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Simulation of anticipated operation characteristics
of designed constructions of broad-contact
double-heterostructure (AlGa)As diode lasers.

. Threshold current*

W. Nakwaski

Institute of Physics, Technical University of £édz, ul. Wélczanska 219, 93-005 +6dz, Poland.

The model of broad-contact double-heteostructure (AlGa)As diode laser is presented. It enables us
to determine the anticipated threshold current of a designed laser structure.

1. Introduction

In a design of a diode laser structure of desired operation characteistics, the
trial-and-error method is usually used. This method is the most expensive and the
most time-consuming one.

A computer-aided micro-scale simulation of physical phenomena taking place
within the laser crystal is a much better solution to this problem. Such a simulation
is, however, very difficult, since then not only electrical, optical and thermal processes
within a laser crystal but also their mutual interactions should be taken into
account.To this end, a powerful computer is required and the solution is much
time-consuming.

In the present work, a compromising solution is proposed. Physical phenomena
are described with the aid of formulae which were derived in orginal works and
include some material parameters. The latter have been determined by using the
published experimental data.

The author does not regard the presented model as a finished, entirely formed
work. Its present shape is only the first proposition although the author did his best
in searching for the most reliable and recent literature data. The model should be
modified when new, more correct data are published. If some experimental data
(different from those known from literature) for materials used are available, they
should be employed instead of literature ones.

Although the work deals with broad-contact lasers, the presented formulae may
be to some extent useful also for modelling the behaviour of stripe-geometry lasers.
This refers especially to all empirical formulae describing approximately the known
experimental results.

* This work was carried out under the Polish Central Program for Fundamental Research CPBP
01.06., 6.04.
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Schematic configuration of a diode laser, depicting some of structure parameters
employed in the analysis, is shown in Fig. 1

In the present part of the work, the gain threshold current and the leakage
currents are considered. Two successive parts will deal with free-carrier absorption,
quantum efficiencies and temperature effects. Some preliminary results have been
recently presented in [1], whereas this paper reports the detailed results.
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Fig. 1 Schematic configuration of a broad-contact double-heterostructure (AlGa)As diode laser
2. Threshold current density

Threshold current density of a diode laser reads as follows:

7th = 7th,g+7e+7h (1)

where yXHG is the gain threshold current density, and jEand jHare the electron and
the hole, respectively, leakage current densities.

3. Gain threshold current density
Gain threshold current density is given by the relation [2]
dAIpm/yTH

Jine — T +h (2)

where dA is the active layer thickness, i/j-the internal quantum efficiency, gTH the
threshold local gain, and /2vand j, are the parameters which on the basis of [2] [4]
may be expressed for 250 K < T< 350 K in the following form:

165 xT - 142 for T < 300 K,
f’s[cm/A] = 3
130x T~052%6  for T > 300 K.

y'TA/cm2] = 2.16 x T 1-34, (4)

the exactness of the above formulae being not worse than 1.5%.
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4. Threshold gain

The threshold local gain can be obtained from the following relation:
#TH = (aB\D+ ai)/T ©)

where aB\D and <¢ are the end and the internal losses, respectively, and T is the
confinement factor.

5. Confinement factor

The confinement factor may be expressed in the following form [5]:

7 = D2(2 + 2)2), ©)
with
D = 2n(dJK)[(NRY2- (n B2y 2 (1

where a is the radiation wavelength and nKA and nRB are the refractive indices of the
active layer and the confinement layer materials, respectively.

6. Index of refraction

Based on the papers [6]-[9], the index of refraction in the AIXG aj_xAs material
reads as follows:

WRX, T, NP = (3.590- 0.710x + 0.091 X2
X[l +(7-297)4.9 x 10~4] —1.2 x 10"20nF ®)

where x is the AIAs mole fraction and nFis the free carrier concentration (in cm* 3).

7. Wavelength

Wavelength is usually determined with the aid of a simple approximate relation
Alpin] = 1.2398/Ecr [eV] 9
where EGr is the direct energy gap, which - on the basis of papers [10] [14]-may be
written for xA+ 045 as
EGr(*A>n,p,TA = [1.519- 5405 x 10 4(1 + 0.6 xA) Ta( TA+ 204 K)]
X (0.9375 + 0.8209 \+)- t.6 x 10~8(n13+ p1/3). [cV], (10)
In the above relation, xA is the AlAs mole fraction in the active layer material,

TA-the temperature of the active layer, and n and p are the electron and the hole
concentrations, respectively, which should be substituted in cm-3.
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8. End losses

End losses may be expressed as
aB\D= (I/2L)In[I/(RF/?R)] (1)

where L is the length of the resonator, and RFand Rr are the reflection coefficients
from the front and the rear mirrors, respectively. The reflection coefficient R may be
correlated with the refractive index nRby means of the following well known relation:

K=[K-1)/K+1)]2. (12)

9. Internal losses

In the case of double-heterostructure lasers, internal losses may be expressed in form
of the following sum:

ai = 1<xFC+ (I-r) 0 tOVT+ b+ @@ (13)

where aKC and aQUr are the free-carrier losses in the active and the confinement
layers, as-the scattering losses, and ac are the coupling losses. Two first losses will
be considered separately in the second part of the work.

10. Coupling losses

On the basis of Figure 1 published in paper [15], the coupling losses for one
heterojunction may be obtained from the following relation

a rcm-11 = 120[130exp(-4.87dBdBMN fordB< dBMN n
0 j forrfB> <BMN '

where dB is the thickness (dP or dN of the confinement layer adjacent to the

considered heterojunction, and dBMN may be determined with the aid of the
following expression:

N minCroi] = 0.3175exp(-2.8dA[pm])/(xB-x A, (15)

xB is the AlAs mole fraction in the confinement layers.

11. Scattering losses

A very thin (~ 0,2 pm) active layer (c.f., Eqg. (2)) is employed in order to achieve low
threshold currents in DH diode lasers. The variations of threshold currents in these
lasers are larger than in lasers with thicker active layers. They may be explained by
the optical scattering losses due to nonplanar interfaces between the active layer and
the confinement layers. Assuming that the optical losses are due to growth terraces
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observed experimentally [16], the coefficient as connected with these losses may be
written as [17]

ITNT y2 X2

— P2 16
L /21 +0.5ydA [(«RA2—(«rbj2] exp(y dA)exp(—2y3rT/3 P2) (16)

as =

where rTand /T are the radius of curvature of the bent section and the length of the
riser section of the terrace, respectively (see Fig. 2), NT is the number of the growth
terraces in the cavity, y is the propagation constant which may be determined from
the following equation:

y = xta.n(xdJ2), a7)

and the remaining parameters may be calculated from the relations:

122 = y2+ K B2fco, m
x2= K a)2-/?2, (19)
k0= 2n/X. (20)

For thin active layers fulfilling the condition

dA~ 0.07 2/(xB—xA)1/2, (21)
we may use the approximate solution [18]

y = 0.5 x2dK, (22)
then p approaches the value

P = kQnB, (23)
and X becomes equal to

K= QWa)2- (« ra)2] 12K (24)

If the condition (21) is not fulfilled, we search for p using the relation [19]

tan {[NRY2  ko—/i2] 1,2(&/2)} = [192- (« rb)2" ] U2[(«ra (25)
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being the modified version of Eq. (17). The calculations may for instance be
performed by means of the falsi rule with the step Ap = nRBk0/2. Then y and x can be
determined from Egs. (17) and (18).

The radius of curvature of the bent section of the terrace may in turn be
determined in a following way (Fig. 2):

sin PT = hj/lj = sin(aT2) = Z74r, (26)
what gives a final result in a form [16]

(T = (IT/2)2/MT. (26a)

12. Leakage current densities

The electron jEand the hole jHleakage current densities across the heterojunctions
into the P-(AlGa)As layer and into the N-(AlGa)As layer, respectively, may be
expressed in the following way [20], [21]:

eDENp

Je = | tanh (dP/L,) 27)

Jh = L Htanh (ds/LIt) (28
In Equations (27) and (28), DE and DH are respectively the electron diffusion
coefficient in the P-tvpe confinement layer and the hole diffusion coefficient in the
analogous N-type layer, whereas LE and LHare the electron diffusion length in the
P-type layer and the hole diffusion length in the N-type layer; Np is the electron
concentration at the edge of the P-type layer adjacent to the active layer and PNis
the hole concentration at the analogous edge of the N-type layer.

13. Electron and hole concentrations at the edges
of the confining layers

Electron concentraction at the edge of the P-(AlGa)As layer (the edge adjacent to the
active layer) may be expressed as

NP = N®@exp [ (Ecp—FBE)/kBT] (29)

where NP is the conduction band effective density of states, £ CP-the conduction
band edge, and FEP-the electron quasi-Fermi level, all in the P-type material; kBis
the Boltzmann's constant.

The analogous formula for the hole concentration PNat the analogous edge of
the N-type layer reads as follows:

= "Wexp [ (FHN—Ey~/cgT] (30)

where Nwn is the valence band effective density of states, £ VN-the valence band edge
and Frm the hole quasi-Fermi level, all in the N-type material.
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14. Effective density of states
The effective density of states for all three conduction bands of the AlI*"Ga”~"™As
material may be calculated in the following way [22]:

Nc[cm” 3] = 25 x 1019{(mEr/m0)3/2+ (mBE/m0)3/2exp[(£Gr—EGL)/KBT]
+ (M,:XImn)3/2exp [(£ Gr —EGX)/kn T~]){T/300)32 (31)

where mO is the free electron mass, Ecr, EGL and EGX are the T direct, the L indirect
and the X indirect energy gaps, respectively, and mE mHB. and mEX are the electron
effective masses corresponding to the above conduction bands.

The analogous relation for the effective density of states for the valence band may
be written as [23]

Ny [cm-3] = 2.5 x 1019(mHm0)3/2(T/300)32 (32)

where mH is the hole effective mass.

15. Indirect energy gaps

The compositional dependences of the indirect energy gaps of the AIVGai- xAs
material at room temperature may be given by [24]
£GL[eV] = 1.708 +0.642 x, (33)

Eox[eV] = 1.900+ 0.125x + 0.143x2. (34)

16. Effective masses

The electron effective masses for the three conduction bands of the AIXG aj_XxAs
material at room temperature may be obtained from the relations [24]:

raEr = (0.067 +0.083 x)mO, (35)
mHE_ = (0-55+ 0.12x)mo, (36)
mEX = (0.85—0.07x)mO. (37)

The analogous hole effective mass for the valence band is taken as [24]

mH= (0.48 + 0.31 x) mO. (38)

17. Quasi-Fermi levels
From Figure 4 in paper [21] we may write

Frp= AEG+ (Fi(A- Eva)- (F.p- £W- (Fj.A- Eca) (39)
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where FHA FHP and FEA are the hole quasi-Fermi levels in the active layer and in the
P-type layer and the electron quasi-Fermi level in the active layer, respectively; £ VA
£\W and ECA are respectively the valence band edges in the active and in the P-type

layers and the conduction band edge in the active layer AEC is obtained from the
relation

d£G= (Ecp-E vwp)-(Eca-E va) = EGP—EGA (40)

where ~CP and Eca and the conduction band edges in the P-type layer and in the
active layer, respectively, and Ecp and EGA are the direct energy gaps in the above
materials.

For the N-type material, the analogous formula may be written in the form [21]

Ain—"vn = d£G—(Fea—£ca)—(Ecn—Fen)+ (Fha—£ Va) (41)

where FBENand £ QN are the electron quasi-Fermi level and the conduction band edge,
both in the N-type material.

Let us introduce a function F1/2(p), being the Boltzmann approximation for the
Fermi level, to the degenerate case and extended by Joyce and Dixon [25]

Fi/2(f) = kBF[In/z + 3.53553 x 10"1//-4.95009 x 10"V
+ 148386 X 10~V -4.42563x 10"V - (42)

Then the differences set in parantheses in Egs. (39) and (41) may be obtained from the
relations

Nea—"ca = FI/ZZnA/NCA), (43)
Aha*~FVA = —F12(pAiVVA), (44)
Fhp~E\p= ~ Fi/2(PRiV\p), (45)
~Nen—Fen = F12(VNIVON (46)

where nA IWN pAand Ppare the electron concentrations in the active layer and in the
N-type layer, and the hole concentrations in the active layer and in the P-type layer,
respectively. NCA Ncn, iVWA and iV\P are the effective densities of states for the
conduction bands in the active layer and the N-type layer and the effective densities
of states for the valence bands in the active layer and in the P-type layer, respectively.
They may be calculated by means of the Egs. (31) and (32).

18. Diffusion coefficients

The electron diffusion coefficient in the P-typedayer and the hole diffusion coefficient
in the N-type layer may be related to their mobilities by the Einstein relations:

~E = AENBNTe> (47

Fh/b/A- 48)
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where pEand /tHare the electron mobility in the P-type layer and the hole mobility in

the N-type layer, respectively, and e is the unit charge. The composition dependence
of the mobilities will be considered in the third part of the work.

19. Diffusion lengths

The formulae for the minority-carrier diffusion lengths in the AlI"Ga”~"As material
may, on the basis of papers [26]—f32] be written in the forms:

LE[pm] = 8.8/L(x)exp[-fcEp)][AED /AK300K)](r/300)1-25c+1-29, (49)

L HInm] = 2.14/1 (x)exp[-b H(N)]|jiHT)/ftl1(300K)](7'/300)1-25*+1'29 (50)
where:

fL{x) = 1—alexp(blLx), (51)

bEp) = 0.026 exp[1.5log (p/1016)]. (52)

1.058 x I (T 3exp[2.7610g(n/1016)] { forn < 4x 1018cm 3

53
h(w) “ 8.923 x 10_3exp[1.93310g(n/1016)]j forn” 4 x 1018cm-3 3

and the al and bL parameters are listed in the Table. In all the above expressions,
carrier concentrations should be substituted in cm-3. The exactness of the above
approximations is not worse than 5.5% and 1.7% for  and LH respectively, for the
concentration dependences, and 2.4% for the composition dependence.

Values of the parameters of the relation (51)

Parameter x < 0.32 x > 0.32
1.377 x10 "2 8.9 x 10~2
K 1.078 4.93

20. Conclusions

The first part of the model broad-contact double-heterostructure (AlGa)As diode
lasers was presented in this work. The model enables us to determine the anticipated
threshold current of a desired laser structure from its structural parameters. The
model may be used for optimization of the laser structure from the point of view of
minimization of the threshold current density. In this case, however, the temperature
dependence of all the processes of light generation and absorption becomes critical,
so the self-consistent method of calculations, given in the third part of the work,
should be used.

In the next two parts of the work, free-carrier absorption, quantum efficiencies
and temperature effects will be analysed.
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NMuntaumsa npegycMaTprvBaeMbiX 3KCM/yaTalMOHHbIX XapaKTepucTuk
LWMPOKOKOHTAKTHbIX flasepHbix anonos (AKDa)A8 c aBoWiHOMN
reTepocTpykKTypoii. |. MoporoBblli TOK

B HacTosieii pa6oTe npefcTaBneHa Mofeslb LUMPOKOKOHTAKTHOro nasepHoro auoga (AlOa)A$
C ABOMHOW reTepoCTPYKTYpPOh. DTa MoAesb AenaeT BO3MOXHbIM MpeayCMOTPEHME MOPOroBOr0 ToKa
NPOEKTMPOBAHHOW Na3epHO CTPYKTYypbl.



