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Mode propagation in a perturbed slab dielectric waveguide*

M ałgorzata  Sochacka

Central Optical Laboratory, ul. Kamionkowska 18, 03-805 Warszawa, Poland.

A simple perturbation method for prediction of the mode propagation constant shift 
and the power loss due to the change of any waveguide parameter is introduced. 
Formula to evaluate the mode losses is derived and the applicability limitations of 
the method are discussed.

1. Introduction

The problems of mode propagation, power loss and mode to mode coupling 
in non-perfect slab dielectric waveguides have been seriously considered since 
the very origin of integrated optics. Among many works dealing with this sub­
ject [1—18] there are books and papers by M arcu se  [16-18] devoted to the theory 
of mode coupling in perturbed waveguides in terms of local normal modes and 
in terms of normal modes of an ideal guide. These approaches are nowadays 
considered to be the best tools of integrated optics. They are, however, uncon- 
venient for fast handy estimation of the waveguide quality.

A very simple approach to the problem of power loss in a waveguide of 
lossy materials was reported by K ane and O ste r b e r g  [19]. These authors treat­
ed the loss tangents of waveguide materials as a component perturbing their 
refractive indices, deriving in this way the perturbation method to evaluate 
the power loss of waveguide modes.

An analogical perturbation method was applied by Ulrich [20] to derive 
the theory of a prism coupler. The presence of the prism was treated there as 
the perturbation of the refractive index of cover material.

These examples lead to the conclusion that a simple perturbation method 
to evaluate power loss and guiding properties of a waveguide with an arbitrary 
parameter perturbed can be derived. Such a method will be presented in this 
paper.

2. Fundamentals of the theory of an ideal waveguides

Let us consider an ideal waveguide (Fig. 1) that consists of a guiding dielectric 
film of width 21 and bulk refractive index nf sandwiched between substrate 
and cover with lower refractive indices ns and nc. The width 2Z is of the same 
order of magnitude as the guided light wavelength.

* This papers has been presented at the European Optical Conference (EOC’83), May 
30-June 4, 1983, in Rydzyna, Poland.
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Light distribution in such a structure, once a monochromatic beam has 
been coupled into it, can be described as a result of the superposition of two 
plane waves incident at the film-substrate and the film-cover boundaries at 
an angle 0 (Fig. 1). The phase factors of these waves are

exp[ — ik0nf ( ±® cos0 -f zsinfl)]. (1)

Then the wave resulting in their superposition is travelling down the guide with 
a propagation constant

/? =  lc0nf sin 6 (2)

where 7i0 denotes the wavenumber in vacuum. In analogy to the classical optics 
relation (2) can be rewritten as

p -  k0N (3 )

where N =  nfsm 0 is called the waveguide effective refractive index for the wave 
with propagation constant /?.

Fig. 1. Au ideal dielec­
tric slab waveguide -  
choice of coordinates

The condition of light confinement in the waveguiding structure is that the 
angle 0 should be greater than both the critical angles for total internal reflection 
at the film-substrate and the film-cover boundaries.

The condition of phase consistency is expressed by well-known transversal 
resonance conditions or by the waveguide characteristic equations, which can 
be derived directly from the Maxwell’s equations [18]. They have different 
forms for TE and TM modes:

T E : 4k0l Vnj - N 2 - 2  tan'V N2- n
n } -N -

1 - 2  tan'VN 2- n l
n } - N 2

=  2 mn, (4)

- v
— 2 tan N2 — n2s nj

n j - N 2
2 mn,

m =  0 ,1 ,2 . . .
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These transcendental equations express the condition that the structure described 
by parameters nf, ns, nc, l works as a guide for a discrete set of Nm values only. 
W aves with propagation constants /9m

Pm =  (5)
are the guided modes of this structure.

Generally, each of the characteristic equations (4) is a function of the wave­
guide effective refractive index and other parameters, that changes its value 
by 27t, while the mode order changes by 1

'F(Xm, nf , ns, nc, l) =  2mn. (6)

This notation is equivalent to

exp nf, ns, nc, l)] =  1. (7)

Solutions of Eq. (6) or Eq. (7) form a discrete set of guided modes propagation
constants

{ P m : Pm o-̂  m i m  — 9 , 1 , 2 , . . . } . (8)

3. Light propagation in a perturbed waveguide

Now, let the parameters of an ideal slab waveguide be denoted by a0, b°, c° , . . ,  
and its effective refractive index by N°, and let us cosider a given mode propa­
gating in this structure with a propagation constant

P° =  M 7° (9)
being the solution of the waveguide characteristic equation

exp [i'Fia0, b°, c°, . . . ) ] =  1. (10)

If this mode is incident on a part of the waveguide, where the parameter 
is a slightly disturbed

a a0 +  Aa,
Aa

< 1 , (11)

then its propagation constant will be forced to change, so as to satisfy the cha­
racteristic equation of the disturbed waveguide

P =  P° +  Ap =  p° +  Jc0AN =  p° +  1c0(A +  iB), (12a)

exp [iAl·(X° -f AX, a°-j-Aa, b°, c°, ...)] =  exp[i!f/ (N', a, b°, c°, ...)]  =  1.
(12b)

As we have assumed that the considered perturbation is small, the characteris­
tic function of the perturbed waveguide can be approximated by the characteris- 2
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tic function of the ideal guide expanded in a double Taylor series in point (N°, 
a°,b°,...)

e x p a, b°, c°, ...)]  =  e x p a°,b°,c°, ...)]

x
- « M S H · · · ·  «“ >

where

! dW\ _  l d'F\
\5^ir/o \dN J(jv=AT°t a=a°, ...)
/dW\ _  /dW\
\daj0 \ da J(N=No a=ao b=bO' )

are the derivatives of the characteristic function of the ideal guide taken in 
point (N°, a0, b°, c0,. . .) .

Only the zeroth and the first terms of the expansion (13) will be taken into 
account. As the term of the zeroth order is a characteristic function of an ideal 
guide and is equal to unity, then in order to satisfy Eq. (12) the first term must 
be also equal to unity

exp AN + i =  1. (15)

This expression can be further approximated as follows:

Substituting ZlAT = A  +  iB into (10) (see Eq. (12b)) and comparing its real 
and imaginary parts we obtain a set of equations

from which we can derive
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Since we have

Aa <  1,

then the set of Eqs. (18) can be finally rewritten as

(19a)

(19b)

These expressions determine the propagation constant of the considered mode 
in a perturbed waveguide and allow us to describe its field distribution as

E  =  _E'0exp( — 7,-0dvjexp[i(/?°-[- k0B)z] ( 20)

where A is the attenuation constant and B -  the propagation constant shift.
As it follows from Eqs. (19) the mode propagation in a perturbed waveguide 

can be determined if only the ideal waveguide characteristic function and the 
value of deflection of the perturbed parameter are known. Let us note that 
the W derivative over N being always negative, the mode attenuation due to 
the waveguide imperfections is always greater than 0, while the sign of the 
propagation constant shift depends on the sign of the characteristic function 
derivative over the disturbed parameter. Both the expressions (19a), (19b) 
depend on the mode order through the characteristic function derivatives, 
the analytical forms of which are functions of the waveguide effective refractive 
index.

4. Discussion

We considered a single mode propagation in an ideal waveguide and incident 
on its imperfect section, where one of the waveguide parameters was slightly 
disturbed. Further propagation of light in a perturbed waveguide is described 
by Eq. (20). We can say that the disturbance of the waveguide caused the power 
loss given by factor A (Eq. (19a)) and the guided mode adjustment to the disturb­
ed waveguide given by factor B (Eq. (19b)).

Equations (19a), (19b) and (20) were derived under three assumptions:
i) the characteristic function of an imperfect waveguide can be approximated 

by the expansion of the characteristic function of an ideal guide,
ii) in the disturbed waveguide a mode of the same order and polarization 

but with a changed propagation constant will be supported,
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iii) the imaginary part, responsible for the mode attenuation, will appear 
in the new propagation constant.

These assumptions yield the following conditions limiting the applicability 
of Eq. (19a), (19b) and (20):

i) the deflection of the disturbed parameter should be very small and change 
slowly,

ii) the band of spatial frequencies of the perturbation should be limited in 
order not to cause the mode order shift,

iii) modes near the cut-off cannot be analysed, since they may be cut off 
by even a very small imperfection of guiding structure.

Fig. 2. Exemplary 
plots of (Nm -  
differences vs. 2Z/A0 
for: iif =  1.5, ns 
=  1.44, nc =  1.0 (a), 
and n/ =  1.5, ns 
=  1.46, nc =  1.0 (b)

The magnitudes of limitations resulting from the second condition can be 
estimated from the plots of (Nm — Nm-i) ys· 2i/A0 (Fig. 2). M a rc u se  [18] (p. 134) 
derived the following approximated dependence of the difference between 
propagation constants of two neighbour modes on the waveguide thickness 21

1 —
2jt2(to +  1)

(21)2
(21)

It is very important to note that the perturbation of any waveguide para­
meter is projected on N by means of the guide characteristics N (a) derived 
from the characteristic Eq. (4), see Fig. 3. Thus, the choice of the working point
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on the linear part of this characteristics allows ns to find the distribution N ( z )  
directly from the distribution a(z).

Fig. 3. The perturbed wave­
guide works as a modu­
lator projecting the a(z) 
distribution on N  (z)

5. Power loss in a perturbed slab

The factor exp( — k0Amz) in Eq. (20) describes the m-th order mode attenuation 
due to the waveguide imperfections. Thus, following Eq. (19a), the m-th mode 
constant of attenuation due to the parameter a perturbation is

which can be rewritten as

(22)

am ~  k0Dm(^a)2 (23)
where factor Dam is a constant dependent only on the guide parameters, the 
order and polarization of the mode. This constant can be called a relative wave­
guide loss for the m-th mode.

Generally, the mode attenuation constant is a function of variable z 

a =  a(z). (24)

The mean value of a over the distance L can be evaluated as

a(z)dz.a (25)
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Then the field amplitude at the distance L will be

E =  F 0exp(aP), (26)

and the power

P =  F;;exp (2dL) , (27)

whence

In—-  =  —2 aL 
P

(28)

p 0 P„As In —  =  2.303 lg — , then

10 P 0
B -  In 0 (29)

2.303 P

describes the power loss in decibels on the distance L.
In view of Equation (23) and taking f(z) =  [Aa{z)]2 the mean value of 

attenuation constant over the distance L can be written as

<  =  KKJ  (30)

where /  denotes the mean value of a function describing the square of the pertur­
bation of the parameter a.

According to Eqs. (29) and (30) the following formula for the mode power 
loss over the unit distance can bo derived

B
T j

20
2.303 W / · (31)

Thus, the loss in a perturbed waveguide can be quickly estimated due to the 
knowledge of the mean value of a square of the perturbation distribution.

6. Conclusions

A very simple perturbation method allowing the prediction of the mode pro­
pagation constant and its power loss in a non-perfect waveguide has been deri­
ved for the case when one waveguide parameter is perturbed. For more than 
one disturbed parameter an analogous method can be introduced.

The method developed is not concerned with the mode conversion and 
does not give the spectrum of radiation modes but only the global power loss. 
It is convenient for both fast handy calculations and numerical computations. 
The knowledge of the waveguide imperfections distribution is not required, 
only the average value of its square. In the first approximation, when only 
the real part of the propagation constant is taken into account, there occurs
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the mode tuning, which is in agreement with the conception of the local eigen­
value approximation.

As this method considers only small and slowly changing distributions of 
perturbations it may be applied to an analysis of planar optical elements, such 
as planar gradient lenses. Nevertheless, random distributions of waveguide 
inhomogeneities can be also analysed.
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