y —y0- This is true since, as it is well known, in the case of constant refractive
index of the medium the parallel ray incident at certain height y0 moves in
this medium along the straight line y = y0. The solution obtained in the first
approximation y(x) = y0is substituted into (18) in the second iterative step

=PUKYD %~ 10,
(25)

K
P e = 9{x)>

K{yox) = My0,x)

where n(y0,x) = n0+ p (I-K yBe~*z.
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Since n(y0, x) differs only slightly from n0Qit is allowed to assume n(y0,x) = n0
in the nominator, getting

K(y"x) = ——(g)(I—KyI)e iXx = 4«e to,
n
2 (26)
h(yo,x) = ----- 6pr0e~4x: —2be~ix\
n
where
p(l-Ky@
a = - o ,
(27)
b = Kpy0
no

By calculating the particular integrals in the formula (24) we get the solutions
(&)

y(x) Zy»"l'(’c))‘l'l)e'-m“l(*_/\_l[(w +T/\r+||.)
lae p aze_BB
V110 Fo2-28 4+ mi(*-*%).

The further iteration consists in resubstituting the known solution y —y(x)
to (18) and finding, according to (24), the solution for new functions hxand h2,
and so on. However, the next substitution leads to a very troublesome calcu-
lation of integrals and therefore the actual analytic calculations have been stop-
ped at this point.

From the formula (22) the first derivative of y(x) function is calculated

(28)

and the initial condition x —xp, (dy\dx) = 0 and (29) vyield

-ae~ixP ,,ae~iX°
*)+ 277 SI® (30)
By eliminating the value z0+6/2« from the functions y(x) and dy {x) jdx we have

W) = o= AN L~ emae ) (x~ xp)

4-A G~-™'*Xplae~*Xp , aZ2e~*Xp , \
8« \V11! +  2-21 /
«2e ix
31
8a U-11 221 ° 31

dy(x)
dx >)_ W
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Beturning to the variables u and x and replacing the constants a and b with
constants p an n0determining the refractive index we get relations that deter-
mine the position u(x) of the point on the light ray, and the slope du/dx of
this ray with respect to the axis

" puiH) .
u(x) = Ug—K 2« - 1) [1—e~ & * "|(®-))
g -@érbe-"r <—Pp-L )%
8«-1) L Eé PJ 4 n: »F o
v XxfiW ziL --+A -AMzA! e jte+

8«-1) W, o1
" (33)
du(x) Kug 3
dx 2K -1) 1. (39

It is sufficient to. use only two first terms of the series, since the next one
is only of the order of 101S The form of these expressions is very simple and
the main parameters of the lens may be found quickly. This solution may be
applied with success as a first estimate of the focal length and position of the
principal surface.

5. Final remarks

The formulae (33) and (34) enable to define the properties of the gas lenses.
If the directions of the light ray and that of the gas flow are consistent, then
the initial conditions are the following: xp = 0, u —u{0), {duldx)xQ —O.
In the case when these directions are opposite: xp = xL, u = u(0), (du\dx)x=xXL
= 0. The focal length and the principal surface shape are defined by the rela-
tions [5]:
% (0)
(du ldx)x=XL

y{L)  u+(0)-u +(xL)

(35)
v0 {duldx)t=X ~’

o)

(duldx)~=0"
u_(xL)-u_(0)
XH ~ (du/dx):_ 0 ~

where the indices “-f” and ” denote the consistence of the light ray and
gas flow directions, respectively.
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The analytic expressions (33) and (34) are useful especially for calculation
of focal lenght xF (the distance of the principal surface from the lens input
deviate from the exact values).

It should be remembered that when looking for analytic solution of the ray
equation we have stopped the procedure after the second iterative step. If we
did not of it and calculated the separate integrals according to (24), the values
of parameters would be presumably much more accurate, compared with those
calculated with the paraxial approximation [6] in the off axis region [7].

The values of the focal lengths may be estimated with sufficient accuracy
for the distances w(0) from the axes and contained within the interval 0 < u(0)
< 0.7, and for the normalized gas velocities within the interval 5< vO/V(L)
< 10. The values of n0and p for np = 1.000273, Tw—T0= 50 K, TO = 293 K
have been found from (15a) and (15b). For the above values the principal
parameters have been calculated. For instance, for a — 0.3 cm, vO/V(L) — 6.25,
u(0) = 0.1, and L = 20 cm, —zF/L = 3.2697, while for non-axial approxima-
tion the value obtained is zFfL — 3.3761 [7].

The form of the integral eq. (24) may be employed to find the light ray
trajectory in a cylindric nonuniform medium of arbitraty distribution of refrac-
tive index, in the case when the transversal sizes of the lens are much less than
the its longitudinal sizes.
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PeLLEHVe YpaBHEHVI TPAEKTOPW pavyca B rasoBoii JiH3e

MpeAnoXeH MeTOL aHa/IMTUYECKOTO peLLIeHNs YpaBHEHMS] TPAeKTOpMMK pajuyca B rasoBOi /IMH3e B LUIKN-
HAPUYECKMX KoOpAMHaTax. MpubAnKEHHOe peLleHwe 6b110 HalileHO C MOMOLLLbH MHTEFPasibHbIX YPaBHEHWIA
Ha OCHOBe MeToAa MocnefoBaTe/bHbIX MPUGAMKEHNA. AHanu3nuyeckast opMa peLueHnst O4YeHb npocTa
1 MO3BOMISIET BLICTPO PaccUUTaTh FNaBHblE MapaMeTpbl rasoBoil JMH3bI.



