
Optica Applicata, Vol. XIX,  No. 1, 1989

Third-order aberrations of the hologram 
realizing the Fourier transform process*

E. Jagoszewski, A. Talatinian**

Institute of Physics, Technical University of Wroclaw, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, 
Poland.

The Fourier transform holographical element is presented. It has been shown that the hologram 
can be used as a Fourier transformer for determination of the spatial frequencies of an investigated 
object. For three different holograms, the third-order aberration coefficients are illustrated, and the 
deviation in the reconstructed wavefronts of several point objects is shown.

1. Introduction .

The imaging properties of holograms are analogous to the lens properties in 
conventional imaging, therefore holography is sometimes called “lensless imaging”. 
The focusing properties of a hologram have found many applications in various 
domains of science and technology. Analysis of the reconstructed waves shows that if 
the reconstructing source is situated at a position different from that of the reference 
source, the holographic image will occur at a position different from that of the 
object and will show aberrations. As we know, the focusing properties are used for 
the realizing of the optical Fourier transform [1].

In this paper, we show that a hologram recorded by the two waves: a spherical 
and a plane one, has the same effect in the reconstruction process as a thin lens in 
conventional collimating imagery. Therefore, the known paraxial positions of the 
holographic images (of an object point) reconstructed by a plane wave are given from 
the imaging lens formula. If the direction of this wave is parallel to the optical axis, 
then the images are the focal points of the hologram and determine its focal-planes. 
In the case of sloped reconstruction beams, we obtain the images in certain distance 
from the axis. Thus, the spatial frequencies of the object can be estimated.

2. Basic Fourier transform holographic model

It is known that a lens acts as a Fourier transformer of spatial distributions, 
providing the Fourier transform relationship between the amplitude in its front and 
back focal planes. In general, the Fourier transform relation between any object and
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Fig. 1. Fourier transform holographic model: a -  recording of a hologram, b -  reconstruction process. 
L — lens. B — beam splitter, H — holographic plate, H' — hologram, O — object. I — image, F, F' 
-  front and back focal points, respectively

the focal plane amplitude distribution of the lens is not an exact one, due to the 
presence of the quadratic phase factor. In this work, a hologram with the properties of 
a thin lens is considered, thus the reconstructed images (by a plane wave) provide to 
the Fourier transform of the investigated object. In Figure la, an optical system for 
producing of the hologram is shown. Figure lb illustrates the plane wave of the 
complex amplitude distribution w(x, y) incident at the hologram in the direction 
defined by the angle a. Thus, the amplitude distribution behind the hologram by 
assuming the infinite extent of its aperture becomes

u'(x,y) = u(x,y)exp ( 1)

where is the image distance from the middle of the hologram. If the reconstructing 
wavelength a is equal to the wavelength aq of recording the hologram (ju = 1), then 
the sloped (aQ) image beam forms an unaberrated point in the distance R0 at the 
back focal plane, and we have

u'(x,y) = u(x,y)exp — {x2+ y 2) c°s a° (2)

The imaging property of the hologram is characterized by its focal-length, which for 
the ray tracing in the x-z plane is defined by equation

/  = R0 cosa0,
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where aG is the inclination angle of the photographic plate during the hologram 
recording (Fig. la).

In this way, Figure lb shows a system for the Fourier transform spatial 
realization of any amplitude distribution. Really, when the input amplitude is given 
in the front focal plane (xf — yF), then the wave propagates to the hologram, where 
after transforming by diffraction it runs again through the vacuum and illuminates 
the back focal plane, forming the Fourier transform of the input distribution. The 
fact is that the Fourier transform realization of the 2-D complex amplitude 
distribution has a practical matter in the optical image processing. It can be shown 
too, that if the object wave is sampled at a sufficiently large number of points, the 
discrete Fourier transform can be done with a computer program using the fast 
Fourier transform algorithm.

3. Aberrations of the Fourier spectrum
The model proposed here performs the Fourier transform relationship between two 
focal-planes of a point hologram. Therefore, we can use the Champagne [2] 
formulation of the aberrations of image points in the back focal plane. Obviously, in 
one case, if the direction of the reconstructing wave coincides with the reference wave 
of this hologram, one can find an unaberrated image point which illustrates in the 
back focal plane one of the spatial frequencies of the input distribution [3], [4]. All 
of the next points are loaded with the aberrations. The wavefront deviation from the 
Gaussian reference sphere is then, as follows:

A =  ) 5 -  (*2 + y2) ( x C x + y C y) + (*2 A x + y2 A y + 2xy A xA y)~j (3)

where x, y are the hologram coordinates, and S, C, A — the spherical aberration, 
coma and astigmatism coefficients, respectively, which in the theory of Champagne 
are written in the forms:

C,

A x

A y

K y

yc A + J ' J'o y*
Rc R,3 ± ^ K
x2c A + j 'xh xi
Rc R,3±M\VRo

yc A + j >R

Rc k,3±/MK Ri
xcyc ¥ i h / V o  

R 3c R } ~ ^ \ R 3o Rr )

(4)



Table 1. Spherical aberration (107S)
00

«1 0° 2° 4° 6° 8° 10° 12° 14° 16c 18° 20°

bIIoa 0.00 +  0.144 +  0.573 + 1.33 + 2.31 +  3.59 +  5.13 +  6.92 +  8.94 + 11.20 + 13.60
=  10° -3 .5 9 -3 .4 4 -3 .01 -2 .2 6 -1 .2 8 0.00 + 1.56 +  3.33 + 5.34 +  7.58 +  10.00
=  20° -13 .60 -13 .50 -1 2 .0 0 - 12.30 -11 .30 -1 0 .0 0 -8 .4 8 -6 .71 -4 .7 0 -2 .4 5 0.00

T a b le  2. Coma (105CX)

0° 2° 4° 6° 8° 10° 12° 14° 16° 18° 20°

olla0 0.00 -1 .3 9 -2 .7 8 -4 .1 3 -5 .4 6 -6 .7 4 -7 .9 6 -9 .11 -10 .20 -1 1 .20 -12 .10
=  10° + 6.74 +  5.34 +  3.96 + 2.60 + 1.28 0.00 -1 .2 2 -2 .3 7 -3 .4 5 -4 .4 4 -5 .3 4
=  20° +  12.10 +10.70 +  9.32 +  7.97 + 6.64 + 5.36 + 4.14 + 2.99 +  1.91 +  0 898 0.00

T a b le  3. Astigmatism (I04 y4J

0° 2° 4° 6‘ 8° 10° 12° 14 16° 18° 20°

ao =  0° 0.00 -0 .243 -0 .971 -2 .1 7 -3 .8 4 -5 .9 4 -8 .4 6 -1 1 .4 0 -14 .60 -18 .20 -22 .00
=  10° +  5.94 + 5.70 +  4.97 +  3.77 +  2.10 0.00 -2 .5 2 -5 .4 2 -8 .6 7 -13 .10 -16 .90
= 20 + 22.00 + 21.80 + 21.00 +  19.80 + 18.20 +  16.10 +  13.50 +  10.6 + 7.39 +  3.84 0.00
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We note that when all the beams are only in the x-z plane then considerable 
simplification is possible, since the coefficients Cy, Ay and Axy are zero. This 
reduction leads to three equations of aberrations, from which two of them are useful 
in the forms:

Cx
sinac sin a, fsinoto sinaR̂

R2c Rl  ̂ R2o Ri r

sin2 ac sin2 ( sin2 aQ sin2 a,
R,

(5)

By specifying a and R of the image beam, we find the image point which is not 
necessary located with respect to the focal plane. Thus, we consider the aberrations 
in terms of imaging from a surface to the focal plane which include an unaberrated 
image point satisfying the Gaussian image formula. The other image points in the 
focal plane are loaded with the aberrations. Depending on how the hologram is 
recorded, we can obtain the unaberrated image for the on-axis or for the off-axis 
point. In our considerations we investigate rather the off-axis points representing the 
determined spatial frequencies of an actual object.

Let us examine three different holograms: two off-axis and one in-line hologram. 
For simplification all the beams by recording and reconstruction are in the x-z plane. 
Assuming the two recording beams: object and reference coaxial, the holograms of 
the focal-length /  = 50.000 mm with a0 = 0°, 10° and 20 are formed. In all three

Fig. 2. Magnitude of the wavefront deviation vs the incident angle of the reconstruction beam for an 
in-line hologram (aQ = 0°), and two off-axis holograms (aD =  10°, 20°)
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cases, we have an extended to 20° range of spatial frequencies. Corresponding to 
assumption, the reference and reconstruction waves are the plane ones, and equal to 
each other (n = 1). In Tables 1-3 one can find the values of the aberration 
coefficients: spherical aberration, coma and astigmatism, respectively. Applying Eq. 
(3), we obtain the wavefront deviation from the Gaussian reference sphere.

In this analysis, we have confined our attention to hologram /-number equals 2. 
Figure 2 illustrates the wavefront deviation in wavelength of X = 632.8 nm for an 
in-line and the two off-axis holograms.

4. Conclusions

An in-line or off-axis point hologram can be used as a Fourier transformer of spatial 
distribution. It has been shown that if the incident angle of the recording beams is 
not large, then the solution can be satisfactory for a spatial frequency range of about 
10°. In the presented considerations the best solution in the range from 3° to 12° of 
the spatial frequency values is for the aG = 10° hologram.
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Аберрации третьего порядка голограммы, реализующей операцию 
преобразования Фурье
Представлена голограмма как преобразователь Фурье. Было обнаружено, что плоская 
тлограмма можег быть использована для преобразования Фурье распределения амплитуды 
предмета и определения его простанственных частот. Для трех разных голограмм были 
проведены исследования аберрации третьего порядка и показано влияние геометрии системы на 
ошибки реконструированных волновых линий.


