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The present paper consists of five parts and is devoted mainly to the results of optical constants
examination in Zn3As2 and Zn3P2 which are compounds of 113V 2 type with broad energy gap.
The analysis of the up to now state-of-affairs so far as the application of the Kramers-Kronig ana-
lysis method (KK) for the complex coefficient of reflection is concerned has indicated that it is
necessary to develop the research in three additional directions described in the first parts of this
series. In the part | a critical analysis of the calculation methods used till now and based on dis-
persion relations due to Kramers and Kronig has been presented. Also the methods of calculation
of optical constants not employing the KK integral have been discussed.

In the parts Il and Il some suggestions of effective improvements of calculation methods
basing on the KK integrals have been discussed. In the present (I11) part the method of calculation
known as Philipp-Taft method has been described in details and an improved modification of its
one variant has been proposed. Additionally, in both these parts the results of calculations for
GaAs (as a well known semiconductor) have been presented to be next employed to test the methods
of calculation improved in this part.

The analysis of errors and accuracies for these methods is widely presented in the part IV.
Finally, the part V contains the results of calculations of optical constants for Zn3As2 and Zn3P2,
carried out by using the improved methods of calculation and basing on our own measurement
of optical properties of these semiconductors.

1. Introduction

The method used most often for calculation of the optical constants in semiconductors
from the results of reflection coefficient measurements is the method due to Philipp-Taft
(PT method) and more specifically to many of its variants (see [1]). An essential feature of
the PT method is that it is based on the assumption that the reflection coefficient de-
creases exponentially as a function ofenergy, except for the highest energy, for which this
coefficient is known.

The detailed analysis of various variants of this method presented in this paper is
based on testing calculations of optical constants for GaAs and on the remarks met in the
literature. The energy dependences o f the optical constants of GaAs have been taken from
the work [2]. In this analysis a number of shortcomings of the PT method have been
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described, a detailed algorithm being also given for some variants of the PT method which
is rarely met in the literature. Also, an improved modification of one of the most com-
plicated variants of the PT method given by Tuivinski an Terentev in [3] has been sug-
gested.

2. Analysis of the Philipp-Taft method

Optical constants of semiconductors may be determined when knowing the reflection
coefficient R and the change of phase 0 occurring during reflection. The first value may
be obtained from the measurements, while the second one may be found by taking ac-
count of the dispersion formula

(i)

By assuming that the measurement of the reflection coefficient has been made within
the interval (Ea Eb the integral (1) may be splitted into three components

(22)

b
Ci/E& *m (20)
dx. (2c)

The estimation of 0 2(E) is reduced to the respective numerical integration. An accurate
description of the applied method will be given in the part IV of this work [4].

The determination of 0 t (E) is the next problem. For this purpose independent meas-
urements of the refractive index Hwithin the region of semiconductor transparency, i.e.,
below the absorption edge [5-7], are often used. The reflection coefficient is then obtained
from the relation

which enables the determination of O(E) from (2a). When such measurements are not
available, the extrapolation (for instance, by a straight line R(E) = R(Ea), [8, 9]) is per-
formed.

The problem of determination of 0 3(E) remains still open which is connected with
the extrapolation of the relation R(E) outside the end point of the measurement. The chosen
extrapolation curve should satisfy the following requirements: be smooth, tend to
zero at infinity, like E~4 (then O(E) ->n, when E -> 00), assure the continuity of R(E)
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and dR/dE at the point Eb and cause that 0(E) > 0 for each E and O(E) = 0 in the re-
gion of transparency. The last condition is often replaced by the requirement that the cal-
culated coefficient of absorption be consistent with that measured close to the absorption
edge [6, 10, 11]. Thus, assuming some parametrized form of the reflection curve outside
the end measurement point, the values ofthese parameters are determined so that the a-
bove assumptions be fulfilled.

The PT method is based on the extrapolation

R(E) = B x Ea} for E > Eb. (4)

The continuity condition R(E) in Ebleads to determination of the constant B and to writ-
ing the formula (4) in the following form

*(£) = *(£,) (5)

Taking account of the above relation, the formula (2c) for 0 3(E) may be transformed to
the form convenient for calculations

INR(E® I1E-Eb1

03(E
) 2n  n|E+EbI
, for E<ED,
o v (2m+1)2
* 6)
A yilEb\2mil 1 TiA

for E > Eb.

n2UVE] (2/n+)2 4

The further step is to determine the value of the parameter A. It may be assumed that
A = —4, as it was the case in the works [8, 12-14]. Then, however, some discontinuities
of dR/dE may happen at Eb, and also nonphysical behaviour of 0 may be expected in
the transparency region. The latter is realized by 0 < 0, which results in negative values
of the absorption coefficient. Such a situation may happen very often in the transparency
region where the values of 0 should be close to zero.

Another variant of the PT method consists in determination of the parameters A from
the continuity condition for dR/dE at Eb [15]

Eb dR
R(EY dE ¢ _g, o

In this case, however, the fulfilment of the remaining conditions concerning the expe-
rimental curve may not be controlled. Moreover, it happens that R(E) increases at the end
of the measurement interval, hence the values of A obtained from the formula (7) are pos-
itive, and thus nonphysical, since then i?(c0) = oo.

The next, slightly better, variant of the PT method is based on the condition of ze-
roing of O in the transparency region. When £ < E b, which is usually the case in the trans-



86

K Jezierski et al.

parency region, the dependence (6) becomes linear

\ n n) Eb (8)

In order to make O(E) = 0 for E < Eg, the sum 0 X(E)+02(E) should be linear in this
region. Due to many different reasons (the measurement error, for instance) the above
requirement is not always satisfied. In consequence, the deviation of O from zero may be
fairly high below the absorption edge. The results may be improved by introducing the ex-
trapolation relations containing more parameters.

If only one parameter is to be determined it may be done (as it was the case in the va-
riant of PT method described above) by demanding that for some EO< Eg, 0(EQ) = 0
[16] or that the curve O(E) be the closest to zero in the sense of least squares in the trans-
parency region [17, 18]. The first way suffers from some nonuniqueness of the results
caused by nonuniqueness of the choice of EO, which is avoided in the second way by using
the least square procedure. In the first case the parameter A is defined by the following
relation

A= Ox(EQ+02(EQ InR(ED iy EPEOM y.I Eo\2m+ 1 T~I o
( In Eb+E0jIn Z\Eb)  (2m+h2

while in the second one the value of the parameter A will result from the fitting proce-
dure. The essential shortcoming of this method isthe fact that the received values ofthe par-
ameter A are positive and thus nonphysical.

In order to eliminate this shortcoming the parameter Ef is introduced [10]. This par-
ameter determines the upper integration limit in the integral (eq. (2c)), in other words

, X E r InR(x) ,

(10)
Then the dependences (6), (8) and (9) take the following form
<9.(£) In-R(£t) J (E-ED(E+Er)
In nj (E+E
1
E < Eb< Ef,
2m+)2’
+ (ID
i [(f I "M ppcE<H,
(2m-fl)2« ~4~
InR(Eb
0 3(E)g* NR(ED E 4 Eb< Ef, (12)

n
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L (Eb+E 0)(EF—E0) J

ji_y\VIE\2nl [|Eq2mll 1 T1 (13)
\Ef] J(2w+1)2i
As may be seen from the formula (13), in this case A — A(Ef) and by a suitable choice
of Ef it is possible to enter the range of nonpositive values of A, thus to avoid the non-
physical situation appearing earlier. Here, for given EQ one obtains an infinite number
of pairs of A and Ef such that 0(EQ = 0 and A is nonpositive, moreover, for different
pairs A and Ef being the solution of eq. (13), (93(£) behaves almost identically in the re-
gion of transparency which results from the relation (12). On the other hand, for high
energies the discrepancies between the values of 0 3(£) may be significant. Thus, an ad-
ditional condition must be here introduced to obtain a unique result. The requirement
that Ef bt maximum seems to be a reasonable condition. From a simple analysis of the for-
mula (12) it follows that A increases with the increase of Ef . Thus, Ef be maximal for the grea-
test possible A, i.e., A —0. This leads to extraordinarily simple calculations (formula
(11) for A = 0). However, the method presented is not rigorous from the mathematical
viewpoint, neither the condition of decreasing of R(E) with £ -4 is fulfilled for high ener-
gies.

In order to eliminate the shortcomings described above, a more complicated variant
of PT method is introduced [6, 16, 19]. This one differs from the variant described above
by the fact that the extrapolation described by the following formula

R(E)=R(E,)[Ey = (14)

is applied additionally in the interval (Ef, 00). Now, Ef need not to be maximal, as it was
the case earlier. Thus, it is possible to choose such value of Ef that the values of the par-
ameter A assure the continuity of dR/dE in Eb.

3. Extrapolation of R(E) by the power series

The variants of the PT method described in the previous Section are characterized by a
very simple shape ofextrapolation of R (£) for high energies. The measurements ofthe coef-
ficient R for high energies (see [20], for instance) show that it diminishes by no means
monotonically to zero in this region, while its structure is very complex. This indicates
the way of improving the methods of optical constant calculation, which may be achie-
ved by assuming a more complex shape of extrapolation curve. It is realized by the method
due to Leveque which, however, is rather troublesome in application [1]. Also, the sug-
gestion of Tulvinski and Terentev [3] may be here mentioned, a modified version of
which will be shortly presented.
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It is assumed that outside the final measurement point of the reflection coefficient
R(E) behaves in the following way

R(E) = a,Ne~-] (15)
where f(E) -* 1, when E -> 00. The function f{E) plays the role of the function modulat-

ing the simple relation R(E)~E~A. By taking natural logarithm of the equality (15)
and expanding Inf(E) in a power we easily obtain

(16)

taking account of the fact that R(E) is an even function of E. The 0 3(E) calculated from
the relation (16) is expressed as follows

®
, Inflo, Eb-E
0 3(E) t [2 « ( ;) u “O(i)“ - Eb+E B+ 2* In Eb+E
I /=
. /=0 (17)
4 1 f b
V n2j\E} f°TB>

An arbitrary number of coefficients a2mare determined from the system of linear equa-
tions, by assuming that O is zero in suitable number of points below the value Eg. On
the other hand, the value of the constant a0 is obtained from the continuity condition
of R(E) in Eb

Ina0 = InR(Eb~ am (18)

m=1
In the method described the condition of continuity of dR/dR in Eb may be also consid-
ered in a simple way. Thus, all the conditions imposed on the extrapolating curve are
satisfied.

In practice, when using this method it is necessary to restrict the series in (16) to few
first terms, since the error caused by the inaccuracy of computer calculations increases
quickly with the increase of m. This restriction to the few first terms of the series is justi-
fied by the fact that @3(E) is a slow-varying function of energy in the transparency region.

4. Testing calculations for GaAs

As it has been mentioned in the Introduction a series of calculations of optical contants
GaAs have been carried out in order to recognize the practical advantages and shortco-
mings associated with different methods used up till now and also the possibilities of
their improvements.
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The values of the reflection coefficient for GaAs ranging within 0-25.4 eV have been
taken from the work [2]. The values of &2(E) have been calculated for several different
extrapolations under assumption that the reflection Coefficient changes linearly between
the points read out ofthe graph. Next, the optical constants were determined with the help
of the well known relations. All the calculations have been made on the Odra 1305 com-
puter.

Figure 1 presents the obtained
relations e2(E) for three variants of
the PT method described in Sec-
tion 2, namely: for extrapolation
according to (5) for parameter A =
= -4 (a),and A = -12.29 (b), de-
termined from the continuity condi-
tion for dRjdE at the point Eb ac-
cording to the formula (7). e2(E) t
has been calculated also for the
case described by relation (11), where
A has been assumed to be zero
and Ef —2000 eV chosen so that
the values of <9 be below Eg—
— 1.35 eV the closest to zero in
the sense of least-squares procedure

Fig. 1. The energy dependence of the im-
aginary part of the complex coefficient of
the dielectric permittivity obtained for
the various variants of the Philipp-Taft
method (see the description in text) for
GaAs. The reflection spectrum of GaAs
reported in [2] has been used for calcu-
lations

(c). There are great differences in the results obtained. The positions of the charac-
teristic points suffer from the relatively smallest changes. For certain extrapolations
some maxima of the curve may disappear, while the relative heigths of maxima
change. The value of the dielectric permittivity is determined in the least accurate
way.

The calculations for the method described in Section 3 have been also made. In Figs.
2a and 2b the results obtained have been presented in comparison with the results publish-
ed in the work [2). The obtained agreement ofthe results is very high, considering the low
read-out accuracy of the ,,muster” optical constant. For instance, the divergence inthe val-
ues of <2 (e) for two main maximaare 1.6% for 2.8 eV, and 4.1% for 4.6 eV. The zero-
ing of values of 0 in the points 0.3 and 0.7 eV assumed in the calculations resulted in
the following parameter values (when using the extrapolation given in (16)): a2 = 17.402,
a4 = -19.244 and a0= -6.925.
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Fig. 2. The real (a) and imaginary (b) parts of
the complex coefficient of dielectric permittivity for
GaAs obtained according to the method described
in Section 3 (XXXXXX) and taken from the
work [2] (.....)

5. Conclusions

The results presented in Section 4 illustrate to what degree the right choice of the extra-
polation method influences the final results. Hence the tendency, mentioned in Section 2,
to find an extrapolation which would fulfil in the best way the basic conditions following
from the physical model (i.e. lack of absorption below the fundamental edge E < Eg,
the continuity of both the R(E) function and its derivative at the border of the meas-
urement and the extrapolation regions and its diminishing with E~4 for high energies) is
justified. But also justified is an attempt of giving the extrapolation a more complex form
which would better represent the expected distribution of reflection in the extrapolation
region, although the fulfiliment of the basic conditions would not be changed essentially.
This is the task to be solved by the method presented in Section 3 of this paper. Unfor-
tunately, it does not solve all the difficulties connected with the calculations of optical
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constants which will be considered in the next part of this work devoted to a detailed ana-
lysis of the calculational errors [4].

The fact that in the course of last years very primitive methods have been often used
to calculate optical constants may be explained by noticing that some of these methods
may be just unexpectedly good for a special spectrum and that often only the basic struc-
ture of the obtained spectra is of concern. But, as it is indicated in Fig. 1, when applying
the simple method of calculations and restricting ourselves only to the analysis of the basic
structure of the spectra an error may be made ifonly one simple variant ofthe PT method
is applied. Under these conditions it may be stated that the application of the method
described in Section 3 of this paper may give the solution of this problem.
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OnpeseneHne OMTUYECKUX KOHCTAHT  MOJYMPOBOAHMKOB ZNn3As2 U Zn3P2 C MOMOLLbO
cooTHoweHna Kpamepca-KpoHura

YacTb Ill. YcoBepleHcTBoBaHMe MeToga dununna-Tadra

HacTtoawas paboTa cOCTOMT M3 NATW 4YacTeli M NOCBSLLEHA NaBHbIM 06pa3oM pesysnbTaTaM Mccnego
BaHWI ONTUYECKMX KOHCTAHT Zn3As2 1 Zn3P2, ABYX COeAMHEHMNI Tuna H3-V 2 ¢ LUMPOKUM 3HEpreTUHeCKUM
WUHTepBa/IOM. Pe3ynbTaToM aHa/in3a CyLeCTBYIOLLEro A0 HACTOSILLEero BPEMEHW COCTOSHWA B 0611acTu
npvMeHeHusa meTtofa aHanusa Kpamepca-Kponura (KK) fns KoMnaekcHoro KoshuuneHTa oTpaxeHUs
oKasanacb HeobXxofMMOCTb pPa3BUTUS PaboT B [JOMNOMHUTENbHBIX HanNpaB/eHUsX, OMUCaHHbIX B TPEX nep-
BbIX YacTaX. B | yacTu npefctaBneH KPUTUYECKUIA aHa/IM3 MPUMEHSEMbIX [0 HACTOSALLEro BPEMEHU Me-
TOAOB pacyéra, OCHaBaHHbIX Ha AMCMNEPCUOHHbIX COOTHOWeHUAX Kpamepca-KpoHura. O6CyxaeHbl Takke
MeTOoAbl pacyéra, ONTUYECKMX KOHCTaHT, B KOTOPbIX He ucnonbsyerca nHterpan KK.
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Bo M v LU yacTax onucaHbl NPeanoXeHNs 3(heKTUBHbIX YCOBEPLUEHCTBOBaHWU MeTOAOB pacyéTa,
OCHOBaHHbIX Ha NpuMeHeHun uHTerpana KK. B HacTosweli (LU) yacTn paboTbl NoAPO6HO onmcaH MeToA
pacuéta, M3BECTHbIN Kak MeToh ®ununna-TadTa, a Takke npesiokeHa ynydlleHHas MogundmKaums
0fHOr0 M3 BapwaHTOB 3TOro meTofa. [oMoNHUTENbHO, B 06eMX YacTsaX, NpuUBeLeHbl pesynbTaTbl pacyé-
Ta Ans Bab, KOTOpbIA nocnyxun (B Kayectse MOAYNPOBOAHUKA CO CPaBHUTE/IbHO W3BECTHbIMW OMNTU-
YeCKMMW CBOMCTBaMM) [ANS MPOBEPKM YCOBEPLUEHCTBOBAHHbIX HaMW METOAO0B pacuyéTa.

AHanuns owmnboK N TOYHOCTM ITUX METOA0B O4YeHb NoAPo6HO onucaH B IV vacT paboTbl. MaTas
)K€ YacTb COAEPXKUT pe3yNbTaTbl AN ONTUYECKUX KOHCTaHT 1 rn3P2, nponsseaEHHbLIX C MOMOLLbIO

YCOBEPLUEHCTBOBAHHbIX METOLOB PacyéTa, a TakXkKe Ha OCHOBE HaluMX pe3y/ibTaToB W3MEpPeHWu onTu-
YECKMX CBOWMCTB 3TWX MOMYNPOBOAHUKOB.



