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Evaluation of wave aberrations of objectives.
Part II. Wavefront reconstruction.
Selection of the reference sphere and calculation of wave aberration
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In the paper the following problems connected with the numerical wavefront recon­
struction from a shearing interferogram are discussed: the way of constant term 
determination as the wavefront shape function the method of obtaining a two-dimen­
sional wavefront model on the base of respective one-dimensional model, the method 
of choosing the optimal degree of approximating polynomial. The reference sphere 
and wave aberrations are determined.

1. Introduction

In the previous article [1] of this cycle the generalized mathematical model of 
shearing interferometry was presented. This model has been exploited to de­
termine the wavefront shape, generated by the objectives at small aberrations 
The shape of the wavefront was described by one-dimensional power polyno­
mial of order not greater than 10

M

9l (X) ~  1 (1)
i =o

L being the index of the scanning line y =  yL. In the same paper the wave- 
front gL(x) was determined, on the base of the shearing interferogram, with 
the accuracy to a constant term a0L. The determination of this constant term 
requires some additional information about the wavefront which may be, for 
instance, supplied by another shearing interferogram of the same wavefront.

2. Determination of the coefficients

This problem has been solved by using two methods. The first of them is an 
approximate one. It is based on an assumption that the wavefront shape has 
some symmetry, i.e., that the wavefront shape along the line y =  0 is the same 
as that along the x =  0 line. The other method allows to omit the assumptions
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about the wavefront symmetry, provided the analytical form of the wave- 
front function along the x =  0 line is known. The determination of this function 
requires, usually, that some additional shearing interferogram be produced 
and scanning along the x = 0 performed.

3. Two-dimensional wavefront model

The solution of the wavefront reconstruction problem in the one-dimensional 
form allows to obtain the information about this wavefront only in those points 
which lie on the scanning lines. Considering the results obtained so far the only 
way of condensening the information about the wavefront is to multiply the 
scanning lines in the interferogram under test. This creates considerable incon­
veniences, especially when “hand” scanning is applied, which may be avoided 
when two-dimensional model is used. This problem has been solved by exploit­
ing the knowledge of the one-dimensional wavefront reconstruction as far 
as the ajL coefficients are concerned [2].

Let us assume the following two-dimensional mathematical model of the 
wavefront

M  M

9 ( ® , y )  = £  £  W * ® 3 ·
j = 0 i—0

Therefore, for the fixed scanning line y =  yL we obtain

(2 )

M M

g(®, V) =
j = 0 i = 0

where

M

2j = 0
(2a)

a JL

M

=  X  a i iV L » 
»=0

L =  1, 2 , . . .

j = 0 , l , . . .  M.
(3)

Here Q denotes the number of the scanning lines and M is the degree of the 
polynomial. As it may be seen, the formula (3) represents a set M of systems, 
each composed of Q equations, which should be fulfilled by the set of coefficients 
aji(j, i = 0 , 1 , . . . ,  M). The set of coefficients aj{ is the solution of the problem 
formulated in this section, since it determines the sought function (2), whereas 
the coefficients ajL in the one-dimensional model considered earlier describe 
the wavefront in the form of one-dimensional functions. In view of the above, 
the solution (3) provides the sought information concerning the set of coefficients 
aj{. When solving the system of linear eq. (3) a method of approximation is 
used. As it may be seen from (3), aj{ are the functions of variable yL, i.e.,

ajL  — aj L ( y l ) i L  = 1» 2,..., Q f (4)
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which have the form
M

(Vi) <*/<!&· (5)
i—0

The function (5) is fulfilled by the following set of points

{( î, aji(^i))> [y2> ^ 2(2/2))) ···» (2/q) (2/q))}.? (6)

which has been determined from experimental data. Thus the values of the 
function (5) at Q points of yL are known. Hence, the approximation method 
allows to determine the function, which approximates the set of points (6), 
in other words, to determine the coefficients aj0, an , ..., ajM.

After carrying out the above procedure for all j  (j =  0,1,  ..., M) the 
matrix of coefficients

[%L h J  = 0 , 1 , . . . ,  M (7)

describing the wavefront function (2) has been determined. The knowledge 
of the matrix (7) allows to calculate the wavefront values at an arbitrary point 
(%, y) in the exit pupil of the examined objectives.

4. The function approximation problem 
-  the choice of the approximating polynomial

In the method presented the function has been approximated by orthogona 
polynomials, using the least-square method. The degree of the approximating 
polynomial is not known a priori, while its choice significantly influences the 
approximation error. The degree of approximating polynomial must be high 
enough to well approximate the true function but simultaneously it should 
not be too high to preserve the smoothing properties with respect to the experi­
mental data. The polynomial of the suitable degree smoothes the experimental 
data in such a way that it preserves the information about the function sup­
plied by the experiment but washes out the perturbations.

Let jP (x ) be a function to be approximated by a polynomial of M-th degree, 
and let M be the optimal degree of the polynomial known a priori. If P(x) 
is approximated by a polynomial of M +1 order then by virtue of the assumption 
that M is the optimal order the coefficient p^+i1* should be equal zero. The 
above statement is valid provided that the empirical data, on the base of which 
the approximation was carried, were not loaded with any error. Since, however, 
the measurement errors are unavoidable the coefficient P̂m+i  ̂ will, hi general, 
be not equal to zero. Thus the statistical hypothesis

i>&B" = 0 , (8)

the so-called zeroth hypotheses [3], should be tested. For the problem considered 
in this section it is important that if the zeroth hypotheses is correct then the
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expected value of the expression

, =  £
m K  — m —1 (9)

is independent of the degree m of the approximating polynomial for m — M, 
M + 1 , K —1, where K  is the number of the points taken for approximation, 
whereas

K
*1 = do)

= 1
Here yk denotes the measured value of the function P  (a?) at the point xk, P (m) (xk) 
is the calculated value of the function P(x) at the point xk, while the function 
P(x) is approximated by a polynomial of m-th order. Since the value M is, 
in practice, unknown the following procedure was applied: the polynomial of m 
degree (m = 0 , 1 , . . . ,  M) was sought by calculating ĉm and this procedure was 
repeated for increased m until the magnitude of a2m decreased significantly 
together with the increasing m. The value of m =  M , such that for m >  M 
it does not decrease essentially (o^ achieves certain almost constant value), 
fulfils the zeroth hypotheses (8) and gives the sought optimal degree of the 
approximating polynomials.

In order to use practically the above procedure of finding I f  it is necessary 
to specify more strictly what does it mean “the quantity <̂m does not decrease 
essentially”.

In this paper, when looking for the optimal degree of the approximating 
polynomial, it has been requested that the following conditions be fulfilled:

m<10,  (11a)

m < K  —1, (lib)

0·001. (11c)

Thus, the degree of the approximating polynomial, being restricted from above, 
is additionally restricted by the number of points K  taken in the approximating 
procedure. It has been, moreover, assumed that the zeroth hypothesis (8) will 
be well fulfilled, if the condition (11a) is satisfied.

5. The reference sphere and the wave aberration

In order to determine the wave aberration W(x,y) of the objective examined 
by the method presented in this paper, it is necessary to known the wavefront 
g{x,y) and the reference sphere S(x, y)

W(x, y) = g(x, y ) -S {x ,  y). (12)

The reconstruction of the wavefront on the base of a shearing interferogram
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was given above. Now, we will discuss the problem of reference sphere. There 
is no unique way of determining the reference sphere. In the literature different 
referrence spheres are suggested: the sphere passing through three chosen 
points of the wavefront, the sphere of the radius equal to that of the wavefront 
curvature at its vertex, the sphere giving the minimal square mean deviation 
from the wavefront.

In the present paper the last reference sphere has been chosen. This sphere 
was determined after optimizing the sphere of reference being the first approxi­
mation (i.e., the sphere S(x, y) passing through the three chosen points of the 
wavefront: g{ — 0.5 D,0),</(0, 0), <7(0.5 D,0), where D is the diameter of the 
objective under test) to minimize the rms deviation from the wavefront. This 
sphere is defined by radius B and the origin of coordinate system (xc, 0 , zc):

xc =  1 /D{2<7( -0 .5  D,0)zc-g*( -0.5 D, 0) -0.25 D2},

zc = 0.5{0.5_D2 +  <72( —0.5 D, 0) -f <72(0.5 D,0)}/ (13)

[<7(-0.5 D,0) + g{0.5 D,0)],

\R =  / $ + $ .

The sphere defined in this way is strongly dependent on the acci­
dental perturbations of the wavefront, and besides the choice of such 
a sphere is not justified from the physical viewpoint. Because of this, the 
optimization of this sphere was carried out by using the criterion of minimal 
rms deviation (aberration) of the wavefront from the reference sphere. The 
results of the work [4], in which it has been pointed out that there exists a re­
ference sphere with respect to which the rms aberration achieves the minimum 
and simultaneously the Strehl definition takes its maximum value. In the paper 
[4] it has been also shown that the wave aberrations W{x, y) of the examined 
system, calculated with respect to the optimal reference sphere, are connected 
with the wave aberrations W{x,y) of this objective, calculated with respect 
to an arbitrary sphere (in this paper — with respect to the sphere passing 
through three chosen points of the wavefront) by the following relation

W'(x,y) = W(x, y) + Uxu(xi + y^ + U ^  + Uyy + U, (14)

where x, y are coordinates normed by the radius of the exit pupil of the objective 
under test. The coefficients UXtV, Ux,Uy, U for the circular pupil are determined 
by the following relations:

Ux>y = -12<W(x,y)(x* + y*)} + 6<W(x,y)y,

Ux =  - 4  (W{x,y)x},  (15)

Uv =  -4<TT(x, y)y},

U =  6<TF(a?, 3/)(<»2 +  2/2)>-4<TF(æ, y)>,



430 В. Dubik

where
± Q' Q

<W{x,y)> = J j ; ^ l ] ^ W (xk>yi )»
k=l 1=1

Li denotes the number of the sampling points in the region of the exit pnpil 
of the examined objective, Q\Q are the numbers of sampling points (xk, yt). 
For the parameters (radius of curvature, centre) of the reference sphere the 
relations may be found in paper [5].

6. Conclusions

The aim of this cycle of papers is to present the shearing interferometers method 
as applied to measurement of wave aberrations of objectives. In part I  the 
mathematical model of shearing interference and the way of its exploitation 
for the wavefront reconstruction were given. The present part II  deals with 
the problems connected with the wavefront reconstruction, selection of refe­
rence sphere and the calculation of wave aberrations. In the next paper of this 
cycle the experimental results will be given.
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О п р ед ел ен и е аберрации  в о л н о в ы х  о б ъ ек ти в о в .
Ч а с т ь  П . Р ек он стр ук ц и я  ф р он та  в ол н ы .

В ы бор  сф ер ы  о тн есен и я  и  р а сч ёт  в о л н о в ы х  аберрац и й

Представлены проблемы, связанные с реконструкцией фронта волны на основе интерферограммы 
шйринг. Приведён способ определения постоянного фактора в функции, описывающей форму фро­
нта волны, обсуждён метод получения двумерной модели фронта волны на основе одномерных 
моделей, показан также метод выбора оптимальной степени аппроксимирующего многочлена. 
Определена сфера отнесения и волновые абберации.


