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The present paper consists of five parts and is devoted mainly to the results of optical constants 
examination in Zn3As2 and Zn3P2 which are compounds of II3-V 2 type with broad energy gap. 
The analysis of the up to now state-of-affairs so far as the application of the Kramers-Kronig ana­
lysis method (KK) for the complex coefficient of reflection is concerned has indicated that it is 
necessary to develop the research in three additional directions described in the first parts of this 
series. In the part I a critical analysis of the calculation methods used till now and based on dis­
persion relations due to Kramers and Kronig has been presented. Also the methods of calculation 
of optical constants not employing the KK integral have been discussed.

In the parts II and III some suggestions of effective improvements of calculation methods 
basing on the KK integrals have been discussed. In the present (III) part the method of calculation 
known as Philipp-Taft method has been described in details and an improved modification of its 
one variant has been proposed. Additionally, in both these parts the results of calculations for 
GaAs (as a well known semiconductor) have been presented to be next employed to test the methods 
of calculation improved in this part.

The analysis of errors and accuracies for these methods is widely presented in the part IV. 
Finally, the part V contains the results of calculations of optical constants for Zn3As2 and Zn3P2, 
carried out by using the improved methods of calculation and basing on our own measurement 
of optical properties of these semiconductors.

1. Introduction

The method used most often for calculation of the optical constants in semiconductors 
from the results of reflection coefficient measurements is the method due to Philipp-Taft 
(PT method) and more specifically to many of its variants (see [1]). An essential feature of 
the PT method is that it is based on the assumption that the reflection coefficient de­
creases exponentially as a function of energy, except for the highest energy, for which this 
coefficient is known.

The detailed analysis of various variants of this method presented in this paper is 
based on testing calculations of optical constants for GaAs and on the remarks met in the 
literature. The energy dependences o f the optical constants of GaAs have been taken from 
the work [2]. In this analysis a number of shortcomings of the PT method have been
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described, a detailed algorithm being also given for some variants of the PT method which 
is rarely met in the literature. Also, an improved modification of one of the most com­
plicated variants of the PT method given by T u lv in sk i an T erentev in [3] has been sug­
gested.

2. Analysis of the Philipp-Taft method

Optical constants of semiconductors may be determined when knowing the reflection 
coefficient JR, and the change of phase 0  occurring during reflection. The first value may 
be obtained from the measurements, while the second one may be found by taking ac­
count of the dispersion formula

(i)

By assuming that the measurement of the reflection coefficient has been made within 
the interval (Ea, Eb) the integral (1) may be splitted into three components

lb

- i ' / £ & * ■

dx.

(2a)

(2b)

(2c)

The estimation of 0 2(E) is reduced to the respective numerical integration. An accurate 
description of the applied method will be given in the part IV of this work [4].

The determination of 0 t (E) is the next problem. For this purpose independent meas­
urements of the refractive index H within the region of semiconductor transparency, i.e., 
below the absorption edge [5-7], are often used. The reflection coefficient is then obtained 
from the relation

which enables the determination of 0(E) from (2a). When such measurements are not 
available, the extrapolation (for instance, by a straight line R(E) =  R(Ea), [8, 9]) is per­
formed.

The problem of determination of 0 3 (E) remains still open which is connected with 
the extrapolation of the relation R(E) outside the end point of the measurement. The chosen 
extrapolation curve should satisfy the following requirements: be smooth, tend to 
zero at infinity, like E~4 (then 0(E) -> n, when E -> oo), assure the continuity of R(E)
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and dR/dE at the point Eb and cause that 0(E)  >  0 for each E  and 0(E)  =  0 in the re­
gion of transparency. The last condition is often replaced by the requirement that the cal­
culated coefficient of absorption be consistent with that measured close to the absorption 
edge [6, 10, 11]. Thus, assuming some parametrized form of the reflection curve outside 
the end measurement point, the values of these parameters are determined so that the a- 
bove assumptions be fulfilled.

The PT method is based on the extrapolation

R(E) = B x Ea} for E  >  Eb. (4)

The continuity condition R(E) in Eb leads to determination of the constant B and to writ­
ing the formula (4) in the following form

*(£) =  *(£„) (5)

Taking account of the above relation, the formula (2c) for 0 3(E) may be transformed to 
the form convenient for calculations

0 3(E)
lnR(E6) I E - E b 1 

2n n | E+Eb I

+
m — O v '

1
(2m +l)2

, for
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E < E b,

for E > Eb.

(6)

The further step is to determine the value of the parameter A. It may be assumed that 
A =  —4, as it was the case in the works [8, 12-14]. Then, however, some discontinuities 
of dR/dE may happen at Eb, and also nonphysical behaviour of 0  may be expected in 
the transparency region. The latter is realized by 0  <  0, which results in negative values 
of the absorption coefficient. Such a situation may happen very often in the transparency 
region where the values of 0  should be close to zero.

Another variant of the PT method consists in determination of the parameters A from 
the continuity condition for dR/dE at Eb [15]

Eb dR 
R(Eb) dE E = E h

CO

In this case, however, the fulfilment of the remaining conditions concerning the expe­
rimental curve may not be controlled. Moreover, it happens that R(E) increases at the end 
of the measurement interval, hence the values of A obtained from the formula (7) are pos­
itive, and thus nonphysical, since then i?(oo) =  oo.

The next, slightly better, variant of the PT method is based on the condition of ze­
roing of 0  in the transparency region. When £ < E b, which is usually the case in the trans­
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parency region, the dependence (6) becomes linear

\ n n )  Eb (8)

In order to make 0(E) =  0 for E < Eg, the sum 0 X(E)+02(E) should be linear in this 
region. Due to many different reasons (the measurement error, for instance) the above 
requirement is not always satisfied. In consequence, the deviation of O from zero may be 
fairly high below the absorption edge. The results may be improved by introducing the ex­
trapolation relations containing more parameters.

If only one parameter is to be determined it may be done (as it was the case in the va­
riant of PT method described above) by demanding that for some E0 <  Eg, 0 (E 0) =  0 
[16] or that the curve 0(E) be the closest to zero in the sense of least squares in the trans­
parency region [17, 18]. The first way suffers from some nonuniqueness of the results 
caused by nonuniqueness of the choice of E0, which is avoided in the second way by using 
the least square procedure. In the first case the parameter A is defined by the following 
relation

A =
(
O x(E0)+O 2(E0) In R(Eb) 

In
In

E b—E 0 \ f  1 y l E 0 \2m+l 1 T~l

Eb+E0 j l n  Z j \ E b ) (2m+l)2J ’m—o
(9)

while in the second one the value of the parameter A will result from the fitting proce­
dure. The essential shortcoming of this method is the fact that the received values of the par­
ameter A are positive and thus nonphysical.

In order to eliminate this shortcoming the parameter Ef  is introduced [10]. This par­
ameter determines the upper integration limit in the integral (eq. (2c)), in other words

, x E r  InR(x) , (10)

Then the dependences (6), (8) and (9) take the following form

<9,(£)
ln-R(£t) J  ( E -E b)(E+Er) I 
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E 4  Eb < Ef, (12)
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L (Eb+ E0)(Ef —E0) J
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(13)

As may be seen from the formula (13), in this case A — A(Ef ) and by a suitable choice 
of Ef  it is possible to enter the range of nonpositive values of A, thus to avoid the non­
physical situation appearing earlier. Here, for given E0 one obtains an infinite number 
of pairs of A and Ef  such that 0(EO) =  0 and A is nonpositive, moreover, for different 
pairs A and Ef  being the solution of eq. (13), (93(£) behaves almost identically in the re­
gion of transparency which results from the relation (12). On the other hand, for high 
energies the discrepancies between the values of 0 3(£) may be significant. Thus, an ad­
ditional condition must be here introduced to obtain a unique result. The requirement 
that Ef bt maximum seems to be a reasonable condition. From a simple analysis of the for­
mula (12) it follows that A increases with the increase of Ef . Thus, Ef be maximal for the grea­
test possible A, i.e., A — 0. This leads to extraordinarily simple calculations (formula 
(11) for A =  0). However, the method presented is not rigorous from the mathematical 
viewpoint, neither the condition of decreasing of R(E) with £ -4 is fulfilled for high ener­
gies.

In order to eliminate the shortcomings described above, a more complicated variant 
of PT method is introduced [6, 16, 19]. This one differs from the variant described above 
by the fact that the extrapolation described by the following formula

R(E) = R ( E , ) [ E y  ■ (14)

is applied additionally in the interval (Ef , oo). Now, Ef  need not to be maximal, as it was 
the case earlier. Thus, it is possible to choose such value of Ef  that the values of the par­
ameter A assure the continuity of dR/dE in Eb.

3 . Extrapolation o f R ( E )  by the power series

The variants of the PT method described in the previous Section are characterized by a 
very simple shape of extrapolation of R (£) for high energies. The measurements of the coef­
ficient R for high energies (see [20], for instance) show that it diminishes by no means 
monotonically to zero in this region, while its structure is very complex. This indicates 
the way of improving the methods of optical constant calculation, which may be achie­
ved by assuming a more complex shape of extrapolation curve. It is realized by the method 
due to Leveque which, however, is rather troublesome in application [1]. Also, the sug­
gestion of Tulvinski and Terentev [3] may be here mentioned, a modified version of 
which will be shortly presented.
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It is assumed that outside the final measurement point of the reflection coefficient 
R(E) behaves in the following way

R(E) = a„№ ^-]  , (15)

where f(E)  -* 1, when E  -> oo. The function f{E) plays the role of the function modulat­
ing the simple relation R (E )~ E ~ A. By taking natural logarithm of the equality (15) 
and expanding In f(E)  in a power we easily obtain

(16)

taking account of the fact that R(E) is an even function of E. The 0 3(E) calculated from 
the relation (16) is expressed as follows

0 3(E)
OO

t  [ 2  « ( ; ) “ “ ♦ ( i ) “ - E b ~ E  11 
Eb+E  |J

, lnfl0 , 
+  2* ln

Eb- E
Eb+E

l
+

/=0 (17)
4 1 f p

v n 2 j \ E }  ( f°T B >

An arbitrary number of coefficients a2m are determined from the system of linear equa­
tions, by assuming that O is zero in suitable number of points below the value Eg. On 
the other hand, the value of the constant a0 is obtained from the continuity condition 
of R(E) in Eb

OO

lna0 =  In R(Eb) ~  a2m.
m = l

(18)

In the method described the condition of continuity of dR/dR in Eb may be also consid­
ered in a simple way. Thus, all the conditions imposed on the extrapolating curve are 
satisfied.

In practice, when using this method it is necessary to restrict the series in (16) to few 
first terms, since the error caused by the inaccuracy of computer calculations increases 
quickly with the increase of m. This restriction to the few first terms of the series is justi­
fied by the fact that @3(E) is a slow-varying function of energy in the transparency region.

4 . Testing calculations for GaAs

As it has been mentioned in the Introduction a series of calculations of optical contants 
GaAs have been carried out in order to recognize the practical advantages and shortco­
mings associated with different methods used up till now and also the possibilities of 
their improvements.
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The values of the reflection coefficient for GaAs ranging within 0-25.4 eV have been 
taken from the work [2]. The values of &2(E) have been calculated for several different 
extrapolations under assumption that the reflection Coefficient changes linearly between 
the points read out of the graph. Next, the optical constants were determined with the help 
of the well known relations. All the calculations have been made on the Odra 1305 com­
puter.

Figure 1 presents the obtained 
relations e2(E) for three variants of 
the PT method described in Sec­
tion 2, namely: for extrapolation 
according to (5) for parameter A =  
=  - 4  (a), and A =  -12.29 (b), de­
termined from the continuity condi­
tion for dRjdE at the point Eb ac­
cording to the formula (7). e2(E) t 
has been calculated also for the 
case described by relation (11), where 
A has been assumed to be zero 
and Ef  — 2000 eV chosen so that 
the values of <9 be below Eg — 
— 1.35 eV the closest to zero in 
the sense of least-squares procedure

Fig. 1. The energy dependence of the im­
aginary part of the complex coefficient o f  
the dielectric permittivity obtained for 
the various variants of the Philipp-Taft 
method (see the description in text) for 
GaAs. The reflection spectrum of GaAs 
reported in [2] has been used for calcu­
lations

(c). There are great differences in the results obtained. The positions of the charac­
teristic points suffer from the relatively smallest changes. For certain extrapolations 
some maxima of the curve may disappear, while the relative heigths of maxima 
change. The value of the dielectric permittivity is determined in the least accurate 
way.

The calculations for the method described in Section 3 have been also made. In Figs. 
2a and 2b the results obtained have been presented in comparison with the results publish­
ed in the work [2J. The obtained agreement of the results is very high, considering the low 
read-out accuracy of the „muster” optical constant. For instance, the divergence in the val­
ues of e 2 ( E ) for two main maxima are 1.6% for 2.8 eV, and 4.1% for 4.6 eV. The zero­
ing of values of 0  in the points 0.3 and 0.7 eV assumed in the calculations resulted in 
the following parameter values (when using the extrapolation given in (16)): a2 =  17.402, 
a4 =  -19.244 and a0 =  -6.925.
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8 10 12
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Fig. 2. The real (a) and imaginary (b) parts of 
the complex coefficient o f dielectric permittivity for 
GaAs obtained according to the method described 
in Section 3 ( x x x x x x )  and taken from the 
work [2] (...... )

5 . Conclusions

The results presented in Section 4 illustrate to what degree the right choice of the extra­
polation method influences the final results. Hence the tendency, mentioned in Section 2, 
to find an extrapolation which would fulfil in the best way the basic conditions following 
from the physical model (i.e. lack of absorption below the fundamental edge E < Eg, 
the continuity of both the R(E) function and its derivative at the border of the meas­
urement and the extrapolation regions and its diminishing with E~4 for high energies) is 
justified. But also justified is an attempt of giving the extrapolation a more complex form 
which would better represent the expected distribution of reflection in the extrapolation 
region, although the fulfillment of the basic conditions would not be changed essentially. 
This is the task to be solved by the method presented in Section 3 of this paper. Unfor­
tunately, it does not solve all the difficulties connected with the calculations of optical
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constants which will be considered in the next part of this work devoted to a detailed ana­
lysis of the calculational errors [4].

The fact that in the course of last years very primitive methods have been often used 
to calculate optical constants may be explained by noticing that some of these methods 
may be just unexpectedly good for a special spectrum and that often only the basic struc­
ture of the obtained spectra is of concern. But, as it is indicated in Fig. 1, when applying 
the simple method of calculations and restricting ourselves only to the analysis of the basic 
structure of the spectra an error may be made if only one simple variant of the PT method 
is applied. Under these conditions it may be stated that the application of the method 
described in Section 3 of this paper may give the solution of this problem.
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Определение оптических констант полупроводников Zn3As2 и Zn3P2 с помощью 
соотношения Крамерса-Кронига
Часть III. Усовершенствование метода Филиппа-Тафта

Настоящая работа состоит из пяти частей и посвящена главным образом результатам исследо 
ваний оптических констант Zn3As2 и Zn3P2, двух соединений типа H3-V 2 с широким энергетическим 
интервалом. Результатом анализа существующего до настоящего времени состояния в области 
применения метода анализа Крамерса-Кронига (КК) для комплексного коэффициента отражения 
оказалась необходимость развития работ в дополнительных направлениях, описанных в трёх пер­
вых частях. В I части представлен критический анализ применяемых до настоящего времени ме­
тодов расчёта, оснаванных на дисперсионных соотношениях Крамерса-Кронига. Обсуждены также 
методы расчёта, оптических констант, в которых не используется интеграл КК.
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Во П и Ш частях описаны предложения эффективных усовершенствований методов расчёта, 
основанных на применении интеграла КК. В настоящей (Ш) части работы подробно описан метод 
расчёта, известный как метод Филиппа-Тафта, а также предложена улучшенная модификация 
одного из вариантов этого метода. Дополнительно, в обеих частях, приведены результаты расчё­
та для ваБ, который послужил (в качестве полупроводника со сравнительно известными опти­
ческими свойствами) для проверки усовершенствованных нами методов расчёта.

Анализ ошибок и точности этих методов очень подробно описан в IV части работы. Пятая 
же часть содержит результаты для оптических констант и гп 3Р2, произведённых с помощью
усовершенствованных методов расчёта, а также на основе наших результатов измерении опти­
ческих свойств этих полупроводников.


