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An intensity calculation program
for general rotationally symmetric lens systems*

Jarmo Alander

Department of High Energy Physics, Helsinki University, Siltavourenpenger 20C, SF- 
00170 Helsinki 17, Finland.

A general and efficient algorithm is introduced that solves the ray-surface intersection 
problem of general rotationally symmetric lens systems. The noniterative algorithm 
is based on a 6-spline expansion and search tree structure of the surface profile. The 
ray trace data are used with the generalized Coddington equations to evaluate the 
intensity profile on test apertures of the lens systems.

1. Introduction
A modern optical design program should be able to handle a wide variety of ele­
ments like spherical, aspherical, Fresnel etc. lenses. However, even the most 
recent lens design programs are not able to handle other surfaces than spherical 
and perhaps some standard aspherical surfaces expressed as even Taylor series. 
Just a few programs are able to handle more complicated elements like Fresnel 
lenses and only by making some simplifying approximations.

In this work an efficient, unified and a general method to represent and 
process rotationally symmetric optical elements is introduced. 5-spline' surface 
interpolation, as first suggested by B ig lee  and Y ogi, [1] is used as a primary 
surface representation method. The algorithm is applied to some simple lens 
systems including one Fresnel lens.

2. B-splines
When we do not have any a priori knowledge of the behaviour of the functions 
to be approximated, the spline interpolation methods are among the best and 
most simple ones. The basic splines or, shortly, 6-splines Bitk(x) are piecewise

* This paper has been presented at the European Optical Conference (EOC'83), May 
30-June 4, 1983, in Eydzyna, Poland.
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polynomials of order Tc, which can be defined by the following recursive equations
[2]:

1, when t, <  x <  t +1 
0, otherwise

h+k-i h
h+k æ 

%+k~ti+1
where tt is a set of non-decreasing points called knots, the boundaries of the po- 
lynom pieces.

A point set (Xi, Vi) can be interpolated by a fc-th order 6-spline expansion 
by solving the linear equation

U
Vi =  'Z

3 = 1

assuming that the data points and knots are situated properly so that the equa­
tion is non-singular.

For fast access of right polynom piece, the surface is represented as a tree 
structure, where the leaves are the interpolating polynom pieces (see Fig. 1). 
The right piece can be accessed -in time proportional to log(n), where n is the 
number of polynom pieces.

Hall has deduced the error of the spline interpolation I kf  in the case k — 3
[3]:

| / - 7 3/ | <  5/384 m i / (4)||
where \x\ is the maximum length of the approximation intervals and ||/|| denotes
maX.TC {xjn iti,Zrna:r\ 1̂ 1*Hall and Meyer have also evaluated the error bounds of the derivatives of i a
[4]:'

«' =  I / ' -  A / K  1/24 M 3||/(4)||,
and

e" =  | / " - / " s/ l< l /8 |® l2ll/(4)ll.
The curvature & of a plane curve /  is given by the formula

f"
1c =  (1 + /'2)3/2 ‘ ,

From this equation we can see that a third order interpolation I 3f  is enough to 
approximate the curvature of /  continuously. Assuming that the errors e’ in f  
and e" in /"  are small, using the binomial expansion and deleting factors which
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are of order two or higher with respect to e' and e", we get approximately for 
the error of curvature elc:

e h ** - 3 / 7 ' V  +  ( l —3 /2 /'2)e".
Assigning the equations of e' and e" of the third order spline expansion, we 

get an approximating formula for eh:
the root of the surface

Fig. 1. The arrangement of 
the polynom pieees into 
a tree structure

eh ^  ( - / ' / ·"  |*| +  (1 — 3 /2 /'2)) |*|21|/(4)[|/8 =
=  ( ^ / 7 " l * l  +  ( l - 3 / 2 / ,2))e".

For most optical surface profile derivatives / (n), 1 <  n <  4, are limited by 
some finite constant c limiting eh, too. I.e., the third order 6-spline interpolation 
can be used to represent most optical surface profiles. We have used the third 
order 6-splines for primary surface representation I 3f ,  while the second order 
least squares fit for I sf  is used for fast analytic ray surface intersection 
evaluation.
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3 . The generalized Coddington equations
Burkhard and Shealy have generalized the old Coddington equations, which in 
the geometrical approximation give the change of principal curvatures ft and 
torsion t of the wave front in reflections and refractions. For refracted wave 
front the generalized Coddington equations are [5]:

ft+(s) =  ftft+ (i) +  aft+ ,
ft= (s)cos29?(s) =  hJc= (i)cos2<p (i) +  a7c„, 
i(s)cos9>($) =  ht (i) cosy {i) + a t,

where: h =  n{lns and a =  — ftcos^ +  cos^, indices i and s refer to incident 
and refracted rays respectively, and indices =  and +  refer to the plane of 
incidence and the plane perpendicular to it, respectively.

Fig. 2. Illumination profiles in a Cooke triplet system
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With the help of these equations the flux can be represented as a product
n—1

En =  In [ ]  ™s<PAj)l ws<Ps(j)(r+=lr+J){j)
3 = 1

where: I n =  I 0cos ^(w),
Cr + J r +J ) ( j ) =  »•+iO>=t(i)/»,+sO >=s(i)·

In Figure 2 there are shown the illumination profiles on some test apertures 
of a Cooke triplet system ([6], pp. 492-93) on the both sides of the focal plane, 
when the point source is located on the optical axis.

The flux is singular at the caustic surfaces where at least one of the curva­
tures of the wave front is zero. This causes some numerical problems because 
the flux varies rapidly. In Figure 3 there is an example of the flexibility of the 
ray tracing algorithm. On the left-hand side there is a ray trace of a parabolic 
lens and on the right-hand side there is the ray trace of the corresponding 
Fresnel lens. Every groove of the Fresnel lens is separately approximated by 
a 6-spline expansion.

Fresnel lens

Fig. 3. A ray trace of a parabolic and a corresponding Fresnel lens
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4. Summary
The test run was done by the Burroughs B7800 computer of the University of 
Helsinki using single precision (48 bit/word). The (unoptimized) efficiency was 
about 1000 ray traces/s with 50 rays/system including initialization, io etc. 
processing too. The algorithm was written in Extended Algol language [7].

Further work is done to generalize the algorithm to be able to handle 
general non-rotationally symmetric spline surfaces, too [8].
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