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Phase circular hologram as a laser beam splitter*

Lj. JanicueviC, M. Jonoska

Physics Institute, “Kiril i Metodij” University, Skopje, P.O. Box 162, 91000 Skopje, Jugoslavia.

Theoretical study of the general order Hermite-Gaussian beam transformation by a phase circular 
zone hologram showed its applicability as a multiple laser beam splitter, provided the incidence is 
off-axial. Each of the splitted components is of the same mode-order and orientation as the incident 
beam, but it is described by different complex parameters. Their waist locations and magnifications 
are dictated by the positions of the manifold foci of the zone hologram, and for a given diffracting 
order, satisfy the Self relations, typical for the beam transformation by ordinary lens. From the 
theoretical results the Kogelnik ABCD rules and “ray” transfer matrices for the CH are defined.

1. Introduction

Realized as an interference pattern of a spherical and plane wave on a bleached 
phase sensitive material [1], the phase circular hologram (phase CH) represents 
a phase diffracting device with sinusoidal modulation of either thickness or refractive 
index or both, according to the fringe pattern. It is a phase analogue to the circular 
zone hologram [2], [3], and belongs to the wider class of circular zone gratings, 
which include sinusoidal, square, quasitrapezoid or binary profiles of trasparency 
and phase modulations of the registered interference fringes.

The zone plates of the transparent type are known as multifocal optical devices, 
suitable as lens substitutes for experiments in the UV region [4], [5], X-ray 
astronomy [6], tomography and nuclear medicine [7], laser fusion experiments [8], 
etc. The advantage of their phase analogues is in much higher diffracting efficiency 
which may be achieved [9], [10].

The effects of spherical and plane wave illumination of the circular zone plates 
were studied by many authors [11]—[14]. As far as the laser beam illumination is 
concerned, only the effects of the transparent zone plates on the fundamental beam 
modes were studied [15]—[17].

The purpose of this work is to investigate one of the phase versions of zone 
plates. Since we are interested in the complete picture of the beam transformation 
that can occur, we have chosen the incident beam to be a general order simple 
astigmatic Hermite-Gaussian laser beam, so that we can get an information not only 
on the complex beam parameters changes, but also mode structure transformations.

* This work was presented at the International Colloquium on Diffractive Optical Elements, May 
14-17, 1991, Szklarska Por^ba, Poland.
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The analysis is based on the results obtained from the solution of the 
Fresnel-Kirchhoff diffraction integral for an off-axial normal beam incidence on 
a phase CH, since the beam splitting is proportional to the amount of the off-axial 
displacement.

2. Phase circalar wave hologram

Realized by bleaching the transparency of registered interference fringes of a circular 
and plane wave, the phase circular hologram represents a phase layer with: i) 
constant refractive index and a thickness relief, ii) constant thickness and spatial 
modulation of the refractive index, iii) coexistence of both modulations of the 
thickness and refractive index. It gives a phase retardation to the transmitted light 
defined by the function

T(x\,x2) = Vf“ .’-*?)]

= e““ £  £  i'*mJ,(kl))Jm(ky)n exp i1 5 i  xj2l>

Xj (j  = 1, 2) are rectangular coordinates in the plane of the phase hologram, 
k — 2iijX is the propagation constant, a, fi and y are phase layer coefficients 
depending on the thickness d and refractive index n of the layer in the following 
way:
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ro

Ji(kfi) and Jm(ky) are integer order Bessel functions and, r0 is the radius of the central 
circle bounded by the first extremum of the phase modulation. When the phase CH 
is of the type i) or ii) (y = 0 due to n’ = 0 or d = 0) only the m = 0 term in expression 
(1) exists, and the transmission function is given by
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T{x\,x2) = n  expT i \ l \  x f \ .  (5)
I j =  1 L 1  r 0 J

We shall carry out our study considering the general iii)-type phase hologram, 
since the results can be easily specified by putting m = 0.

By introducing a new summation index

\ i  =  /4 - 2m,

expression (1) can be written as

T(x\,x2) = n  exp
m It j=  1

r. k /1 ,21j (6)

The phase CH represents a diffracting device whose effects on the laser beams are the 
subject of our investigation.

3. Characteristics of the input beam

The phase CH is illuminated by a laser beam whose incidence is normal and off- 
axial with respect to the hologram axis, chosen as z-axis of the spatial coordinate 
system.

The output modes of radiation of the conventional lasers are described by the 
general order Hermite-Gaussian beams. With propagation axis

xj = = const, j  = 1, 2, (7)

the beam is represented by [18]

n y  a ś s  [‘ * £ $

k ^ A l expr _ ^ ( ^ ! ] l
l9j ( z - y | J  L 2 9j. ( z - y J j

kw'ojjx -

L M

It is characterized by two complex parameters

(8)

qj(z'-Cj) = z'-Cj+iCoj, 7=1, 2, (9)

corresponding to two different locations z =£, (/ = 1, 2) of the waist dimensions in 
the principal x’-directions. ¿¿(0) = qoj — iC,0j {j = 1, 2) are the waist position complex

kw'ojparameters, where £0j = — 2 (/ = 1, 2) are the Rayleigh ranges of the beam and

w'oj 0 = 1, 2) are the fundamental mode waist dimensions of the beam. In expression 
(8) Hp (%) are Hermite polynomials of p-th order. In any transverse cross-section of 
the beam the zeros of the Hermite polynomials form an orthogonal net of zero 
intensity (amplitude) lines, known as mode lines, which widen the amplitude profile 
in a rectangular spot of sides [19]
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2w; . ( z - y Pj =  2V2P/+ 1 W j ( z - Q  =  4^2pi + l ^ M  . ( 10)

The net of mode lines consists of lines parallel to the x2-axis and p2 lines parallel 
to the x-axis.

4. Diffracted wave field

At a distance ( z - z )  from the phase CH, the field is defined by the Frensel-Kirchhoff 
integral

i/cexp[—ik(z—z)]
Umi)(xv x2,z) = J ¡T(xu x2) 

2n(z-z)  D

tt(ini/ ' ' 'x r  . k  ( x i  —Xi ) 2 +  (x '2 —x 2) 2 I , < , -
X U{m)(xltx2,z )exp i ----------— --------JdXidXi,

(11)

Xj (j = 1, 2) are rectangular coordinates in the observation plane while T(x1,x2) and 
Uiin){x\,x2,z)  are given by (6) and (8), respectively. Their insertion in the diffraction 
integral (11) yields

-  — ¿ y 1 W - · 1· - · · ^ ^

where
^ ( z - z )  q ' j ( z -  

YV> = ] h p\ ~]exp|—i \ aP x? - 2' - -  pi  V2l ^ - y u  l 2 -  'Ji

(12)

with

1 1 l  1 „
+ ---- ■ - / ‘ 3 .  / = ! .  2To

=
J ¿ ( z - y  z - z

and

£,· = j = U  2.
1 ¿¡(z'-Q z - z ’

The solution of the integral (13) (see Appendix) is:

(13)

(14)

(15)

yW /  2n r  l# ( z - c r ) l  
1 v ikAf' L « r(z -c r)  k r ( z -ç y ,)i J

xff ,
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yj2\<tf\z-Q»)\ J P l 2 A f J ’

(16)



Phase circular hologram as a laser beam splitter 127

With j4}u) and Bj given by (14) and (15), this solution inserted in (12), defines the 
diffracted wave field by

U ^ ( Xl,x2,z) = exp [ -  ik ( z -a)XX i" - -J„ _ 2Jkß)JJky)
m n

,, A / W V - W )
MV qA^-QqfAz-tV) 

r.l«j(z -gi 9f(2'-{f) l"·
L q 'A z-Q  \qf\z-{y»)| <fp(z-Çp)J

x H  r  *^ s n x j - a n  ı exj  m

"{.V2 |«f(z-cy»)| J P l 2 L « y u -cy ’)
1 (17)

where

e p  = < j=  1, 2, (18)

and

* p = - ^ [ 2x;+ (z -z ')-  y  -2 j  = 1, 2. 
r0

(19)

5. Discussion of the results

Expression (17) shows that the diffracted wave field is represented by a fan of laser 
beams of the same px, p2-mode orders, as the input beam

Umi)(xlfx2,z) = Qxp{ik(x)YJji ^ mJ ^ 2Jkp)JJky)U^P2(xl,x2,z).
m fi

The fan consists of beams whose propagation axes are the lines

xj = W  = < { l- P  ^  (z ~ z ) J  = 2> (2°)

which lie in the plane

£2Xl-£ l*2  = 0 .
The amplitudes of the output beams, apart from their Hermite-Gaussian profiles, are 
reduced by the values resulting from the Bessel functions Jt-imikfiJJky).

Therefore the phase CH multiplicates the incident beam keeping its mode order 
unchanged, but each of the output beams with \p\ # 0 is characterized by 
transformed beam parameters

q f ( z -  C?) = 2- 0 *+ «W -  *-* + ---- -------------- , 7=1, 2.
1 - | i  4  « ¡ ( * '- 0

r 0

(21)



128 Lj. JaniCueviC, M. Jonoska

Their waists in the x-directions are found on distances

z = i f  = z -
( z ' - t j ) - p - s i i z - t f + a j ]

n
k l 2 r  X l 2 ’

j  = 1, 2, (22)

T  = Cj, n = 0.

The Rayleigh ranges of the \n\-th diffracting order are

m = \  [wif' ] 2 = \
»Oj

1-i!  J3  ( z '- y
2 "  A “

+ f* ~2 £o;
_ L r i  J

2 ’

;  =  1 , 2 , (23)

f t?  =  Co,·,

and their magnifications in the two separate x -̂directions are given by the ratios

w ©  _  1

»Oj
, j =  1, 2. (24)

Relations (21), (22) and (24) can be interpreted as typical for a laser beam transfer by 
a thin spherical lens of focal distance [20], [21]

, 2r 0
^ “ ¡5 " = ± 1 · ±2’ ±3- '

(25)

The positive /¿-integers correspond to a positive convex thin lens while the negative 
ones to the concave (negative) thin lens. Let us notice that when

z -z  = 0 , (26)

i.e., the fi-th beam axis intersects optical axis of the lens at the ¡i-th focal distance. 
And let us outline that for both waist loci

f w ± i f .

The foci are characteristic of the phase hologram, while the waist loci of the output 
laser beams.

Thus the phase CH with general transmission function (6) behaves like 
simultaneous existing positive and negative spherical lenses of focal distances 
(25).

It differs from the Fresnel zone plate [17] by possessing both even and odd foci.

6. Irradiance distribution

The irradiance distribution of the diffracted field is defined by
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x ( z z r « '— ·

If the observation plane is situated at a distance z = c such that

(27)

2 j2p j+ iwj(c—z ) < v(iir+i' - m 2+({!f+,,- m : 

X
= - j ( c - z ) yJ i21 + i l  = X ( .c - z ) ^ ,  

r o r o

Le.,

(28)

the output beams are spatially separated and their spots in the observation plane do 
not overlap each other.

In this case the irradiance distribution can be represented by the sum of 
irradiances of the separate beams without taking account of their interference

/ |dirr|(x1,x!,z) = Z Y J l - U k R J U k y V M ^ X v z )  

where

(29)
m ft

j i p )  (x  x  z) =  FI q ° j  ^

f l J M M L L J J  *»»(*,-fl*> T 1 
" i  V2|« z - ^ ') |  J l  L V2|«T(z-ęy>)i J J ■

(30)

In the observation plane z = c the rectangular spots of areas

are distributed (with their sides parallel to each other) around centers:

k (c_z)]’ i2[1_Ml (c_z')]}·
Thus the angle deviation of the |/x|-th beam

0(f,) = arctan\n\ 4  y/Zl+ tl = arctani/i 4  A  
ro V ro /

M = 0, 1, 2, 3...

(31)

(32)

(33)

depends on the input coordinates and the fi-th lens power = ¡i 4  - No deviation
f  r o
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occurs when r = + = 0, i.e., when the incidence of the laser beam is on-axial.
In this case the beam fan closes into one composite beam, in which each diffracting 
order has its waists (two real for \i > 0, and two virtual for ^ < 0) oh positions given 
by (22). All spots overlap each other, the irradiance distribution includes their 
interference and is rather complicated.

On the photograph in Fig. 1 an illustration of the fundamental mode spot splitted 
by the CH, occurring when the incidence is off-axial, is given.

B
Fig. 1. Fundamental mode spot splitting in the obser­
vation plane caused by the phase CH when the 
incidence is off-axial

The case of an on-axial incidence fundamental mode laser beam on the same CH 
is illustrated in Fig. 2.

Fig. 2. Diffraction pattern of an on-axial input of a fun­
damental mode laser beam obtained by phase CH

7. Conclusions

Based on the theoretical results arising from this article, the following conclusions 
can be formulated:

— The off-axial input of a laser beam on a phase CH is followed by a beam 
multiplication output of all diffraction orders. There is a fan of beams deviated with
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respect to the direction of the incident beam (the /1 = 0 diffracting order) by the 
angles given in (33). The fan is in the plane (21). The deviation can be controlled by 
the off-axial input displacement r = -I- Beam multiplication with no deviation
occurs when r = 0.

— The mode-order of the input beam is not affected by the multiple beam 
splitting with phase CH.

— Each of the output splitting beams is characterized by two complex 
parameters which are dependent on the input beam complex parameters by the 
relations (21). The same relations can be rearranged in the form of Kogelnik ratios 
[22] as

q f U - C f )  =
1 ¡I (z-z) + (z-z)

- / < 3  ^ ( z '- y  + l
ro

j =  1» 2. (34)

Therefore the Kogelnik ABCD rule of the beam transfer system consisting of the 
phase CH as an optical element and the free space distance (z—z) expressed in the 
matrix form is

1 - f t -  ( z - z )  
r 0

A
. - V - 2ro

where

( z - z )  " 

1

j  = 1, 2,

1

0

( z - z )

1

' ¿j B, '

. Ci
, j =  1,2  (35)

(36)

are the Kogelnik ABCD matrices which determine the transformation of the 
complex beam parameters, while

T =
1 ( z - z )

0  1
(37)

is the translation matrix through the distance (z—z). It is not hard to see from (35) 
that

K j  =  T -1

'  1 —ß -j (z—z ) 
r0

/

1

" 1 0 '

A

v

—
. - p ?  1 - ro

j  = 1, 2,
. (38)
M = 0, 1,2,3....

Due to the circular symmetry of the phase CH, there is one Kogelnik matrix for 
both complex parameters. The Kogelnik matrices (38) characterize the complex beam
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parameter transformation for both on-axial and off-axial incidence on a phase CH.
— Treating the input and output beam axes as optical rays, we can apply the 

matrix method to describe the beam deviation caused by a deffracting device as it is

our phase CH [23]. If f 1 and f ̂ 1 7=1, 2 are ray vector
l  n V j j  L nvj J

matrices [24] associated with the beam axes, then for our optical system there exist 
matrix equations

1 (z-z) ' a ,  b j '

rmJT
V.__

0 1 . 0  di . nv’j s
1

j  = 1, 2,

\fi\ =0,1,2,3...,'
(39)

n and n are refractive indices of the input and output media. In our case n = 
n « 1. v'j and Vj are optical direction tangents of the input and output

rays
a j  b i

Cj d j
= Mj are the direction of ray transfer matrices of the diffract­

ing elements. They are unimodular

det Mj = 1. (40)

The unimodularity condition and requirement for the matrix Eq. (39) to be valid for 
all possible values of and Vj, define the ray transfer matrix by

f  a i  b i  ^ 1 O' ' 1 O'
M  = J J

. cj v j  VJ ! t i - e r  ,L t j ( z - z )  J
(41)

£ . —£0*)
since for normal incidence and v{ = 0 and i?.· = ~ —=- (7 = 1, 2) are the input data,

(z-z)
while ŷ,) for a given diffracting device are read from the solution of the diffraction 
integral. For the case of phase CH they are given by expressions (18). Substituted in 
the “ray” matrix (41) they give

M  = 7=1, 2. (42)

It turns out that for the phase CH the Kogelnik and “ray” transfer matrices are the 
same. If we did not choose the coordinate system with its z-axis to coincide with the 
hologram optical axis, but parallel and displaced at a distance c = yjc\+c\, instead 
of expression (6) for the transmission function we have

T{x\,x1) = e ^ Y J jr
m it

' , - ^ № ■ '. ( * 7 ) 1 1  <*p|j ^ ( x j - c / J (43)
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and then it is not hard to see that

= t j -H  4  (z-z'Mj-Cj), j  = 1, 2. 
To

(45)

and they differ from the Kogelnik matrices.
Matrices (38) and (45) obtained from our theoretical results (34) and (44) can 

serve as an “identification card” of the phase CH used as an optical element in 
a given transfer system.

Appendix
To solve the integrals (13) we make the change of variables (xj -> tj) by

(A.l)

introduce the shorter notations

- Z j ) J =  1, 2, (A.2)

and use the Hermite polynomial addition theorem [25]

to get

t f p - i № V 2 ) 4 f :  7=1 , 2  (A.3)

where

(A.4)

Further integration goes as follows: 
For lj = 0
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0 o = f exp  ̂- i  t) d u (A.5)

For lj= 1, taking into account that Hx{oLjyj2 t^  = 2aj%/2iJ·, 

0 i = i H i V 2 exP f - i ^ */J dtj
(A.6)

To solve the higher /-index integrals, we employ the recurrence relations of the 
Hermite polynomials [26]

~~j~~ IH ^^x) and H,(x) = 2xHl_i (x)—2(l—\)Hl_2(x),

and apply the intergration by parts to get

0if> =
C ^ / = 2s·, Sj! V l |_ in J J

j  = 1, 2.
0 /i — 2sy+1,

If we change the notation (a; ->^;) by putting 

in
^ 2=^— ;  =  i .  2,2iTr-4[ayt)] 2

we can use multiplication (x) theorem for the Hermite polynomials [18]

(A.7)

(A.8)

[p/2i H tri T 1 >
=  " H  i -  j ,  ,s=o s!(p-2s)! |_ __

and get

yy° =
2tt /  1 k B)

By defining the complex parameters

«Hz-CT) = Z-Z + ----ÎÈ JZ lÀ ----, = 1, 2,
l - ^ 9j ( z - y

*o

(A.9)

and (A. 10)
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we can express /¡y1 in the following way:

M  = gyy-ff1) k f^ -C D l W f ( x j - t p )
' J I q f i z -C ^ ) | ^ (z -C f )  N/2 | ^ )(z-Cf) r

where

w<"> WQj

1-  7T «}(*’-{/)rO

and

j  = 1, 2,

(A.ll)

(A. 12)

= 7 = 1,2. (A. 13)
ro

Thus the argument of the Hermite polynomial in (A.9) can be written as

= *y> k̂ (Xr i 1 1 , y = 1 2 (A. 14)
V V2|qy»(2- c r ) l

where

X·« = № > , 2 , . 2
J V l ? r ( z - c y t u r t - c y 1) ’ 7 ’

Since

1-
0 for s ^  0 ,

1 for s = 0 ,

when we apply the multiplication Hermite polynomials theorem for

kwffl (x · — ) ~|
--- J—---- -—  I and introduce the result in (A.9), we end up with
V2 |9y>(z-Cy>)| J

y w =  / 271 r q f (z -C y )  k y > (z -O T ]-Jr f  M f f l * , - # ’) 
v  ik-A'f |_tay’iz '-cy 1)! q'fHz-C“1) J "'’1  v/2|i'',,( z - iy l)| _

H „[V

(A. 15)

Verified by Hanna Basarowa
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Круговая фазовая голограмма как делитель лазерного пучка
Теоретические исследования преобразования пучка общего порядка Эрмита-Гаусса при помощи 
фазовой голограммы круговых зон показывают его применение в качестве многократного 
делителя лазерного пучка для внеаксиального падения. Каждый из разделенных составных 
элементов обладает таким же порядком моды, а также такой же ориентацией как падающий 
пучок, но они описаны разными комплексными параметрами. Положение талей пучков, а также 
увеличения локализацией многократных фокусов зонной голограммы, а для данного порядка 
дифракции исполняют отношения Селфа типичные для преобразования пучка обыкновенной 
линзой. Матрицы перехода для круговой голограммы (СН) определены на основе правила 
Когельника АВСО.

Перевел Станислав Ганца ж


