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Influence of self- and cross-line saturation and 
multi-transverse mode operation on averaged power 
characteristics of a CW-GDL active cavity*

M arek P. Brunne

Institute of Fluid-Flow Machines, Polish Academy of Sciences, ul. Gen. J. Fiszera 14, 80-952 Gdańsk, 
Poland.

The analysis of the multi-line active CW-GDL cavity, based upon the system of rate equations, has 
been performed in order to estimate the influence of the line self- and cross-saturation, and 
multi-transverse mode operation on efficiency and output power of CW-GDL. The purpose of the 
paper was to provide a set of simple analytical formulae relating the laser output power and 
efficiency to dimensionless parameters describing the state of the optical excitation of mixture, the 
line saturation effects and transverse-mode diffraction losses. The obtained approximative relations 
are illustrated by a numerical calculations made for a conventional CW-GDL driven by the 
products of benzene combustion in compressed air.

1. Introduction

The problem of the description of the process of power extraction from a multi-line 
cw gasdynamic laser cavity by rate equation has been partially considered in [1]. In 
paper [1], line self- and cross-saturation effects were neglected and it has been tacitly 
assumed that all longitudinal modes considered pertain to the same transverse mode. 
Both these assumptions are vulnerable from the physical viewpoint. In conditions 
occurring in CW-GDL cavities, the gain(s) and line intensity for all self-sustaining 
lines attain high values. This suggests that line saturation effects and transverse mode 
operation should be expected to take place in cavities of the above mentioned 
devices.

The purpose of the present paper is twofold. It means that the multi-line cavity 
will be described in two cases: i) when the line saturation effects occur but the cavity 
operates at a single transverse mode regime; ii) when a certain number of transverse 
modes are sustained within the resonator, but the line self- and cross-saturation 
effects are neglected. In both cases, a set of simple analytical formulae for laser 
overall output power, efficiency, individual line outputs and efficiencies (load 
coefficients) and, finally, the individual transverse mode output(s) and load coef­
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ficient(s) (efficiencies) are recovered. The solution of this apparently complex task is 
obtained from the simplest of the existing mathematical models of active laser 
cavities, described in terms of Rigrod’s [1], [2] rate equation. The analysis is 
oriented towards application to C 0 2 or N20  CW-GDL system. The simplifying 
assumptions are chosen treating the above mentioned lasers as a practical analogue 
of the molecular system under description. Some of the assumptions have a general 
character [1] and will be listed in the next Section of the paper; the others concern 
only the problem of line saturation or multi-transverse mode cavity operation and 
are to be specified separately in the respective Sections.

2. Basic assumptions

The cavity G under consideration is schematically shown in Fig. 1. It is composed of 
two flat parallel mirrors Z + and Z “ whose dispersion properties, (light absorption 
capacity) are described by the known reflectivity coefficients R + ^  1 and R~ ^  1. 
The values R +,~ are considered to be identical for all longitudinal (and transverse) 
modes under consideration. The mirror length, the distance between mirrors, and the 
height of laser channel are equal to Lx, Ly and Lz, respectively. The symbols v and 
c denote the medium and light velocity, respectively.

Fig. 1. Geometry of the cavity

It is assumed that macroscopic parameters of the optically activated gas mixture, 
such as its velocity (r0), static pressure (p0), translational temperature (T0) and partial 
pressures of the mixture components (x£) are known and can be treated as constant 
within the whole region G of the optical resonator.

The lasing medium under consideration is by assumption formed by the 
molecules excited to the upper (m) and lower (n) vibrational levels. The population of 
each level is treated as being split into rotational sublevels J, (for the m-level) and 
J\ (for the n-level), according to the Maxwell-Boltzman equilibrium distributions
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f m{T0, J;) and/„(T0, J'i) defined for the rotational temperature equal to the known and 
constant translational temperature T0 of the gas mixture. The last assumption of the 
equilibrium between rotational and translational motion of the molecules in 
CW-GDL cavities is common for all theoretical calculations concerning C 0 2 lasers 
[3]. The schematic diagram of the lasing medium energy levels is shown in Fig. 2,

where vf (i = 0, 1, . . . )  are the central frequencies of the output beam composite lines 
(m, J';). The upper and lower groups of the laser levels are characterized by
two distinct vibrational temperatures Tm and Tn < Tm or, equivalently, by the 
population densities N m{Tm) and Nn(Tn) whose values at the cavity entrance (Tm0, Tn0, 
Nm0, Nn0) are known and constant. Consequently, the values of gain(s) Gi0 at the 
cavity inlet cross-section (x = 0) can be regarded as known for all interrelated states 
(m, J{) J'i). It is finally assumed that the changes in gain (G,) values within the
cavity region caused by stimulated emission and absorption processes are mainly 
balanced by the process of the flow-forced transverse convection of all excited states. 
The last assumption means that pumping and relaxation processes within the cavity 
region are neglected. As the gas mixtures used commonly in gasdynamic lasers are 
supplied with the additives ensuring the effective pumping of the upper laser level 
and efficient relaxation of the lower laser level, the last assumption is a rather rough 
simplification. To obtain an upper limit of the CW-GDL output power parameters 
an alternative case of the ideal pumping of the m-level and ideal depopulation of the 
n-level is also considered.

3. Influence of the line saturation effects 
on the multiline cavity operation

3.1. Rate conditions and boundary conditions

Under general assumptions listed in the preceding Section, the CW-GDL cavity 
(Fig. 1) can be described by a set of non-linear rate equations representing the light



intensity and the (m, J t) and (n, JJ) level population(s) conservation laws. The above 
mentioned equations have the following forms [1], [4], [5]:
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Introducing gain G{ assigned to the beam of the central frequency vt corresponding 
to (m, J'i) radiative transfer

and taking advantage of the assumption that the rotational energy distribution 
function(s) remains Maxwellian, i.e., putting

the Eqs. (1H4) can be rewritten in the following forms [1], [5]:

While recovering Equation (6) from Eqs. (1), (2) and (5), it has been assumed that the 
flow forced convection can be regarded within the cavity as a preponderant source of 
the vibrational energy and therefore

The starting system of Equations (6) (8) has to be solved together with the boundary 
conditions specifying the gain value(s) Gi0 at the cavity entrance
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Gfo(0,y) = Gi0 = const, (9)
and interrelating the incident and reflected light intensities at the cavity mirror 
surfaces

R + Nfi(x ’Ly) = Nfi(x,Ly), (10)

R~ Nji(x,0) = N f t{x,0). (11)
In Equations (1)—(8), the Nm(J,) and NB(J}) indicate the populations of the upper 
(m, J f) and lower (n, Ji) laser levels, respectively. N m and Nn denote the populations of 
vibrational levels m and n, respectively. Bnm(Ji5J-) and Bmn(Jf,j;) are modified 
Einstein coefficients of the stimulated absorption and emission associated with 
radiative transfer (m, <-»(n, J'*) [5], [6]. Tmi and r ni represent all energy exchange
and relaxation source functions relevant to (m,J,) and (h,J\) levels, respectively. 
x and y are the Cartesian coordinates measuring the distance along the flow (x) and 
optical (y) axes, respectively (see Fig. 1). NJt and N f ( describe the radiation field of 
the frequency v,- within the cavity as expressed by the photon density moving back 
(NJi) and forth (iV/*) between the mirrors Z~ and Z + (see Fig. 1).

The coefficients ft and ft; are those defined in [4], and properly modified [5] to 
account for different notations used hereby and in [4]. For the application to Eqs. (7) 
and (8) the above mentioned coefficients follow the formulae:

3 Утиy2 l̂ mnl4 N — Vj)
8 n у 4 Ь 2УтУ*

( 12)

= \ p>[2+ ^ p ]  [ * ( «  -  v,) *<«■>- v;:

+  Re,
2(Vw + yJ

®(<o ~  Vi) № m{yj-Vi) -f 2 aiyy-  Vi)] [0(co -  Vj) + ®(x (13)

In Equations (12) and (13) 2 л{Л(о) = (ya + iAw) 1 is the complex frequency denomina-
y2tor (a = m,n, or blank). jgPfw — v.-) =-=— -------stands for the dimensionlessу2+ (ш -у {)2

Lorentzian. \Rmn\ denotes the electric dipole matrix element calculated for transfer 
between m and n levels. ym and yn are the upper and lower laser level decay constants,

respectively. У™ = ^(Ут + Уп) describes the spontaneous emission and inelastic

collisions contribution to the decay of the dipole, у = ymn + yph indicates the dipole 
decay constant {yph denotes the elastic collisions contribution to the dipole decay). e0 
is the permittivity of vacuum; N is the average population inversion density, i.e.,

L y

N = (1 /Ly) J N{y)dy. N 2(i-j) is the 2(j—i) Fourier component of the population
о

inversion density, i.e., N 2(i-j) = (1/-Ц) J N(y)cosj 2{i-j) j-]y^dy.
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In what follows, it is assumed that the coefficients ft and = ft) remain 
constant and that their values correspond to the state of the medium optical 
excitation at the cavity inlet cross-section (x = 0).

Equations (6H 8) do not allow an analytical solution due to the nonlinear terms 
appearing on the right-hand sides of Eqs. (7) and (8). The possible use of the 
perturbation method has been disregarded, as for the expected high values of the 
radiation field intensity the changes in the cavity operation due to the line saturation 
phenomena should be expected to be of the same order as the first-order solution 
obtained under assumption that above effects can be neglected. To remove the 
mentioned square terms it is assumed that they can be approximated by the 
following formulae:

fiW <)2+ X W , Nh  -  Af/iW(AfA).+ X 0uWA]>
j=i i n

MNfl)2+ x  0,jN7,N7i*  N7tf t(NJ,).+ X
j f i  j f i

where the steady-state photon densities (N}i)s and (iV/£)s represent the solutions of 
the system of algebraic equations

cG, = М Ш +  X 4 Nh \  = H N J X +  X 4 Nti>. <14>
j  f i  J f  i

written for some unspecified average value of the gain(s) closed between bounds 
defined by its maximum attainable value Gi0 and its saturated value (common for all 
lines) (l/Ly)\n(l/yjR+ R~). Equation (15) shows that (N/f)s = (NJi)s. In what follows 
these quantities will be denoted as Nsi. Further it is proposed to use as Nsi the 
averaged value of the i-th line intensity sustained within the cavity operating under 
the assumption that the line saturation effects are negligible.

The assumptions summarized by Equation (14) permit us to rewrite Eqs. (7) and (8) 
in the forms:

r)N +
=  (is)

- ( G - G t)N7,. (16)

The starting set of equations and boundary conditions proposed for considering 
the multi-line cavity operation are thus composed of Eq. (6), Eqs. (15) and (16) and 
Eqs. (9НП).

3.2. Dimensionless equations, boundary conditions and notations

In appears convenient to rewrite Equations (6), (15) and (16) together with boundary 
conditions (9H11) in dimensionless forms [1], [5]. Choosing the scale of the photon 
number densities Nfc and /V/, as equal to the population of the upper vibrational
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laser level at the cavity entrance iVm0(n/f = N}i/Nm0, nfi = N fi/Nm0) and scaling 
the x and y by Lx and Ly, respectively (f = x/Lx; r\ = y/Ly) one obtains:

J 7 =  - n cil9i{nfi + nfi)+ X g](n}j+nfj)], 
Ci> j + i

(17)

dlnrifi
dt]

8\nnfi
dr] 9i 9i-> (18)

9 i  = n s(i,i)nsi+ X n s(i,j)nsj, (19)
j f i

c1 L„ A~„
0,(0,>/) = n m = (/0-m inf„) ' ; (7^,,J t) i f (v, vf),

o n  Vi
(20)

R-n}i(Z,0) = nML0), (21)

R +n}i(Z,l) = nJi(Z,\). (22)

In Equations (17H20) gt and /7ci denote the dimensionless gain assigned to the i-th 
line and the characteristic factor measuring the influence of the transverse 
flow-forced convection. They are given by the formulae:

9i = I0nm(^,ri)- 9nJ m(T0, j y ^ ]  8 nvj

/7  = 9mifn(T0,Jd
9nifm(To>Ji).

c2LxAmn{ J i ^
Snvf N mofm ( T0’ J l) (V, Vf).

(23)

(24)

In above, gmi and gni indicate the statistical weights of the upper and lower laser level, 
respectively; /4m„(Jf,J-) stands for the Einstein coefficient of the spontaneous 
emission; Jz?(v,vf) denotes the normalized line shape-function. The dimensionless 
populations of the upper and lower vibrational laser level nm and nn entering Eq. (23), 
population inversion measure I0 and its threshold value min Iti (calculated for 
a lossless cavity), are defined by the following relations:

njt,r])  = N J N m o = exp { ^ [ V ^  

*„({>>!) =  N J N *o =  exp { ^ [ ^ _

!o = Km0/Nn0 = exp ^ m \1

A t«o W J
9miftSJo>J i)
9nifm(T0,Jf) <  i
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where haijk  and hcojk are the reference temperatures of the upper and lower 
vibrational laser level, respectively.

The i-th attenuation due to self- and cross-saturation processes enters Eqs. (18) 
via constant “gain(s)” defined by relation (19). The parameters 77s(i,i) and 77s(iJ) 
represent there the self- and cross-line saturation coefficients (12) and (13) rewritten 
in dimensionless form, i.e.:

r  cel h2ym

~  .,2T  ceqH2 ym

X II i f ( w - v i) j ^ ( c o - v J.) +  R e ymyny 
2(ym + yJ

vf)

^ (c o -v j [^„(Vj-Vi)

(25)

(26)

-I-® n{Vj -  vf)]  № ( 0) -  v j - l o > ) ]

The steady-state solution for each line intensity tisi is, according to the previously 
formulated assumption, given by relation

«„ = i f  [«;,({, i )+«;;•({,

where (^,rja)(r}a = 0, 1) represent the solutions of Eqs. (17), (18), (20H22) 
obtained for gt = 0 [1]. Using relations quoted in [1], the above relation can be 
rewritten in the following form:

nsi *  l t ( i + R +)\\nMZ> 1)11 + (l +R-)\\*7t(ZM\]  (27)

where the norms ||n/f(^,l)|| and ||w/i(^,0)|| of 1) and nfi(£t0) Dirac’s
pseudo-functions <5D( )̂ are given by the following formulae [ 1]:

ll«7.(^0)||

L  f expl -  J7J -  x r.(0)xr.-(0> -  y /T  R - ~H 
1 Lexp(- n j - .X2i(0| X|+(0) -  ̂ R  - R - J i

x  ̂-  /7rf (°) Cxr,(0)—jĉ CO)]
-  1

([n f exp( -  /7,,) -  x (1) X ; , (  1) -  ̂ R  + R ~ " |
l L exP ( - n v i ) - x * ( l ) x u ( l ) - j R + R " J j

-  1

(28)

(29)

In Equations (26) and (27) Xu(rj), x 2i(rj), Xu(rj) and x 2i(rj) are roots of two 
following equations:
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X2 -f;  (<j) -  W  <1) -  R+ S'ji (1)] * -  R v t i  (V) =  0,

x2 *j7(>|)-№ 7(0)-R - y ^ (0 )]x -R - = 0
where the auxiliary functions $ji ’~{ri)and are defined as equal to:

The norms ||n/i(£,l)|| and/or P7i(<!;,0)|| differ from zero in the whole range of the 
cavity losses (measured by J R  + R~) in which the following inequality is satisfied [1]

_____  f  rr
exp (-11J< J R *  R~ < x M  = x,-(l) = 1 + £  7  °’ 1 ’

j  + i 7m' ^0’ "  0  ’ *j '

The lower admissible bound of the J R  + R values is due to the requirement that 
any given line can be sustained in the cavity only if its gain exceeds the cavity losses. 
The upper bound limit of the admissible ^/R+ R~ values results from the fact that 
with the increasing number of lines (increase in N/i?+ R~) the first (high gain) lines 
are being switched-off transmitting their energy into sustaining the Maxwellian form 
of the rotational energy distribution function [1]. For each y/R+ R~ satisfying the 
last inequality the line saturation effects will appear in Eqs. (17)—(22) (g t > 0) affecting 
the power characteristics of the resonator under description.

3.3. Formal solutions

The dimensionless equations had been reduced to Equations (17)—(22). 
Introducing abbreviated notations:

AMZ’tlJlp) = n}M,rj3)/n^(tr}p), A/,(£ ,rjjrfp) = «/,■(£,rjJ/nJtiZ, rip), 

A h A ^ rlJ rlp) =  nfj(£,n*)/nfi(Lria), AJj^,riJrip) =  nJji^riJ/nJii^rjp), 

one obtains immediately from Eqs. (18), (21) and (22):

A}i(£, rj/0) = exp [(J 0,.(£, i/) dri) -  gtf ] , 
0

(30)

AJi(£,ri/0) = t A № , r i / 0 ) r 1, (31)
Afi(£,rj/0) AJi(^,rj/0) = A +fi{L \h)A-fi^ ,  1/,/), (32)

AM(.  1/0) =  0/ 1) = J R *  R - . (33)

The last relation states the conditions under which the i-th line radiation field can be 
self-reproducing upon the surfaces of the resonator mirrors [1], [7]. Furthermore,



12 M. Brunn£

Eq. (31) indicates that the photon densities assigned to ail lines under consideration 
will be, as in [1], given by normalized Dirac’s delta-pseudo functions, i.e., [7]

n}i{Lr\) = Ki(>7)||<5D( a  njM,r,) = II njt(r,)\\*D(&
Based upon Eqs. (20) and (30) one can recover the following approximate formulae 
for ratio(s) of the i-th and ;-th line photon number densities [ 1]:

Afj№,rilri) ~
/ m(r0,J,.)^(v,vy)exp [ -  ( n vj -  Tlvi + g -  g.) r(\,

exp [ ~ ( n vj -  n vi + gt-  §,)[ 1 -  >/)].

(34)

(35)

To determine the unknown norms entering the formal solutions (32) and (33) Eqs. 
(17) and (18) ought to be integrated. By recovering gt and from Eqs. (17) and
introducing them into Eq. (18) the following two equations can be obtained:

8 f  1 dlnrifi _ „  _ V .
~dk— n f i + U f i ~  ( r i f i ~ n f j ) ~ 9 i J { r i f i + n / i ) d r ]

- l 9 j ] i n h  + *fj)d>l\ = 0, (36)
j f i

8 f  1 8\nn7i . _ „  . . . _x ,
g j  [ -  J f  ---- "ft + nn-  I  ("fJ -  nf) »/.) dn

= 0 . (37)
j f i

Assuming that:

)  [«;,(«, ifRn/iK.iz)]** ^ “ K i  (t,<i)+nUL i l)].
1 L

o L

and making use of relations (21), (22), (34) and (35), Eqs. (36) and (37) can be 
transformed into the following Bernoulli equations:

l)[/l/i(g,y;/l)-xii(>;)] [ ^ ( g ,  q / l ) - x £ (>?)], (38)
u  ci ac,

~ W iA f ,% nl0) = QuWnJALOKAJALrilty-Xum(39)

In Equations (38) and (39) x7/’_ and x7i’_ denote the roots of algebraic equations:

x2 * t M - x * U n ) - * U n )  = 0 , (40)

x 2 &u(ri)-x&2i(ri)-<p3i(’l) = 0 , (41)
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in which the functions (k = 1 ,2, 3) are given by the following relations:

\ sp-i)

<*>2+i(>7) =  1 - - R + + ( 1 + R +)

jf=«L

+ .^ ,(1  — 7̂)

- " U / w K . l / l ) . (42)

* (1 i / i h r ' ajjM ,  i/i)]

^ f a )  =  R + 1 + qS \  ~ ri) +

+ ;

l [i t i  L
1 +

t u b )  = 1 - ^ +  I  [ l  - ^ ]  ̂ 7w(i. >1/1),

*J-|(1) =  l - R - + ( l  + R - ) ^ +  z  j [ ^ 7w({,0/0) - « - ^ ; w(«,0/0)]
1 j f i i .

(43)

(44)

(45)

+ 9jY  W jA Z * °/°)+ R ~A fjAZ> 0/0)]

* i M  = R l +^) +Z( l  + *!/*!)]•

(46)

(47)

The solution of Equation (38) should be sought for together with boundary 
condition

A}AW l )  = exp[— {nvi — g^{ l—ri)}. (48)
The integral trajectory of Eq. (39) passes (for £ = 0) through the point

AJi(0,ri/0) = exp [ —(/7ri —0,.)»,]. (49)

Solving Equations (38) and (39) with the above given boundary conditions, and 
employing the general relation (31), one obtains the formulae defining the sought for 
norms of photon number density distributions over the Z + and Z “ mirror surfaces

\ K ( U ) \ \  =
"ln fexp[-(f7c, - g-,)]-x7,(0)x7,(0)-VR+ R -n
_ |ex p [-(/7 „—9l) ] - x J i(0)x +(0)_v'R + R -J J

x (x/7ci<P7i(0)[Xu(0) —x7f(0)]| (50)

ll»7i « ,0)ll = ._____________________
_ [e x p [-( /7„j- 9i) ] - x 2_,(l)

fexp[-(/7„,.-g ,.)]-xn(l)x2-|( l ) -v 'R + R

r ,( l ) - v'R + R ' j ix.

x ^ n (1.<J>r,(l)[xr,(l)-x2-,(l)]
-1

(51)
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By comparing Equations (40), (42)-(44) with Eqs. (41), (45H47), it can be seen that 
the norm (50) equals (51) after the position of the resonator mirrors R + <r->R~ is 
reversed. In paper [1], it was suggested that this, though somewhat trivial 
observation, can be nevertheless regarded as a proof of physical consistency of the 
hitherto reported formal results. The relations (50) and (51) being known the problem 
can be considered as formally closed. These formulae permit us to calculate any 
output power characteristic of the multiline CW-GDL cavity.

3.4. Main power characteristics

The single line output power pfi, total net laser output pf  = £  pfi, load coefficients
i

(efficiencies) of the output beam composite lines tfi and the cavity overall efficiency 

rjf  = £  tfi can be all expressed through a dimensionless single-line output power
i

measure p/£(G) and through virtual radiation power Pv at the cavity inlet boundary. 
The last quantity is identified with the available power brought to the cavity 
entrance with the transverse flow of the molecules excited to the upper (m) 
vibrational laser level. It is therefore given by following relation

Pv = ~hv0Ly Lz Nm0 £  vJJ T 0, Ji) = hv0Ly Lz Nm0 <vf> (52)

where <v*> defines the mean frequency of the virtual radiation field calculated by 
weighing the single-line (m, J f)<-►(«, J') central frequencies vt by the corresponding 
values of the Maxwell-Boltzman distribution function f m(T0, J (). In paper [1] it was 
shown that -  to good degree of approximation -  <v*> equals vmn + Bc where vmn 
defines the band origin. The single-line dimensionless output power measure is 
defined by the following formula

p/i(G) = ^ [(1- .R +)||™;(« , i ) | |+ (i - R ' ) | |n7)« , 0)||]. (53)

It is proportional to the number of photons leaving the cavity region through both 
semi-transparent mirrors. In view of solutions (50) and (51) the relation (53) can be 
rewritten in the following form:

P/,(G) =
exp[- ( n vi- g f i - x u ( \ )  x j , ( l ) - J R + J T j« 
exp[ — (/7vi — £;)] — *2*(1) x f i ( l ) -v/JR+ R~)

ex P [  — ( / 7 — g,)] — x u (0)

exp[ —(7 7 — #,)] — *2i(0) xti{0)-y/R * R J

where the exponents a and (3 are given by the formulae:

1 Vj 1 - R -
<V,-> f,(1) [x r,(1) — *2i(1)] ’

(54)
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and

1 V; 1 - R  +

respectively.
With Pv and pfi(G) determined by Eqs. (52) and (54), the desired power 

characteristics) of the cw gasdynamic laser can be calculated by empolying the 
following expressions:

{„•(G) = n ^ n j n j i n p ^ G ) , (55)

Pfi = {/i(G) Pv> (56)

M ° )  = L '/ . ( G> = In ni i
(57)

pf  = rjf (G)Pr. (58)

The factor 77fi appearing in Eqs. (55)—(58) defines the dimensionless measure of the 
partial (for i-th transition) population inversion. It satisfies the relation

n„  =
1 70 — m\n lti 
70 1+min Iti

<
1

1 + min Iti
lim 77lf.
IqS oo

(59)

This parameter describes the maximum value of the single-line efficiency which could 
be reached if the cavity under consideration worked in accordance with Lee’s 
criterion of the global balance between the single-line gain and cavity losses [3], [7], 
[8].

The formulae presented so far are subject to the initial assumption that the 
flow-forced convection is a source of the vibrational energy far exceeding in strength 
both the collisional V-V.pumping and V-T relaxation. Usually the CW-GDL 
contains the pumping medium and the catalyst to ensure the efficiency of both above 
mentioned processes. The upper attainable limit of CW-GDL output can be specified 
as that corresponding to an ideal case of total relaxation of the lower laser level 
(nn\ 0, 70 /• oo) and detailed equilibrium between m-level and close to it p-level of the 
pumping medium. In [1] it was suggested that the solution given by Eqs. (55)—(58) 
could be adapted to estimate the laser output power and efficiency in the above 
described ideal pumping and relaxation case if one substitutes the dimensionless 
parameters fJvi, [Jci and IJU are substituted by the new ones defined by the relations:

77* = f l vi(nn\ 0 , 70 oo) = LyAmH(JiJf i)Nm 0^(v,v,)
8tcv,-

> 77v i’

n*i — 77ci/(l + 1p) <  77ci,

77* =  (1 -f min7,j)-1 =  n ii(I0 / ' c o ) >  77,,..

(60)

(61)

(62)
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In the above relations Ip indicates the ratio of the number of molecules of the 
pumping medium excited to the p-vibrational level to the number of molecules of the 
lasing medium excited to the upper vibrational laser level, i.e.

/ p = (Np/Nf) exp r»((<»m
fc' T j J

(63)

where: N p and N t are the concentrations of the pumping and optically active 
medium, respectively; hwp/k and Tp0 stand for the reference temperature of the p-level 
and vibrational temperature of the pumping medium at the cavity entrance, 
respectively.

From Equation (54) and Equations (55)-(57) the usually encountered requirements 
can be recovered. They should be satisfied for each individual line to be sure that it 
will not be cut-off from the virtual spectrum due to too high or too low losses of the 
cavity. The exigency that pf i > 0 is, in view of Eqs. (54)-(56), satisfied under the 
following three conditions:

/„ > min/„ =  l ) - j ; ( j ; + 1) ] |, (64)

exp { -  [Tlvi -  n s(i, i) nsi -  £  Tls(iJ) nsj} < ^ R +R~,
j f i

(65)

J R + R -  < x.VO) = xf,(l). (66)

The first, somewhat trivial one results from the definition of the threshold value of 
the medium optical excitation at the cavity entrance and is always fulfilled if the 
more strident constraints of gain-cavity losses balance constraints (65) are satisfied. 
The last inequality (66) sets an upper admissible limit on the values of resonator 
mirror reflectivity coefficient. This limitation of ĴR+R~ value results from the fact 
that with decrease of the cavity losses the number of lines which appear and could be 
sustained, in accordance with the requirement (65), increases and the energy of the 
first lines is transmitted into sustaining the Maxwellian form of the rotational energy 
distribution function [1]. In the case under consideration the energy of lines also 
decreases via the line conversion (cross-saturation) process to eventually weaker lines 
are fed by the flux of energy coming from the lines of high gain value. It is evident 
from Eqs. (40), (47) and (65H66) that the line self- and cross-saturation processes 
narrow the region of the cavity losses in which each individual line could be 
generated and sustained if gt was negligible. It should be mentioned that in what 
follows all lines will be ordered by decrease relation n vi and that 1-th line will 
therefore indicate that one for which the gain at the cavity entrance achieves its 
maximum; J* = E[{kT/2Bhc)—1/2], where E{x) stands for the entire function of its 
own argument. It seems also to be worth noticing that for each chosen value of the 
cavity losses (.J R  + R~ = const) the inequalities (65) and (66) define the maximum 
number of lines which can coexist within the optical resonator. The summation and
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multiplication, indexed by line number i, is always extended only over the lines which 
can be simultaneously sustained in the cavity. The exception is made in the relation 
defining the virtual radiation power (se Eq. (52)), as the virtual spectrum is 
obviously not subject to constraints imposed by requirements (65) and (66). In 
a general case, the quantitative estimation of the influence of line self- and 
cross-saturation processes upon the cw multiline cavity operation cannot be easily 
carried out, since the number of free parameters i = 1, 2, . . . ,  k)
is obviously too high.

The steady-state photon number density (scaled by N m0 (see Eqs. (25H27)) is 
lower than one. The dimensionless coefficients measuring the self- and cross-satura­
tion effects are of the order of ten (see Eqs. (23) and (24)). It seems logical, therefore, 
to suppose that the quantitative influence of line saturation upon the laser 
performance will be more important for low gain lines appearing at lower cavity 
losses (for high J R  + R~) than for high gain lines excited at lower j R + R~ values. 
With the increasing value of y/R + R~ not only the low gain lines will prevail in the 
spectrum of laser output beam, but also it should be expected that the value gt will 
increase, and the line attenuation depending on the difference FIvi—gt will be more 
pronounced than for high n vj<i and low g}<i lines [1]. However, the relation (65) 
shows that with yjR + R~ increasing the high gain lines will be switched-off leading 
to drop of the gt value. Summing-up, it can be stated that the answer to the question 
which lines will be most sensitive to the influence of the line saturation processes is 
not altogether simple and can be obtained only from pertinent numerical cal­
culations.

A numerical example, given in the next Section of this paper, makes it possible to 
carry out the comparison between typical CW-GDL cavities operating under 
alternative assumptions that the line saturation phenomena can or cannot be 
neglected.

3.5. Numerical example concerning the cavity of a C 0 2 CW-GDL

All parameters [TIvi, 77ci, n № TIs(ii), n s{i,j), 77si, v ^v ,)] influencing the multiline 
cavity power characteristics are determined on the basis of the medium optical 
excitation and flow parameters at the cavity inlet cross-section, which are related to 
the gas-mixture flow history within the CW-GDL channel region preceding the 
optical resonator. Thus, these parameters must be determined by solving a couplet 
system of gasdynamic equations and rate equations for vibrational energy exchange 
and relaxation. To allow a comparison with the cavity operating under conditions in 
which the line saturation effects can be neglected, the numerical example, quoted in 
this paper, will concern a CW-GDL driven by the benzene combustion in 
compressed air [1]. The numerical calculations have been described in detail in 
paper [1]. The values of coefficients vi/<vI>, [Jvi, TIci, n u are listed in Tables 1 and 2.

The basic results of the described calculations are summarized in Figs. 3 and 4, 
where the line saturation measure
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T able 1. Values of characteristic parameters TIvi, TIci, 77,. and vi/<vi> for the case of negligible pumping 
and relaxation

i Line vi/<v1> n vi

-i1Ocf 77 i;

1 R (24) 1.0203 0.47714 1.0735 0.34743
2 R (26) 1.0222 0.47575 1.0801 0.34429
3 R (21) 1.0184 0.47065 1.0484 0.35091
4 R (28) 1.0242 0.46715 1.0695 0.34141
5 R (20) 1.0165 0.45580 1.0040 0.35484
6 P (20) 0.9775 0.45390 1.0155 0.34936
7 R (30) 1.0261 0.45222 1.0435 0.33874
8 P (22) 0.9753 0.45067 1.0025 0.38139
9 P (18) 0.9797 0.44960 1.0121 0.34721

10 P (24) 0.9731 0.44065 0.9748 0.35331

58 P (56) 0.9340 0.06093 0.1256 0.37901
59 R (62) 1.0613 0.05670 0.1441 0.30752
60 P (58) 0.9314 0.04933 0.1013 0.38049

T able 2. Modified values of characteristic parameters /7*., 77*, and 77* for the case of ideal pumping and 
relaxation

i n* 77*-10~3 n*

1 0.69268 2.0777 0.50437
2 0.69366 2.0905 0.50199
3 0.68003 2.0291 0.50702
4 0.68389 2.0700 0.49980
5 0.65511 1.9433 0.51000
6 0.65720 1.9655 0.50584
7 0.66454 2.0197 0.49777
8 0.65074 1.9403 0.50738
9 0.65289 1.9589 0.50421

10 0.63462 1.8868 0.50889

58 0.08494 0.2432 0.52836
59 0.08740 0.2789 0.47406
60 0.06851 0.1961 0.52948
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Fig. 3. Line attenuation coefficient 77sl for the case of negligible pumping and relaxation
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R' ------—
Fig. 4. Line attenuation coefficient 77SI for the case of ideal pumping and relaxation

n si = n~i1 [J7s(i, i) nsi + £  nsj] (67)
j f i

has been presented as function of the cavity absorption losses for various lines from 
the spectrum available at the cavity entrance; the calculations were carried out for 60 
different lines. From Figures 3 and 4 it seems evident that the influence of line cross- 
and self-saturation becomes more important when the overall efficiency of laser 
power extraction increases, i.e., in the case of ideal pumping and relaxation. 
However, it has been shown in paper [5] that this influence is not very important 
from the technological point of view. These basically meaningful effects can be 
disregarded when estimating the expected output of CW-GDL treated purely as 
a device to convert the energy of the working gas mixture into radiation field energy.
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4. Influence of transverse mode(s) on the multiline cw gas 
dynamic laser cavity operation

4.1. Additional assumptions and formal solutions

In the precedent considerations the cavity losses were evenly assigned to all the lines 
under consideration, i.e., it has been tacitly assumed that all considered lines pertain 
to the same single transverse mode of the radiation field distribution. It seems 
obvious that due to high values of the Fresnel number encountered in CW-GDL 
cavities and high values of gain which can be reached by means of the supersonic 
expansion, the CW-GDL resonators operate in the multi-transverse mode regime.

The quantitative description of these above operating conditions of CW-GDL 
multi-line cavity can be formulated by including the individual transverse mode 
diffractional losses into the mirror reflectivity coefficients, thus modifying the 
boundary conditions (10), (11) and (21), (22). By the same token each individual line 
(longitudinal mode) intensity ought to be split into the composite transverse mode 
intensities.

Neglecting the line saturation effects, i.e., putting everywhere gt = 0, the starting 
set of rate equations describing the performance of multi-line, multi-transverse mode 
cavity can be recovered by a direct adaptation of Eqs. (17) and (18), which takes the 
following forms:

djh

ft
n cilgi(nfi + nfi)+ X gj(n}j + nfj)], 

j f i
(68)

n}i = X nkm,n, nfi = £  (69)
m,n m,n

d d
9i = ^ ( ln  n/i,m,„) = -^(ln«7i.m.n) (70)

where the m and n indices denote the order of the transverse mode sustained (for 
each longitudinal mode -  i) in the cavity under consideration.

Equations (68) and (70) should be solved together with the boundary condition 
(20) and with the relations between the incident and reflected light intensities on the 
cavity mirror surfaces, rewritten in the new forms:

am,„R + nkmAZ, 1) = «7i,m.B(f, 1)’ (71)
am.nR~ 0) =  0). (72)

The factors amn appearing in Eqs. (71) and (72) measure the individual (m,n) 
transverse mode diffractional losses. Based on the data gathered in [9] and [10] 
these factors can be defined by the relation

am,n = exp[Jm(2 xm>„)] (73)
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where

\_
2

/  7rm \ 2 /  nn V  
\M x + /yy + ^Mz + i y (74)

Mx = (2k Ll/Ly) and M z = (2k L%/Ly) in Eq. (74) are proportional to the square roots 
of the respective Fresnel numbers; y is a complex number assumed (after [11]) as 
equal to y ~ 0.824 (1-i).

The formal procedure leading to the solution of Eqs. (68) and (71) remains 
identical as that used in the precedent sections of this paper. For any given 
transverse mode (m,n), and for any given i-th line, the equations describing the 
changes of the respective photon number densities n have the following forms:

= -  Tlci [gt £  (n}i,m,„ + nfUm) + X 9j X (»km,n + n/,.„,„)],
v^vr\ rtt,n j f i  m,n

n n  Hci\-Gi X "t" ̂ /i,m,n) "I" X G i X, (̂ /j,m,n "I” j,m,n)] •
uQarl m,n j f i  m,n

Employing Eqs. (70) the Eqs (75) and (76) can be rewritten in the forms:

(75)

(76)

d_
drj

1 Sinn},',
ird— d t

X  C(^/i,m,n ^/i,m ,n) 4* X  ( f l f j irn<n f l j■ j >m>„)]
m,n j f  i

= 0,

o
dr]

1 din
n~a K

X  Lkfi.m.n F X  (tTfj,m,n j 0-
m.n iff J

(77)

(78)

The ratio intensities of two arbitrary chosen lines i and j can be treated as given 
by Eqs. (34) and (35) for each pre-set transverse mode (m,n). By putting into 
approximative formulae (34) and (35) gt = §j = 0 and introducing them into Eqs. (77) 
and (78) we obtain

6_
d~n

1 dlnw/itWiB
n ci dt m,n j f  i

— __Cl + Z /47j.,({.ij/ij)]} I = o,

8 IT i ginn,,,.,. 
8tl l_/7(i 8( I{ « 7 ta .,[ l+  I  A J № , n №

.» .,[!+  I  Alt, i(i 1 = 0.
J f i

(79)

(80)

In what follows it is assumed that for each individual i-th line the ratio(s) of the 
radiation field intensities pertaining to (m,n) and (r,s) transverse modes remains 
constant and equal to

ftfi,m,n/nfi,r,s nfi,m,n/nfi.r,s ar,s ^m.n/@r.s■ (81)

Using Equation (81) one can transform Eqs. (79) and (80) into the final form of
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equations describing the changes in photon-number density for each individual line 
and each arbitrary (m,n) transverse mode pertaining to the line in question we have:

a f 1 n̂ [(1+ £ £ O I
Crl l 11"  r f m  j f i  r f m

s f n

+ n7i.m,»[(l +  £  < '„ ) +  £  A m « .  'f/ f  (1 +  £  O i l  =  0, (82)
r f m  j f i  r f m  J
s f n  s f n

a f 1 aln" /'.^  + „ + _ [ , , +  £  <*?») +  £  £  O ) ]
r f m  j f i r f m
s f n  s f n

- n J i .— CO +  £  0 +  £  .iA / )U  +  £  O i l  =  o- (83)
r f m  j f i  r f m  J
s f n  s f n

drj u l ci d£

Employing boundary conditions (71) and (72) together with Eqs. (70), Eqs. (82) and 
(83) can be reduced to Bernoulli’s equations:

dA nf i , m, n

d i
= 1)/7C,(1+ £  0 [M /0 2[1 + £  AflAi'  n №

rfm
sfn j f i

- { [ 1  +  £  £  1)]}
j f i  j f i

X A}i,m,n~ am,nR + [1 + Z  A J j M M l i l  = 0,
j f i

o ) / j ci( i +  £  0 ) l W i . » . » ) 2 U +  £  i / i )I
“ C r f m  j f i

s f n

-  {[1 + z  0/0)] + am,„R- [1 + £  Afj№> 0/°)]}
j f i  J f i

X ^ , m , n - a m , „ K - [ l  +  X A } j M , r i m  =  0 . 
j f i

(84)

(85)

Solving Equations (84) and (85) subject to boundary conditions (20), (71) and (72) one 
obtains that on the resonator mirror surface

1) = I Km,n(£, 1)11 6d(Q and n~fUmM ,  0) = \\nJi.m,n(Z,0)\\SD(ZY 
The respective norms follow the relations

2
l |n /W U )ll  =

/7cl( l+  £  « „ ) [ !  + £(«>0/0)] [ x j - ^ w - x l ^ f O ) ]
rfm
sfn j f i

X In exp( -  n j  -  x r,.„,„(0) x2+,.„.„(0) -a„.nj R * R
Lexp( -  n  J  - x ^ mJO)x * mj o )  J

, (86)
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WnJi.mAZMl
2

n ci(l + Z  o [ 1  + z  1/1)] [xri(m,n( i ) - x 2-f>m,n(i)]
r f  rn j f isfn

x In ~G xp{-nvi) - X u ^ n(l)x2i,m, M - a m,nyjR+ R 1 
_exp( — FJvi) — xJi m,„(l)x ~ m„( 1) — um „ JlV~R~ J

(87)

In Equations (86) and (87), x li2,i,m,„(>|) indicate the roots of two following algebraic 
equations:

*2d + e  i + e  i/D]
i t t  i f i

+am,„R+ [1 + E  ^7w(«. 1/1)]}-<V„K+ [1 + E  * 7 i M ,n №  =  0,
j f i  I f l

*2D + E  -47j.i(i.i/'»)]-x{Ei+ E^7w (f.0)]
j f i

+ a„ ,R -  [1 + X ^7m(£> o/o)]} — [1 + E  = °-
j f i  j f i

Relations (86) and (87) being given the problem can be treated as formally closed 
as their knowledge permits us to calculate any desired output power characteristic of 
the multi-line, multi-transverse mode cw gasdynamic laser cavity.

4.2. Main power characteristics

The virtual radiation power brought to the cavity inlet cross-section (£ = 0) remains 
defined by the previously given relation (52). The measure of the single-line, 
single-transverse mode output power, defined under assumption that light intensity 
deflected due to diffraction should be considered as lost, follows the formula

P/.-,m..(G) = i ^ [ ( l - R +)l|n;i,m,„(|,l)+(l-R-)ll"7<.™.»«.0)ll]-

Using the solutions (86) and (87) the last relation can be rewritten in the following 
form:

G) =
exp( -  n vi) - x t i ,m,„( 0) x ^ m<n(0) - a mnj R +R - 1° 

[exp( -  n  J  -  x2+f,„,„(()) x + m n(0) - a mny/ R +R-  J

exp( -  n vi) -  xr<<wtl,(l) X2i,m,n(l) -  am,ny/R 
|_exp( — n vi) — *2i,m,n(l) xriim>n(1) — am>n>/R

+ r ] (88)
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where

v.. 1 1 - R  +
OL =

<vi> n ct(i + £  < „ )  [1 + £  0/0)] [x,+i,m.»(0)-x2t1.„.„(0)]
j f ir^ms^n

*
l - R

rf=m j f i
s fn

In Equations (88)-(90): 

Xu,mA°) = ^2i,m,n(l) =

y  f m(T0 , Jj )  S f j x ,  Vj)

(89)

(90)

(91)

(92)^ 2 / , m , n ( 0 )  OmMR  5 ^ 2 i , m . n ( l )  OmnR .

The single-line (i), single-transverse mode (m,n) load coefficient f/i,m>„(G) can be 
thus expressed by the relation

n , (93)

Similarly, the single-line efficiency and the overall efficiency of the cavity are given by 
the respective formulae:

f/.(G) = Z  W » (G ) =  I" f t  (G)]nuTIeiltlvi (94)

nAG) = Z*/<(G) = In n  LPfi.m,n(G)]n"n‘jn"'• (95)
i i.m.n

In relations (94) and (95) the summation and multiplication are extended over the 
values of indexes i, m, n for which the „(G) remains higher than zero. In view of 
(88) and (93) this occurs when

e x p (- /7 J  < V*2+i,m,n(0)x2l>Iirt(l) < x1+i,m>„(0) = xli>M(„(l). (96)

By comparing the last formula with an analogous one given in [1] for 
a single-transverse mode multiline cavity, it can be noticed that for each (m, n) mode 
the i-th line can be sustained within the narrower range of the cavity losses. The i-th 
line appears if In {y/R + K- )-1 becomes lower than77^ — Jm(2xm,n) and is switched-off 
(due to the process of maxwellization of the rotational energy distribution function 
[ 1]) if In{ J R + R - y 1 becomes equal to x?iim>B(0 ) -Jm(2xm,„) =
For typical cavities of CW-GDL this narrowing of the admissible range of 
yjR + R~ values is almost negligible as the values of Mx and/or M z numbers are
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generally very high. In this case Jm(2xm<n) = 0(2n2q2Rey/M3) (q = m or n) and 
M = Mx or M2, respectively, and for very large number of transverse modes the 
coefficient remains close to one. The relation (96) permits us to identify the 
number of transverse modes into which each individual line intensity is split; with 
that number being known the output beam energy distribution over the single-line, 
single-transverse mode composite fractions can be calculated from the relation (93). 
It may be suggested that the rate equation approach to this problem can be useful in 
establishing an initial form of the field distribution over the cavity mirror, thus 
reducing the number of numerical steps needed in lengthy iterative methods leading 
to the solution of the same problem on the basis of Maxwell equations [10], [12].

4.3. Numerical example

The numerical example concerns the same CW-GDL which was discussed in Section 
3.5 of this paper. The values of characteristic parameters Tlvi, Ilci, IJH, vi/<vI> are 
listed in Tables 1 and 2. The limited number of values of the transverse mode 
diffractional losses measure am„ are gathered in Tab. 3. In calculations concerning 
the cavity efficiencies, 60 P-branch and P-branch lines and m,n = 1,2,...,30 
different transverse modes were considered. From Tab. 3 it is evident that the 
am n values remain (as expected) close to one for very high number of transverse 
modes. The behaviour of transverse mode load coefficient f/,-,m,„(G) is (for few

Table 3. Transverse mode diffractional losses measure a „m,n

1
n

2 3 4 5 6 7 8 9

1 .999 .998 .997 .994 .992 .988 .984 .979 .974
2 .999 .998 .997 .994 .992 .988 .984 .979 .974
3 .999 .998 .997 .994 .992 .988 .984 .979 .974
4 .999 .998 .997 .994 .992 .988 .984 .979 .974
5 .999 .998 .997 .994 .992 .988 .984 .979 .974
6 .999 .998 .997 .994 .992 .988 .984 .979 .974
7 .999 .998 .997 .994 .992 .988 .984 .979 .974
8 .999 .998 .997 .994 .992 .988 .984 .979 .974
9 .999 .998 .997 .994 .992 .988 .984 .979 .974

10 .999 .998 .997 .994 .992 .988 .984 .979 .974

longitudinal modes) shown in Fig. 5 (for the case of lack of pumping and relaxation 
processes), and in Fig. 6 (for the case of ideal pumping and relaxation). The overall 
efficiency r\f (G) (see Eq. (95)) of the multi-line, multi-transverse mode cavity was 
reported in [5], where it has been shown that the influence of the transverse mode 
diffractional losses onto the CW-GDL overall net output is for high Fresnel number 
almost negligible.
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Fig. 5. Single tansverse mode load coefficient (efficiency) lfi m „(G) for the case of negligible pumping 
and relaxation
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Fig. 6. Single transverse mode load coefficient (efficiency) tfi m n(G) for the case of ideal pumping and 
relaxation

5. Closing remarks

The principal aim of this paper consisted in giving a set of simplified analytical 
formulae for multiline cw gasdynamic laser averaged power characteristics as related 
to the effects of line self- and cross-saturation and to the multi-transverse mode 
diffractional losses. It is believed that these formulae can be useful in selecting the 
cavity for CW-GDL and in estimating its expected net output power. It is further 
expected that the formulae discussed in this paper can offer a rough insight into some 
basic physical processes pertinent to the CW-GDL operation. It is finally suggested 
that the presented analytical results can be meaningful for CW-GDL cavities 
working in special conditions enforcing their single longitudinal and/or transverse
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mode operation. The results reported previously in [5] show that the overall laser 
efficiency rjf (G) is but slightly affected by line saturation and multi-transverse mode 
operation of its cavity. The problems of the line saturation and multi-transverse 
mode coexistence within the cavity under consideration were treated disjointly. By 
examining the structures of starting Eqs. (38), (39) and (84), (85) it can be noticed that 
the solutions describing the CW-GDL cavity working in multi-transverse mode 
regime in the case when the line saturation effects cannot be neglected, can be 
obtained directly from Eqs. (50), (51) by:

i) Multiplying each R + and R~ by am<n (with exception of mirror reflectivities 
entering the formula (53)).

ii) Multiplying FIci by a factor (1+ £  ar£ n).
r f =msfn

Thus modified expressions will define the sought for value of the load coef­
ficients) f/i-"-"(G).

The procedure of calculating laser output power characteristics remain identical 
with that described in Section 3.4. It ought to be remembered that equation used to 
determine the photon number density distribution over the mirrors surface have the 
form of pseudo-functions. The same remark applies to the gain spatial distribution. 
Therefore, they have only a heuristic meaning and attain the physical one after being 
averaged over the cavity region. According to test calculations [10], [12], thus 
obtained laser averaged characteristics bear an error equal to about 5-10% giving 
always underestimated values of laser efficiency and output power.
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30 М. Вяшме

Влияние самонасьпцения и сквозного насыщении линии, 
а также миогомодной работы
иа энергетические характеристики активного резонатора 
газодинамического лазера постоянного действия

На базе системы макроскопических кинетических уравнений рассмотрена работа активного 
объемного резонатора С\\ЧлПЬ в условиях сосуществования в нем многих продольных модов 
(линий) и поперечных. Целью разработки является приведение простых аналитических 
соотношений, связывающих выходную мощность и коэффициент полезного действия генерации 
С'М-ООЬ с состоянием оптического возбужения рабочей смеси при учете эффектов, связанных 
с само- и сквозным насыщениями линий и дифракционных потерь, сосуществующих в резонаторе 
многих поперечных модов. Полученные общие соотношения проиллюстрированы расчетным 
примером, выполненным для конвенционального С\\ЧЗОЬ, работающего на продуктах сгорания 
бензола в компрессорном воздухе.


