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Contribution to the theory
of the integrated optical loop resonator

A. Bryc

Central Laboratory of Optics, Physical Optics Dept., ul. Kamionkowska 18, 03-805 Warszawa, Poland.

A relation between the output electric field amplitude and the input one is derived for the 
integrated optical loop resonator with the help of two coupled waves equations. Then the result 
relation is used to analyse some specific configurations of the loop resonator.

1. Introduction

The integrated optical loop resonator is formed by three strip planar waveguides 
lying close to one another (Fig. 1): two of them (I and II) being open and one in 
between (III) in a shape of a closed track.

The working principle of this device consists in the light coupling from the input 
waveguide I to the resonant loop II and then to the output waveguide III. The 
compatibility with optical fibers and simple construction enable this device to be 
employed in many different applications. For instance, it can work as a temperature, 
electric or magnetic field and acoustic wave sensors [1], [2].

In this paper, the dependence of the output electric field amplitude on the input 
amplitude is derived for the optical loop resonator. Up to the author’s knowledge 
such characteristics for a similar kind of optical device have so far been presented in

Fig. 1 Integrated optical loop resonator (top 
view): I is the input waveguide with complex 
propagation constant yu II is the resonant 
loop waveguide with complex propagation 
constant y2, III is the output waveguide with 
complex propagation constant y3, l, /' are the 
interaction lengths
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works [3], [4]. However, the present work seems to be more general because our 
resonator consists not only of the same waveguides. Additionally, the working 
principle of these two devices is not the same.

In order to obtain this relation, it is necessary to solve equations for two coupled 
waves (presented in Sect. 2), and then to apply the result to the analysis of the light 
propagation in the resonator configuration (presented in Sect. 3). The analysis of 
typical resonator structures is given in Sect. 4 and 5.

2. Two coupled waves equations

A comprehensive theory of coupled waves has been presented for instance in papers 
[5], [6] or [7]. Let us assume that all three waveguides are single mode, so coupling 
there is between two waves only. So, we can take into account two coupled waves 
equation [6]:

=  - y i E i + c 2lE2, (la)

=  -7 2 ^ 2 + c 12E i (lb)

where: EVE2 

7i,72

C 12 ’ C21

Z

— complex wave amplitudes,
— complex propagation constants (small perturbations of and y2 

are neglected: we are within the framework of weak coupling ap­
proximation),

— coupling functions (dependent on z),
— direction of the wave propagation,

with initial conditions:

E t (z =  0) = Elw, (2)

E 2(z  =  0) =  £ 2w.

The initial condition E2(z =  0) =  e 2̂ o reflects the fact that the light in the loop 
waveguide (Fig. 1) does not vanish when it arrives at z =  0 after its round trip.

Additionally, let us assume that waveguides are parallel to each other along 
the interaction regions, so the values of functions c l2 and c21 are constant and equal 
to c12, c21, respectively. Then, by imposing the conditions (2) on Eq. (1) we obtain the 
following solution of Eq. (1):

=  e x p ( -  ^  * ) [  exp(  |  z)

+  e x p f -  £  z Y l . (3a)
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21^2w+(^ +  V2 — yi)E lw

2 71 4c2iR

2c2lE2w +  (R —y2+ y i)Elw 

4c2lR

(V i- f2+R)exp^ |

(7 i-y 2-R )e x p f-  *  , ) ]  (3b)

where R =  V(î’i -T 2) î + 4«î iCi 2 ·

Throughout this paper this result will be used to analyse the coupling between 
waveguides I and II and between waveguides II and III of the loop resonator (Fig. 1). 
In the first case the form (3) will be used. In the second one the change of 
propagation constants and coupling coefficients yields:

E'i = exp(— z )[  exp( f  z)

+  - ^ . + ( * + 7 2 - ^ , .  exp( _  *

£, .  a p ,)[ (-.-.,*«>«( f  ■)

(4a)

where: R =  yl{y2- y 2)2+ 4 c 22c22,
c23, c32 — values of coupling coefficient for waveguides II and III. 

These forms will be used when necessary.

3. Output/input characteristics

The solutions (3) and (4) of coupling Equations (1) enables us to analyse the 
performance of the integrated optical loop resonator and to calculate its output 
/input characteristics.

Let us consider a device as in Fig. 1. Its strip waveguides are characterized by 
their propagation constants yv  y2 and y3, respectively. A part of light propagating in 
the input waveguide I is coupled into the loop waveguide II along the interaction 
length l (from the point A  to A). During its round trip in the loop the light is again 
partially coupled into the waveguide III along the second interaction length /' (from 
B to B ). After many round trips in the loop a steady-state amplitude is attained in all 
three waveguides. High level of the output wave amplitude can be obtained in two 
following cases:

i) The efficiency-^ coupling is not 0% and the resonance exists in die loop: 

fid =  ±2nn  (5)
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where d is the loop length, /? =  Im(y), y is the average value of propagation constant 
in the loop and n is natural.

ii) The efficiency of coupling from the waveguide I into II is not 0% and the 
efficiency of coupling from the waveguide II into III is 100% (no resonant condition 
is then necessary).

We will analyse the light propagation in the resonator under assumption that one 
of situations i) or ii) takes place.

The wave amplitudes will be denoted as follows:
Em(A')· — the input complex wave amplitude (in the waveguide I at point A'),
El — the complex wave amplitude in the waveguide II,
Eovr(B ) — the output complex wave amplitude (in the waveguide III at point

B).
Accordingly the notation Eh(P)i is applied to the wave amplitude in the loop 

waveguide at point P during the i-th round trip of light, and {E2w =  x, £ lw =  y, 
z =  w} denotes the value of the function Et when E2w =  x, £ lw =  y  and z =  w.

In the beginning of our consideration the light is launched into the waveguide I. 
We take its amplitude at A' to be £ |n- Simultaneously there is no light in the loop 
waveguide II, so at P' (the beginning of the interaction region) £ 2w =  0. Then the 
wave is coupled into the loop and its amplitude at P is given by Eq. (3b) with z =  1(1 
is the length of an interaction region) and 2slw — Em(A )

El(P) i =  £ 2{E2w =  0, =  E lw(A ), z  =  1}

=  EinM V p I -

Continuing its first round trip the fight propagates along the loop and its 
amplitude is reduced because of optical losses (the same occurs of course along 
interaction region) and attenuation on bends. Then it comes across the coupling path 
of waveguides II and III and is partially coupled into the output waveguide III, as 
given by Eq. (4a) with E '2w =  0, £ lw =  £ ^ (0 !  and z  =  t  (/' is the length of the 
second interaction region). At the arrival back to P  its amplitude is given by

El(P )2 =  s'exp(—y2w)Ei{E2w =  0, £'lw =  sEL(P)le x p ( - y 2w),  z =  /'}, (7)

where: w +  w' =  d —l—i ,  s, s are coefficients responsible for the attenuation on the 
loop bends, and d is a loop length.

Noting that in the case of £ 2w =  0 the factor describing the wave amplitude at 
Q is common in all parts of Eq. (7), we can extract it and impose £ lw =  1, so that the 
formula (7) can be reduced to the form

El(P')2 =  s E ^ w l - y . i d - l - l ’n E ^ E ^  =  0, E\y, =  1, z =  /'}. (8)

During the second trip in the loop the situation is similar to that at the beginning: 
the wave amplitude is given by Eq. (3a) with Elw =  EW(A') and z =  /, but now there 
is fight propagates in the loop, so £ 2w =  EL(P )2 and we have
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^ l CP)2 — E2{E2m/ — EL(P ) 2, ^ lw  — Z — /},

which, after simple conversions, can be rewritten as

EL(P)2 =  EL(P)1+ BEL(P)t

where

yi+?2

(9)

( 10)

5  =
exp^— y- kY A  ^ e x p [ -y 2( d - / - / ' ) ]

2 R
s E \  {E '2w =  0, £'lw =  1, z =  /'}

^ (y i-y 2+^)exp^ |  / j - ( y i - y 2-^ )e x p ^ -  * (11)

After many round trips in the loop the wave amplitude on its n-th arrival to P  is 
given as

EL(P )n =  s£L(P)n_ 1e x p [ -y 2( d - / - 0 ] £ ' 1{E2w =  0, £'lw =  1, z =  /'} (12)

The situation at P  is as follows: the wave amplitude is given by Eq. (3a) with 
E lw — Ein(A), z =  l and E2w =  EL(P )n, so we can write

EL(P)n =  E2{E2w =  EL(P')n, E1w =  Em(A), z =  1} =  E ^ P ), + B E L(P)„_1

=  £ L(P)i-f B £ l(P)i +  P2Kl(1>) i +  ..· + B ”- 1EL(P)l . (13)

Let us note that the constant B which is expressed by Eq. (11), has an evident 
physical meaning. From Eq. (10) we have

B =
_  £ L(P)2- £ L(P)i _  ^exp(iy1)+^exp(-«rf+i<jD2)-^ e x p (iy 1)

£ l(p ), Aexp(i<pi)
(14)

where A is real, a is the optical loss coefficient in the loop, <p± is the phase of the wave 
coupled into the loop, and q>2 is the phase of the wave after full lap. Assuming that 
there exists the resonance in the loop, exp^«^) equals exp(i<jo2) and then from Eq. (14) 
we get

B =  exp(—ad) <  1, if a ^  0. (15)

Now, let us return to Eq. (13). Its right-hand side forms a geometrical series. Since 
B <  1 we can find a steady-state wave amplitude at P  as a sum of infinite series

£ l(P) =  £ l(P)„= lira l E j P h B * “1 =  lim | \ ( P ) , ^  1 =  . (16)
n ~ * a o k =  1 n-*ooL L — t f  J l — t f

Inserting B, given by Eq. (11), into Eq. (16) we obtain the following relation: 

El(P) =  % E,»(A ) ( 1 7 )
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where:

JV = «)-.-72)2-J i2][exp(—f  /) - “ P ( f ' ) ] “ p( -

D =  4c21R —2c2,sexp [—y2(d—i—f)]exp^— i j

X [^(yi-y2+R )exp( |  ^ - ( T i - V 2- « ) e x p ^ -  |  / )J

x £ i { £ 2w =  0, £ i w =  1, z  — 1].

Now, using Eq. (4b) we can derive an output wave amplitude as a result of coupling 
from waveguide II into III

EOUT(B) =  £ 2{E2w =  0, £'lwW E L(P)exp[—y2(vv')],z =  /'}. (18)

After some algebra we find the final form of the relation describes the wave 
amplitude propagates in the output waveguide

eout(z) =  E M )  “ p ( _  i'^ ex p [-r2(w')]

x j V - y 2+y3)(K'+?2-73)exp( y  fj
+  (R'+ y2- y3)(- -R'+ y2- y3)exp^-  y  f j j e x p ( - y 3z). (19)

4. Particular configurations

For symmetrical structure as in Fig. 2 the waveguides I and III are identical. Then 
we can write y x =  y3, / =  l \  c l2 =  c23, c2x =  c32, in a consequence, Eq. (19) may be 
reduced to the form

^out(2) ~  ¿ inM ) exp(—yxz) (20)

where:

N' =  se x p ^ -y ,i-y 2  ̂)[(y , —y2)2—R2] 2|^exp(— *  l j - e x p ^  *  / j j 2,

D = (4 c 21R)2- 4 c 2, 2s2( y ,- y 2 +  R)2- [ ( y , - y 2)2- R 2]

x [exp(R/)+exp(-R /)] +  (y1- y 2- R ) 2e x p [ -y 1/ - y 2(d -/)]-

Another particular case is a symmetrical structure with a loop waveguide the 
same like the others (Fig. 3). Then yx =  y2 =  y3 — y and coupling functions are both
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l* I

*
Qyy Fig. 2. Symmetrical integrated optical resonator

constant and equal to ic [6]. Thus Eq. (19) takes the following form:

s sin2(c/)exp| —y ( l +  ^ )

£out(z) =  s2 cos2(c/)exp(—yd) — 1 ^ )eXp(~ ïz)'
(21)

Now, let us consider the attenuations on the bends, formally represented in our 
equations by the parameter s. They can be neglected when [8]

r >
24n2\ t f

A2
(22)

where: X — wavelength, in the vacum,
£ — distance at which the wave amplitude in the neighbouring medium 

decreases 1/e times,
r — radius of the outside» bend curvature.

For example: for X =  0.63 fim and the refractive index of the single-mode 
waveguide nt =  1.5, the 1% attenuation along the distance of 1 mm takes place when 
r =  1 mm [8].

The radius r in such structures is usually of order of 0.5 mm or grater (for 
instance, see [9]). Assuming that bend losses may be neglected Eq. (21) can be written
as

sin^c^expi—? (/+  \ ) \

....EINM )e x p (-VZ).£ qut(z ) — (23)



206 A . B ryc

5. Discussion of the dependence of output wave power 
on resonator’s parameters

Let us examine the behaviour of the light propagates in the output waveguide in the 
dependence on the resonator’s parameters c and /. c is strongly dependent on the 
separation distance w between two coupled strip waveguides [10]

c =  Cexp(—w/Q) (24)

where C, Q are coefficients.
For cohvenience, we examine a power of output wave instead of the wave 

amplitude, which may have sometimes a complex value (see Eq. (19)). We take into 
account the simplest case, e.g., a relation (23), where we impose z — 0 (point B ).

The Figure 3 illustrates the functional dependence of Poux =  I^outC®)!2 on 
c with fixed value of d and /, for a =  Re(y) =  0.1, 0.01, and 0.001, respectively. Let us 
note periodical behaviour of this characteristic with period equal to 1i/l, and the 
maximum value Pmax =  exp[—2oe(J-d/2)], when Pw (ji ’) is normalized to unity. We 
obtain an exact repeatibility of energy transfer with the increasing c. It means that 
the coupling efficiency has also exact repeatibility, which is surprising since we know 
that increasing c means decrising the distance between waveguides. The characteris­
tic has a relatively wide plateaus about its minimum. It is related to lack of transfer 
light into the loop waveguide. The light travels only in the input waveguide.

LS \ l s_____ S lZ _____ \1Z______
0 it  2tt 3tt 4tt

t i l l
Fig. 3. Output power of the symmetrical loop resonator vs the coupling coefficient c (Eq. (23)). The dotted, 
dashed and solid lines correspond to the values of the loss coefficient a =  0,1, 0.01, 0.001 cm -1, 
respectively; / =  0.3 cm is an interaction length. The assumed value of the loop length d is 5 cm, 
P =  150000 cm-1
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The curves describing P out in terms of l (Fig. 4) are in general similar to those in 
terms of c, but these two characteristics (Fig. 3 and Fig. 4) are not the same. For 
c increasing, the curves in Fig. 4 have exactly the same shape of period. On the order 
hand, when l increases, the successive values of P out, related to the same points of 
period, decrease. It may be explained as follows. For each point of curve, there are 
two parts of light. One part makes its trip round the loop. When l increases, with 
step equal to period, the route of this part is always of the same length (d =  const), 
thus attenuation is the same, too. But the other part of the light propagates only 
along l+d/2.  When l increases, and becomes the larger part of d (see Fig. 3), the route 
of this light is longer, hence its attenuation is larger and P out smaller.

Fig. 4. Output power of the symmetrical loop resonator vs interaction length / (Eq. (23)). The dotted, 
dashed, and solid lines correspond to th^ values of the loss coefficient a =  0.1, 0.01, 0.001 cm-1, 
respectively; c =  3 cm-1 is the coupling coefficient The assumed value of the loop length d is 5 cm, 
0 =  150000 cm-1

6. Summary

The expression of the output wave amplitude as a function of the input wave 
amplitude, propagations constants, coupling coefficients and length of interaction 
region, has been derived for an integrated optical coupler with waveguide loop 
resonator, assuming that the resonance condition in the loop is satisfied or that the 
efficiency of coupling from the waveguide II into III is 100%. It is shown that the 
output wave amplitude is proportional to the input one.
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This relation has been derived with a help of coupled wave equations for two 
waves. Then the relation between input and output light power, and some 
resonator's parameters were discussed for two simple configurations of the optical 
loop resonator.

We hope that the results of this paper may be useful in designing such devices.
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Доклады  к теории интегрального оптического резонатора 
с кольцевым волноводом

Для интегрального оптического резонатора, на основании уравнения связанных волн, определили 
зависимость между входной и выходной амплитудами света. Сделали анализ, пользуясь выведен­
ной зависимостью для некоторых конфигураций резонаторов.


