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Phase circular hologram as a laser beam splitter*

Lj. JanicueviC, M. Jonoska

Physics Institute, “Kiril i Metodij” University, Skopje, P.O. Box 162, 91000 Skopje, Jugoslavia.

Theoretical study of the general order Hermite-Gaussian beam transformation by a phase circular
zone hologram showed its applicability as a multiple laser beam splitter, provided the incidence is
off-axial. Each of the splitted components is of the same mode-order and orientation as the incident
beam, but it is described by different complex parameters. Their waist locations and magnifications
are dictated by the positions of the manifold foci of the zone hologram, and for a given diffracting
order, satisfy the Self relations, typical for the beam transformation by ordinary lens. From the
theoretical results the Kogelnik ABCD rules and “ray” transfer matrices for the CH are defined.

1. Introduction

Realized as an interference pattern of a spherical and plane wave on a bleached
phase sensitive material [1], the phase circular hologram (phase CH) represents
a phase diffracting device with sinusoidal modulation of either thickness or refractive
index or both, according to the fringe pattern. It is a phase analogue to the circular
zone hologram [2], [3], and belongs to the wider class of circular zone gratings,
which include sinusoidal, square, quasitrapezoid or binary profiles of trasparency
and phase modulations of the registered interference fringes.

The zone plates of the transparent type are known as multifocal optical devices,
suitable as lens substitutes for experiments in the UV region [4], [5], X-ray
astronomy [6], tomography and nuclear medicine [7], laser fusion experiments [8],
etc. The advantage of their phase analogues is in much higher diffracting efficiency
which may be achieved [9], [10].

The effects of spherical and plane wave illumination of the circular zone plates
were studied by many authors [11]-f4]. As far as the laser beam illumination is
concerned, only the effects of the transparent zone plates on the fundamental beam
modes were studied [15]7].

The purpose of this work is to investigate one of the phase versions of zone
plates. Since we are interested in the complete picture of the beam transformation
that can occur, we have chosen the incident beam to be a general order simple
astigmatic Hermite-Gaussian laser beam, so that we can get an information not only
on the complex beam parameters changes, but also mode structure transformations.

* This work was presented at the International Colloquium on Diffractive Optical Elements, May
14-17, 1991, Szklarska Por~ba, Poland.
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The analysis is based on the results obtained from the solution of the
Fresnel-Kirchhoff diffraction integral for an off-axial normal beam incidence on
a phase CH, since the beam splitting is proportional to the amount of the off-axial
displacement.

2. Phase circalar wave hologram

Realized by bleaching the transparency of registered interference fringes of a circular
and plane wave, the phase circular hologram represents a phase layer with: i)
constant refractive index and a thickness relief, ii) constant thickness and spatial
modulation of the refractive index, iii) coexistence of both modulations of the
thickness and refractive index. It gives a phase retardation to the transmitted light
defined by the function

T(x\,x2 = V%))

=e“ £ £ i"*mJ,(kl))Imky)n exp i15

Xj ( = 1, 2) are rectangular coordinates in the plane of the phase hologram,
k —2iijX is the propagation constant, a, fi and y are phase layer coefficients
depending on the thickness d and refractive index n of the layer in the following
way:
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Ji(kfi) and Jm(ky) are integer order Bessel functions and, r0is the radius of the central
circle bounded by the first extremum of the phase modulation. When the phase CH
isofthe typei)orii)(y=0dueton’=0o0rd = 0)only the m =0 term in expression
(1) exists, and the transmission function is given by
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T{x\,x2 = n expTi\ I\ xf\. )
I =1 L1 ro J

We shall carry out our study considering the general iii)-type phase hologram,
since the results can be easily specified by putting m = 0.

By introducing a new summation index

\i = /4-2m,
expression (1) can be written as
T(x\x2= nep ! 2j ®)
m I j=1

The phase CH represents a diffracting device whose effects on the laser beams are the
subject of our investigation.

3. Characteristics of the input beam

The phase CH is illuminated by a laser beam whose incidence is normal and off-
axial with respect to the hologram axis, chosen as z-axis of the spatial coordinate

system.
The output modes of radiation of the conventional lasers are described by the
general order Hermite-Gaussian beams. With propagation axis

Xj= =const, j=1 2 @)
the beam is represented by [18]
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It is characterized by two complex parameters
qj(z'-Cj) = z'-Cj+iCoj, 7=1, 2, ©)]

corresponding to two different locations z =£, (/ = 1, 2) of the waist dimensions in
the principal xdirections. ¢¢(0) = qoj —iQQy {j = 1, 2) are the waist position complex

8

parameters, where £0j = —(ﬂ (/=1 2 are the Rayleigh ranges of the beam and

wgj 0 = 1, 2) are the fundamental mode waist dimensions of the beam. In expression
(8) Hp (%) are Hermite polynomials of p-th order. In any transverse cross-section of
the beam the zeros of the Hermite polynomials form an orthogonal net of zero
intensity (amplitude) lines, known as mode lines, which widen the amplitude profile
in a rectangular spot of sides [19]
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2w; . (z-y = 2V2P/+1Wj(z-Q = 47 2pi+1 ~ M . (10)

The net of mode lines consists of  lines parallel to the x2-axis and p2 lines parallel
to the x-axis.

4. Diffracted wave field

At a distance (z-z) from the phase CH, the field is defined by the Frensel-Kirchhoff
integral

i/cexp[—tk(z—2)]

Umi)(xvx2z) = 2n(2-2)

Jlj'T(xux2)
(11)
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Xj (j = 1,2) are rectangular coordinates in the observation plane while T(x1,x2) and
Uiin{x\,x2,z) are given by (6) and (8), respectively. Their insertion in the diffraction
integral (11) yields

-— ¢y 1 W o--1 A A
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A(Z-Z) q'j(z-
where
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The solution of the integral (13) (see Appendix) is:
yw [ 2n rl#(z-cr)l
1 v ikAf' L «r(z-cr) kr(z-¢cy)iJ
(16)
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With /) and Bj given by (14) and (15), this solution inserted in (12), defines the
diffracted wave field by

U A (X1,x22) = exp[ - ik(z-a)XXi"--J,,_2IkR)JJIky)

LA WV -W)
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where

ep = < j= 1’ 21 (18)
and

*p=-"[2x+(z-2")-y 2 i=1 2 (19

5. Discussion of the results

Expression (17) shows that the diffracted wave field is represented by a fan of laser
beams of the same px, p2-mode orders, as the input beam

Umi)(xIfx2z) = Qxp{ikx)YJji * mJ » 2Jkp)JJIky)U A xI,x22).
m fi
The fan consists of beams whose propagation axes are the lines

xi=W =<{l-P" @¢~z) J = 2> )
which lie in the plane

£2X1-£1*%2 = 0.

The amplitudes of the output beams, apart from their Hermite-Gaussian profiles, are
reduced by the values resulting from the Bessel functions Jt-imikfiJJky).

Therefore the phase CH multiplicates the incident beam keeping its mode order
unchanged, but each of the output beams with \p\ # 0 is characterized by
transformed beam parameters

qf(z- C?) = 2- 0 %+ W - *-* d oo 7=1, 2. (21)
1-1i 40 «j(*'-0
r
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Their waists in the x-directions are found on distances

(z'-tj)-p-siiz-tf+aj]
z=i1f =z- n

k 2 r X 127
i=1 2 (22)
T =G, n=0.
The Rayleigh ranges of the \n\-th diffracting order are
m =\ [wif]2=\ 9, 2
l'i! \B (Zl'y + fr ~A2 £0
LT L= 1,2, 23
ft? = Co,,

and their magnifications in the two separate x"-directions are given by the ratios

woO 1
- i= 24
No 1= 1 2 (4

Relations (21), (22) and (24) can be interpreted as typical for a laser beam transfer by
a thin spherical lens of focal distance [20], [21]

Fo
A% B Mzd]. 27 43 *)

The positive /;-integers correspond to a positive convex thin lens while the negative
ones to the concave (negative) thin lens. Let us notice that when

z-2 =0, (29

i.e, the fi-th beam axis intersects optical axis of the lens at the ji-th focal distance.
And let us outline that for both waist loci

fw=xif.

The foci are characteristic of the phase hologram, while the waist loci of the output
laser beams.

Thus the phase CH with general transmission function (6) behaves like
simultaneous existing positive and negative spherical lenses of focal distances

It differs from the Fresnel zone plate [17] by possessing both even and odd foci.

6. lrradiance distribution
The irradiance distribution of the diffracted field is defined by
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If the observation plane is situated at a distance z = ¢ such that
2j2pj+iwj(c—2) < v(iir+i'-m 2+({If+,,- m
= J(c-z)Wi2+il = X(.c-2)",
ro ro
Le.,
(28)

the output beams are spatially separated and their spots in the observation plane do
not overlap each other.

In this case the irradiance distribution can be represented by the sum of
irradiances of the separate beams without taking account of their interference

/|dirr1(XLX!,Z):ZYJI-UkRJUkyVM"XVZ) (29)
m ft
where
jip) x x z)= FI q°j N
(30)
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In the observation plane z = ¢ the rectangular spots of areas

(3D
are distributed (with their sides parallel to each other) around centers:
k2]’ iZ1M €2} @
Thus the angle deviation of the |[X-th beam
0f) = arctan\n\ 4 y/ZI+tl = arctanj/i 4 A M=0, 1 2 3... 33
) = arctan\n roy + arc an\l/l 44 (€2))

depends on the input coordinates and the fi-th lens power = ji 4 -No deviation
f

ro
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occurs when r = + =0, i.e, when the incidence of the laser beam is on-axial.

In this case the beam fan closes into one composite beam, in which each diffracting
order has its waists (two real for \i > 0, and two virtual for * < 0) oh positions given
by (22). All spots overlap each other, the irradiance distribution includes their
interference and is rather complicated.

On the photograph in Fig. 1an illustration of the fundamental mode spot splitted
by the CH, occurring when the incidence is off-axial, is given.

Fig. 1. Fundamental mode spot splitting in the obser-
vation plane caused by the phase CH when the
incidence is off-axial

pxial incidence fundamental mode laser beam on the same CH

Fig. 2. Diffraction pattern of an on-axial input of a fun-
damental mode laser beam obtained by phase CH

7. Conclusions

Based on the theoretical results arising from this article, the following conclusions
can be formulated:

— The off-axial input of a laser beam on a phase CH is followed by a beam
multiplication output of all diffraction orders. There is a fan of beams deviated with



Phase circular hologram as a laser beam splitter 131

respect to the direction of the incident beam (the /1= 0 diffracting order) by the
angles given in (33). The fan is in the plane (21). The deviation can be controlled by
the off-axial input displacement r = 4+  Beam multiplication with no deviation
occurs when r = 0.

— The mode-order of the input beam is not affected by the multiple beam
splitting with phase CH.

— Each of the output splitting beams is characterized by two complex
parameters which are dependent on the input beam complex parameters by the
relations (21). The same relations can be rearranged in the form of Kogelnik ratios
[22] as

1 jl(z-2) +(z-2)
qfu-Cf) = ji= 2 (3
-1<3 MN(z'-y +1
ro

Therefore the Kogelnik ABCD rule of the beam transfer system consisting of the
phase CH as an optical element and the free space distance (z—z) expressed in the
matrix form is

1-ftr-0(z-z) (z-z) " L (z-2) i B
A ) 0 1 . i 1= 12
-V fo
where
=12 (30

are the Kogelnik ABCD matrices which determine the transformation of the
complex beam parameters, while

1 (z-2)

= o 37

is the translation matrix through the distance (z—z). It is not hard to see from (35)
that

L1 2) - h

Kj= T-1 — . (3
A -

s PP 1 -M=0123..

Due to the circular symmetry of the phase CH, there is one Kogelnik matrix for

both complex parameters. The Kogelnik matrices (38) characterize the complex beam
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parameter transformation for both on-axial and off-axial incidence on a phase CH.
— Treating the input and output beam axes as optical rays, we can apply the
matrix method to describe the beam deviation caused by a deffracting device as it is

our phase CH [23]. If I-f 1 and 1:/\ 17 1, 2 are ray vector

nvij j an

matrices [24] associated with the beam axes, then for our optical system there exist
matrix equations

1 (z-z a, bjr I<g "~ i =1 2,
(z-2) N ] (39)
0 1 od. MW W =0,1,2,3..

n and n are refractive indices of the input and output media. In our case n =
n« 1. Vvj and \j are optical direction tangents of the input and output

rays 2 ZJ' = Mj are the direction of ray transfer matrices of the diffract-
ing elements. They are unimodular
detMj = 1. (40)

The unimodularity condition and requirement for the matrix Eg. (39) to be valid for
all possible values of  and 4, define the ray transfer matrix by

10 1 0’

| , )
g W |_ttjl(zezr) ]

£ .—£0%)
since for normal incidence and v{= 0 and 12 = -ZZ—_Z:- (7 = 1, 2) are the input data,

M:faj

. G

while 7y,) for a given diffracting device are read from the solution of the diffraction
integral. For the case of phase CH they are given by expressions (18). Substituted in
the “ray” matrix (41) they give

M = 7=1, 2 42

It turns out that for the phase CH the Kogelnik and “ray” transfer matrices are the
same. Ifwe did not choose the coordinate system with its z-axis to coincide with the

hologram optical axis, but parallel and displaced at a distance ¢ = yjc\+c\, instead
of expression (6) for the transmission function we have

TOAXD=erYIjr A (K T)1L <*plih (Xj-c/d 43)
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and then it is not hard to see that

=tj-H 4 (z-2'Mj-Cj), j=1 2.
To

(45

and they differ from the Kogelnik matrices.

Matrices (38) and (45) obtained from our theoretical results (34) and (44) can
serve as an “identification card” of the phase CH used as an optical element in
a given transfer system.

Appendix
To solve the integrals (13) we make the change of variables (xj ->tj) by

(Al
introduce the shorter notations
-Zj)d= 12 (A2

and use the Hermite polynomial addition theorem [25]

to get
tfp-itv2)4f: 7=1,2 (A3

where
(A4

Further integration goes as follows:
For Ij=0
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oo= fexp"-i t) qu (A5)
For lj= 1, taking into account that Hx{djyj2t" = 2aj%82iJ,

0i= i HIV 2 exPf-i”*dy
(A6)

To solve the higher /-index integrals, we employ the recurrence relations of the
Hermite polynomials [26]

~~j~~ IH”x) and H,(X) = 2xHI_i (x)—2(I—\)HI_2(x),
and apply the intergration by parts to get

Oif> = Cevitm af o TH i=1 2 (A7)
0 i —2sy+1,
If we change the notation (a;->";) by putting
~ 2:’21'=Fr-l4n[ay)]2 =02 (As8)
we can use multiplication (x) theorem for the Hermite polynomials [18]
P2H i T 1>
S=) é'!'fp-zs)! |_I SR

and get
W = 2w /1 k B) (A9
By defining the complex parameters
«Hz-CT)=2Z-Z + ----TEJZIA----, =1, 2,
I - ’;@ 9(z -y

and (A0
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we can express /jy1in the folloming way:

M = gyy-fflkfr-cDI wi(xj-tp) Al
'J Igfiz-C™)| M(z-Cf) M2|~)z-CH)r
where
V> " i=12 AL
- T5H3-{))
and
= 0 7=12. AL
Thus the argument of the Hermite polynomial in (A9) can be written as
="k Xrill, y=12 A1
\ V2|qy»(2-cr)l
where
X«= > , 2 , . 2
JV 1?r(z-cyturt-cyd’ 7 ~°
Since
0 for s”o,
1-
1 for s=o,

when we apply the multiplication Hermite polynomials theorem for H, [V

hwff&-_: D ~|I and introduce the result in (A9), we end up with
V2[9y>(z-Cy>)| J

yw= [ 2l rqf(z-Cy) ky>(z-OT]-J f M ffl*,-#") AD)
v ik-A'f | tayliz'-cy ) q'fHz-C*) J "1 w2|i",(z-iyl)| _

Verified by Hanna Basarowa
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Kpyroeasi hasoBasi rosiorpaMMa Kak fenmTeNlb /1asepHoro mnyyka

TeopeTryecKue MUCCNefoBaHNA NpeobpasoBaHKs Myyka 06LLero nopsgka ApmuTa-laycca npy nomoLLm
(ha3oBOW rosiorpaMMbl  KpYroBbIX 30H MOKa3blBalOT €ro MpPUMEHEHVE B KaueCcTBE MHOFOKPATHOro
JenvTens nasepHoOro mMyyka /19 BHeaKCMaIbHOrO MafeHns. Kaxablii 13 pasfeneHHbIX COCTaBHbIX
3/1eMEHTOB 006/1aaeT TaKMM >ke MOPSIAKOM MOfbl, a TakKe TaKOW >Ke OpuveHTauMeli Kak nagarolimii
My4OK, HO OHW OMMCaHbl Pa3HbIMU KOMM/IEKCHbIMU MapameTpamu. MonoxeHWe Tanel My4ykoB, a Takke
YBE/IMYEHUST NI0OKa/IM3aLMeii MHOrOKPaTHbIX (POKYCOB 30HHOW rosorpaMMbl, a A4 AaHHOro nopsiika
AUdpaKuuM UCMONHSAT oTHOLeHust Cenda TUMUYHBLIE ANs Npeo6pa3oBaHMsi Myyka 06bIKHOBEHHOM
NVH30. Matpuupl nepexofa Ansi KpyroBoil ronorpammbl (CH) onpegeneHbl Ha OCHOBe MpaBwia
KorensHunka ABCO.

Mepesen CTaHucnas MaHua>k



