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Letter to the Editor

Image contrast in the coherent, aberration, apodized optical system.
Rotating aperture at the Fourier transform plane

A. Magiera

Institute of Physics, Technical University of Wroctaw, Wybrzeze Wyspianskiego 27, 50-370 Wroctaw,
Poland.

It has been shown that the introduction of an amplitude phase apodizer into a coherent aberration op-
tical system an imaging of periodical amplitude or phase object results in the change of the contrast
which, in turn, depends on the rest modulation depth and on the shape of the amplitude part of the
function describing the apodizing filter. The change of contrast has been examined with respect to
the function of apodizing filter as well as to the system aberration for amplitude apodizers of the
types: [1/2(1 +r2)]"”, L—r|2pfor p = 1,2, 3,4. In the next part of the text, the speckle-contrast has
been shown in coherent optical system with time-varying pupil function and diffuse object.

1. Introduction

Let us assume that in the exit pupil of a coherent optical system there is an
amplitude-phase apodizer of the transmittance

A(r) —t{remr), O0<r~ L

If we admit wave aberration in the optical system WX, Yy), then the total phase
change in the pupil will equal

W(x;y) = xv(xy) +$(r), r=y/x2+y2 6]

As it is known, a coherent optical system is a linear filter with respect to the
amplitude harmonic [1]. Coherent transfer function of such a system is

1(1*> fy) = P(XfXR, Xfy)exp{ikW (XHR,XfyR)}. @
where:
k_ﬁ (X - light waveguide),

f<fy - spatial frequencies,

R - reference sphere radius,

P(xv) - {~ - PUW" Unction within the pupil,
[0 - beyond the pupil.

To describe the optical system with quadratic detection, we shall apply the
method employed in papers [2] and [3].
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2. Amplitude and phase test

Assume that in the object space of an optical system there is a test of the amplitude
transmittance

H{x,y) = a+bcos(2nfxx). (€))

4)
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Energy contrast in the image is

Lo 2abt(O)(s) W(s) + W (-s)
k'(L) = a2 +b226) C© 5 -JT(0) )
where s = XfxR/fg (fg- cut-off frequency, R - reference sp adius,/* - spatial

frequencies).
Contrast change in the image with respect to the object is

Fig. 2. Effect of apodization r(/) on the image contrast of amplitude test for: f(r) = 1- r2(a); t(r) = (1-r 22
(b); 1) = A—p (0 t()=(A-ry (d

D(fa= " © < fT(s)+M -s)
( ) K(L) 14m2 tZ(S) cos<te )
t2(0)

(m = b/a - test modulation depth).
The phase shift appearing in the image will have the form

(6)
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Fig. 3. Effect of apodization i(r) on the image contrast of amplitude test for: t(r) —1—j (a);
t(r) = (- [r)2 (b); t(r) = @~ \\V (0); t(r) = (- |r])" (d)

IF (s)-1F (-
& () = k (5)2 (-5) 0

(k =2njX; X - light wavelength).
For a phase test of the transmittance

H(Xx,y) ~ 1+ imsin X
the change of contrast with respect to the object equals

f(s)
(1+m2

D(fx) = 1) sin</c Wis) J;W(_S) )
1+m2 i200)

From Equation (8) it results that for low-contrast object, at m-»0, when
JF(0) = itj2and W(S) = 0, the change of the contrast is the strongest one. In functions
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Fig. 4. Contrast change D(s) for amplitude test (a) and phase test (b) for the optical system with spherical
aberration W{r) ~ kr2 apodized with the function t(r) = 1—2

a b

Fig. 5. Contrast change D(s) for amplitude test (a) and phase (b) test for the optical system with spherical
aberration W(r) = Ar4 apodized with the function f(r) = (1+r2)0.5

describing the fall contrast for amplitude (6) and phase (8) tests, two parts may be
distinguished; namely, a part depending solely on the shape of apodizing function t(r)
and a part which depends on the wave aberration of the system WXx,\y).vLet Dt
denote first part of the function, it will amount to
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Contrast change D,(s) for low-contrast objects and apodizers: T1 (1+r2)> pP=1234@-rYpp= 1
2,3 4 Q-rhp p=1 2, 3 4

o
r(t) s=0 s=1 m=0 s=1lm=1
\ 2) 1 2.0 0.8
rl 12
Saw ) 1 4.0 0.5
z1 3
(1+r2) 1 8.0 0.2
:- d +r2 ) 1 16.0 0.1
L2 J
(1-r2 1 0 0
1—r2)2 1 1 0
1—23 1 0 0
(1—r24 1 0 0
(i —ki) / 1 0 0
(i—k)Vv 1 0 0
(i—Irhv 1 0 0
(i—kh4 1 0 0
t(s)
. 1+ m2
i(0) ( ) o)
9
1+m2 t2(9)

i2(0)
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For the test of small modulation depth (m-» 0), the run of the function is g’ven by
the formula

r(s)

i(0): (o

Figures 1-3 present the functions Dt{s) for the apodizers

(X —]|r)p, where p= 1, 2, 3, 4. For low-contrast object, the contrast increases with

apodizer of this type strongly improves the contrast within the range of high
frequencies for the tests of rather small modulation depth. The smaller the
modulation depth the stronger is the contrast improvement. On the other hand, for
great modulation depths (m-> 1) the contrasts become weaker.

The introduction of the aberration (Figs. 4-7) deteriorates the contrast in the case
of the amplitude test, and that in the case of the phase test this contrast is improved.
In the next part of the text, the speckle-contrast has been shown in coherent optical
system with time-varying pupil function and diffuse object [4].

3. Statistical properties of the time-averaged image speckle pattern

Figure 8 shows schematically an optical system for coherent image formation
of a uniform diffuse object, i.e., a stationary random phase object with no signal.
It is equivalent to a double-diffraction imaging system used for spatial filtering
and is employed here to vary a pupil in time. In particular, an aperture is rotat-
ed at the Fourier transform plane of the object corresponding to the pupil

Object Fourier Image
plane plane plane

Fig. 8 Optical system for coherent imaging of a uniform diffuse object through a time-varying pu-
pil at the Fourier transform plane of the object. The rotating circular aperture with rotating radius
R and aperture width WO is set at the Fourier transform plane and the lenses are assumed to have focal
length /

plane. For mathematical simplicity, two-dimensional coordinates at the object,
Fourier transform and image planes, are denoted by the position vectors of
*0= (xOyf), xf = (xf,yf) and Xi = {x"yj, respectively.
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When a uniform transparent diffuse object is normally illuminated by coherent
light of unit intensity, the object amplitude may be expressed by

UO(X0 = expl[i0(*0] (1)

where $(x0 is a random phase shift due to the surface roughnes of the diffuse object.
With a magnification of unity, the point spread function is a Fourier transform of the
time-averaging pupil function P{xf,t) which is given by

@® k 1
h(xQ %! 1 Wl ! P{xf,t)exprL i (xowxind \axf @

where k = 2n/X is the wave number, Xbeing the wavelength of light, and/is the focal
length of lenses. Then, the speckle amplitude at the image point xfand the time t is
reperesented by a convolution integral

Ui(Ut)= 2 U0GOn{Xoiiztdzq (13)

and the time-averaged speckle intensity actually recorded by photosensitive detec-
tors, such as a TV system, and a film system over an exposure time Tcan be written
as

I(*,)= ]a I (14)

where the symbol * indicates a complex conjugate.
The autocorrelation function of the speckle amplitude, defined by the following
ensemble average:

r(Xf, x§t,t) = <LIxEREMR(X;,i)> (15)

plays an important role in characterising the statistical properties of the time-
averaged speckle pattern at the image plane.
The autocorrelation function yields

r(xi,xi;t,t) = AS J [h(x0Xb t)h*(xQ xj; t )~\ax0, (16)
@
AS is a correlation area of <P(x0).

4. Application to a rotating Gaussian soft aperture
at the Fourier transform plane

The pupil function for the rotating Gaussian soft aperture is expressed by

where a{t) is a position vector of the rotating aperture given by
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aft) = (Rcoscot, Rsincot), (18)

(WO - aperture width, Fig. 8).
Use of the pupil function in Eq. (17) yields the point spread function expressed by

h(xQXi;t) = exprIr+ I~ Texpjn-1] (%0+*)a(i)d. (19)

As is clear from Equation (19), the point spread function is time-dependent, while
its modulus is time-independent. Therefore, the mean of the time-averaged speckle
intensity is equivalent to that of the static speckle intensity, i.e.,

o ] nWn
</> = </(x,)> = AS J \n(X0$i;t)\&x0= ¢S -TI7J - (20)
-00 Aj

On the other hand, the autocorrelation function of the time-averaged speckle
intensity can be written by

i2/(Ji) = </>2]1 + % .T)exp|r- i(i~°|zI1*|])2} (1)

where Axt = xf—x) denotes the distance vector between the two points xfand X\ in
the image plane, and

1 TT
V(a, T) = exp(—o02) 2—" f fexp[2cosco(t-t)]dtdt, (22)
00

with a parameter defined by
*=Wo. (23)

which may be called a scanning ratio. The contrast of the time-averaged speckle
intensity is of primary interest; it can be derived from Eqgs. (19) and (21) as

C = [F(<7,T);T2 (24)

This equation indicates that the contrast of the time-averaged speckle intensity
depends both on the scanning ratio a of the rotating aperture R to the aperture
width WO, and on the exposure time T, [4],

V(a, T)= V(g 0)= :ﬁ exp{—a2)§(0—(p)exp (a2cos(p)d(p
[¢]

where 6= a>Tis the rotating angle of the aperture in the exposure time T.

Figure 9 shows the resultant contrast of the time-averaged speckle intensity as
a function of the scanning ratio a for the various values of the rotating angle O.
Starting from C = 1, the contrast decreases monotonously with an increase of the
scanning ratio a. As the rotating angle O approaches 2n rad, the contrast rapidly
decreases in the region of small values of a. Of course, with any values of o{# 0), the
contrast takes a minimum for 0= 2n rad.
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Fig. 9. Contrast C of time-averaged speckle intensity as a function of the scanning ratio a for six values of
the rotating angle 0, a = R/WO, (R - rotating aperture, WO - aperture width)

The contrast C in Figure 9 and contrast Dt(S) in Figures 3a-d for apodizers
t)=1[1-\r\y, p=1, 2, 3, 4 (see the Table, items *) are similar. The aberration
optical system W(r) = 0.5hr2, hr2, 2hr2 for phase test object improved the contrast
Dt(s) (Fig. 7). The good idea is combination the pupil-aberration-apodizer function
(constant in time), (in particular, apodizers 1/2[(1+ r2)]p) with rotating aperture
time averaging in coherent optical system with diffuse object. The total pupil
function in this case is |

)~

A{r xf t) = i(r)exp Wb ~

explid>(r)].
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M306pasnTenbHblii  KOHTPAcT KOFepeHTHOW, abeppauMoHHOM, aHOAU3MPOBaHHOW
OMTMYECKOWN cuCTeMbl. [MpuMeHeHMe BpawjaTesibHON anepTypbl B M0CKOCTU Dypbe

Bblf0 NMOKasaHo, YTO BBefEHWe aMnAnTYAHO-(ha30BOro anofnsaropa B KOrepeHTHy0, abeppaLynoHHyo
OTpaXkaloLlyo OMTUYECKYID CUCTEMY C NEPUOLMYECKUM aMMIMTYAHbIM WAM (ha3oBbIM MpPejMeToM
BbI3bIBAaeT M3MEHEHMe KOHTpacTa, 3aBMCUMOE OT MOAYNAUWMM Tecta M aMnAUTYAHOW vacTu QyHKUuM,
onucbiBatoLLeil anoansatop. M3meHeHne KOHTpacTa 6bIN0 UCCNeA0BaHO ANA CRefyowWwmnX aMnanTyaHbIX
anogmsatopos: [0.5(1+r)2p, (1—2), A—rp; (P=1 2, 3, 4). MNokasanu TaKkxe speckle-contrast
B KOTEPEHTHOM OMTUYECKOW CHUCTEME CO 3payKOBOI BPEMEHHO M3MEHALLeics QyHKUMed 1 npesMeToM

anddysun.
,Mepesen CTaHucnas laHUaXkK



