Optica Applicata, Vol. XXI, No. 2, 1991

Harmonic analysis of time-dependent
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W. U rbanczyk
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The modulation of polarization state is now widely applied in optical measuring systems. Every
measuring system consists of a number of individual polarizing elements which can be represented
in Mueller or Jones notation, respectively. In the present paper, the harmonic analysis, under-
taken earlier for the Mueller notation, will be extended also for the Jones representation. The
harmonic equivalents of the Jones matrix, the coherency matrix and the Jones vector will be
defined and their basic properties described. The harmonic matrices of the most commonly used
modulators will be determined. Furthermore, the analytical formulas for the amplitudes and the
phase shifts of particular harmonic components of the total intensity emergent from any measuring
system with a single modulator will be derived. The usability of the harmonic representation to the
systematic error analysis will be demonstrated on the example of birefringence measuring system
with the linear phase modulation. The differential Jones matrices enabling the first order error
analysis will also be determined.

1. Introduction

The modulation of polarization state is applied to the variety of measuring systems
as ellipsometers, polarimeters, birefringence measuring systems and to some types of
polarizaton interferometers. In principle, every measuring system consists of a single
periodical modulator and a sequence of polarizing elements properly made and
adjusted. The output intensity is time-dependent and usually the phase shifts or the
amplitudes of harmonic components of the output intensity are measured. We
should realize that every individual polarizing element being a function of five
parameters (i.e., the transmission of the faster k{ and slower ks eigenwaves, the
azimuth a and the ellipticity # of the faster eigenwaves, the phase retardation
y between faster and slower eigenwaves) is manufactured and aligned with certain
error. So, a difficult question arises, how errors of particular elements of measuring
system influence the final measurement results. A lot of efforts have been made
[171-[9] to determine the systematic measurement errors for variety of measuring
systems with different modulation and detection techniques. In all those papers, the
analysis of errors was carried out in the time-domain. At first, the analytical formula
for the total intensity of beam emergent from measuring system is determined, and
next, this formula is developed into a series of harmonic components. As a result, the
influence of the errors of individual elements of the system on the measurement
accuracy can be analysed.
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In the recent paper [10], the Fourier formalism has been proposed (for Mueller
notation, only), enabling one to determine, how particular harmonic components of
intensity are propagated through the measuring systems. Furthermore, it was
possible to express the phase shifts and the amplitudes of the harmonic components
ofthe output intensity as the analytical function of the Mueller matrices representing
individual elements of the system. It was also demonstrated that these formulas are
very useful for the systematic errors analysis. So, the final conclusion of the recent
paper was that the systematic error analysis should be carried out with the help of
the proposed Fourier formalism rather than directly in the time-domain.

In the present paper, the harmonic representation will be extended also on the
Jones notation. The usability of the proposed Fourier formalism to the systematic
error analysis will be demonstrated on the example of birefringence measuring
system with the linear phase modulation.

2. Fundamental definitions in a frequency-domain

Let us initially assume that a polarizing system consists of only one time-dependent
element (Fig. 1). The polarization state of the input beam can be represented by

m>
>
Wy

Fig. 1. Transformation of the polarization
state by the polarizing element

Jones vector K Stokes vector SO or coherency matrix K The output polarization
state can therefore be determined in one of the following three ways:

£{t) = f(t)EO,
§(t) = M(1)S0, Q)
J(t) = T(t)JOTHt)

where T(t) and M{t) are Jones and Mueller matrices, respectively, and symbol
t denotes Hermitian adjoint of matrix. The final state of polarization which depends
on time can be represented in the form of Fourier integrals:

E(t) — J e(co)exp{2nja)t)da>

S = S s(coexp(2nja)t)do, ©

®
J(t) = J j(o})exp(27ij(ot)dcoy
-
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where the integration refers to all the elements of matrix f(co) and vectors e(w), s(a)).
Harmonic components of the Jones and Stokes vectors as well as the coherency
matrix are defined with the help of inverse Fourier integrals:

e{co) = J E(t)exp(—=2njwt)dt,
_G)

s(m)= E;S(i)exp(—znj(ot)dl, 3

00

/() = 3 I(t)exp(—2nj(ot)dt.

- 00

Substituting to the above equations, the expressions for the final polarization state
(Egs. (1)), we obtain:

&{0)) = i(a))EO,
s(co) = m(w)S0, )
i(co) = {w)J0*t{a)),

where t{co) and rh{cd) are harmonic components of Jones and Mueller matrices:

= (:JOT —2nja)t)dt,
te) = J T(Oexp(—2niandt

()
®

m((0) = J M(i)exp(—=2njo)t)dt,
_@

and the symbol  denotes correlation of two matrices, see Appendix. Equations (4)
make it possible to determine harmonic components of Jones and Stokes vectors and
coherency matrix of the output beam if the input polarization state and the harmonic
components of the matrix that represents modulator are known.

3. Basic properties of harmonic components

In this Section, basic properties of the Fourier components of the Jones vector
the coherency matrix j((0) as well as the Jones matrix t(co) will be discussed.

3.1. Cascade of polarizing elements

If a polarizing system consists of two or more time-dependent elements, the output
polarization state can be determined in one of the following ways:

£(t) = fRL)FA)EOD, ©6)
J(t) = TRADIOT\(H)TUY).

Applying the inverse Fourier transform to the above equations we can readily give
the adequate relations for harmonic components:
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2(a)) = fB(ft)) X fA(f))£0> ?
I(f) = rBO) X FA(FE)J0N r Af) X fB(0).

The structures of equations in the time- and frequency-domain are identical. The
only difference is that in the frequency-domain the multiplication of matrices is
substituted by their convolution ( x ) or cross-correlation ( ), see Appendix. In the
case where one of the elements (e.g., element A) is independent of time, Egs. (7) take
the form:

#=9) = tB(()TAL O, A
/() = tB(a))fAJ 0-+TALB{wW).

3.2. Transformation of the harmonic components under the effect
of coordinate rotation or base vectors transformation

A rotation of coordinate axes with respect to which the polarization state or
polarizing element is represented gives rise to the transformation of vector E(t) and
matrices J(t), T(t).,Let the index a denote vectors and matrices in a new coordinate
system obtained from an old one by a rotation through an angle a. Adequate
transformations of vectors and matrices in time-domain are given by:

£a(i) = R(a)£(t),
ut) = fi(@)J(t)R(~oc), ©)]
ZO)=mnt)R (~ a)

where £(a) represents the rotation matrix

cosa, sina
R(a) = (10
—sina, cosa

Since rotation matrices are independent of time, then identical equations describe
also transformations of harmonic components:

£ » = £@<Af),

I(f1)) = R{QI{(O)R{- a), 1D
I(ft) = £(a)f(ft))E(—a).

Rotation of a coordinate system is one of the simplest examples of transformations of
base wvectors according to which the matrices J(t), T(t), and vector E(t) are
constructed. In certain problems, due to considerable simplification of the descrip-
tion, it is more suitable to replace the orthogonal base vectors representing two
linear polarization states by orthonormal vectors corresponding to left- and
right-circular polarization. This gives rise to the transformation (in time- and
frequency-domain) of Jones vector, coherency and Jones matrices. The transforma-
tions are identical as in the case of coordinate system rotation, Egs. (9) and (11). It
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is required only to substitute the rotation matrix R(ot) for the matrix representing
simple and inverse transformations of base vectors.

33. Interrelations between different representations of polarization state

It is known that the components of the Stokes vector are a simple linear combination
of the elements of the coherency matrix [11]

[~ ()] = [-?2«)] 11+ [~)]22.

[SMI2=[1(i)]i,-[I(t)]22, (12)
[S()H]13= [I()] 12+ [I(D)]2i,

[S«]4=-7T{[*D]I2-[./(1)]21}

where [J(i)]ik indicates i, k element of the coherency matrix. Also the Mueller and
Jones matrices are interrelated [11]

(13)

where o denotes the Kronecker product of two matrices, with Q being the
transformation matrix given by

1, 0, O, 1
1 0, 0O, -1, (14)
0, 1, 1 0,
0, -h h 0,

It can readily be shown that similar relations are also fulfilled for the harmonic
components:

BN 1=[/IM] 11+ [fM] 2
[s(ft>)]2 = fr(«)]H-[/H ]2 (15)
[SN]3= [TM] 12+ C/fa)]2D»
[s(0>)]4 = -j{[Rco0)-]12- [f(m)]}21,
and
m(ooi) = Qt{co) ® t{co)Q-! (16)

where 0 denotes the autocorrelation of two matrices in the Kronecker sense, see
the Appendix.

3.4. Total beam intensity

The total intensity of polarized light beam is equal to a trace of a matrix [11]
f(t) = tr[E() £ m 17)
I = tr[/(1)].
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Since the total intensity of modulated beam depends on time, it can be represented in
the form of an integral of harmonic components
®
I(t) = _Jg)i{(Q)exp(ancot)d(o, (18)

with the following relations between harmonic components of intensity and
harmonic components of Jones vector and coherence matrix being fulfilled

i(co) = ir[f(0>)].

The above equations make it possible to determine, for any polarizing system, the
amplitudes and phase shifts of each harmonic component of the total intensity of an
output beam. However, the output harmonic components of the Jones vector and
the coherency matrix should be known earlier. From the analysis presented in this
section it appears that their determination is quite simple since the harmonic
components e(0), /(co) are transmitted through the polarizing system in a very
similar manner to their time-dependent equivalents E(t) and J(t).

3.5. Polarizing systems with periodical modulators

So far, we have not been assuming that the properties of polarizing systems vary in
time periodically. Most measuring systems consist of a single modulator and
a cascade of polarizing elements independent of time (Fig. 2). The modulators usually

SEQUENCE OF POLARIZING SEQUENCE OF POLARIZING
ELEMENTS ELEMENTS

Fig. 2. Typical configuration of the measuring system

applied are periodical. This means that their harmonic spectrum is discrete, and their
harmonic matrices can be represented as a sum

f(co)= £ tk3(co-kw0), (20)
k=- o0

where S(co—kco0) indicates the Dirac delta, and o0 is the fundamental frequency of
modulation. Harmonic components of the output polarization state can be represent-
ed in one of the following ways:

i(co) = TB{(0)TAEQ,
j{w) = tBt(cD)fAJ0+ tA(co)fB

(21)
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where EO and JO are the input polarization states and the matrices tA and TB
represent the combined effect of n polarizing elements placed in front of and behind
the modulator

iA— 12 iB— 1k -2 (22)
respectively.
From the point of view of practical applications, it is more convenient to

represent the periodic signals in the form of Fourier series, For the total output
intensity, following equation can be written:

a
1(*)= kZ_OI kcos{kcoOt- (p K) (23)
where Ik and (gk represent the amplitudes and phase shifts of the harmonic

components of frequency ka>0, respectively. After the elementary transformations, we
can show that

Ik = 2\i(k(o0)\ = 2\i{ —k(00)\, (24a)
and
% = arctan I% {;ii(lk/(\oog}' (24b)

Combining the formulae (24), (21), (20) and (19), the amplitudes and phase shifts of
harmonic components of output intensity can be expressed as:

it=2\ £ Ir[tr,JOi7_JXt]|) (25a)
I=—e0
¢k = arctan 1 * (25b)
=@

where Im{...} and Re{...} is the imaginary and real part, respectively.
If the input polarization state is represented by Jones vector EOQ, the coherency
matrix in the above equations should be replaced by the product {EqEq}.

3.6. Harmonic matrices of the linear and the sinusoidal modulators

In the measuring practice, it is either the azimuth or the ellipticity of polarization
state that is modulated. In general, two types of modulators, can be distinguished
- sinusoidal and linear. In this subsection, as an example, the harmonic matrices of
the sinusoidal and linear modulators of azimuth will be determined.

Applying the general form of the Jones matrix (see Appendix B), we will find the
time-dependent representation of sinusoidal modulator of azimuth
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cosiao + ocisincooi), sin(a0+ alsinco0t)
f(t) = _ _ o (26)
—sin(a0+ atsinco0t),  cos(a0+ a!'sinawi)
where a0, adt cd0 indicate the initial azimuth, the depth of modulation and the
fundamental frequency of modulation, respectively. The harmonic matrices tk can be
determined if the Fourier spectrum of the functions cos(a0-hot!sin<0i) and
sm(ctO-rcil smcoOt) are known. Carrying out necessary calculations, we obtain

cosao, sina0
t0 = Jofai) —sina0, cosal (273)
and, for k~ 0, we have;
o 7sina0, —jcosa0
k-1 ~ 73t i(ah) :cosa0,  7'sina0
(27b)
cosao, sina0

tik —7 2ftai)

—sina0, cosal

where Jk( i s the k-th order of Bessel function. For the linear modulator of
azimuth, the time-dependent Jones matrix takes the form

cos(a0+ colt), sin(a0+ £a0i)
Tw= —sin(a0+ oo0i), cos(a0+ i) @)
and its harmonic components equal
0 O
0 O
cosa0+7‘sina0, sina0—ycosa0
7cosa0—sina0, cosa0+jsina0 @)
t-1

The harmonic matrices representing higher frequencies are equal to zero for linear
modulators.

In this subsection, as an example, only the harmonic matrices of the azimuth
modulators were determined. However, by analogy, one could readily determine the
harmonic matrices in the case of ellipticity modulation.

4. Exemplary analysis of systematic measurement error

The usability of the proposed Fourier representation to the systematic error
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analysis will be demonstrated on the example of birefringence measuring system. The
sequence of polarizing elements of the system and their azimuths are shown in Fig. 3.

Fig. 3. Scheme of the birefringence measuring system with the linear modulation. P - polarizer, A2
- rotating halfwave plate, A/4 - quarterwave .plate, S - birefringent sample, A - analyser, D - intensity
detector

It is a classical measuring system with the linear phase modulation [12]—14], and
such errors analysis has not been undertaken earlier. The linear modulator is
composed of the A2 plate rotating with angular velocity ¢jO and the A/4 plate with
the azimuth 90°. Due to the modulation, the output intensity is time-dependent

J(i) = 70[1+ cos(4a)0t + <)) (30)

where s is the phase shift introduced by the birefringent sample. Usually, the
rotating A/2 plate generates the reference signal of the frequency 4ta0 and the zero
initial phase shift. Thus, the phase shift g5 introduced by the birefringent sample is
directly equal to the phase retardation between reference and output signals. In
accordance with Eq. (25b) g3 can be expressed as

= arctan 31
s Re{tr[?AF A 4f2fpJOfit_2fi/4n?2]}" G

The Jones matrices of ideal elements of the system are given by (see Appendix B):

0 0

0o’ 1

cos(2a>0i), sin(2ca0i) 0
20— no<t).  cos(2a)n) .

cos<ps/2,  jsin<ps/2

;sin<ps/2,  COSiPsN ’ (32
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and the harmonic matrices of the rotating A2 plate equal

o, o Lo j
Q= : 12— > t2 — (33)
0, 0 b 1 b1

The formula (31) was derived under the assumption that all elements of
measuring system are perfectly made and aligned. However, real elements are made
and aligned with errors which means that the measured phase shift gMwill not have
to be equal to the phase shift introduced by the birefringent sample <s. The
systematic measurement error A(pel = i caused by the imperfections of any
element of the system can be determined from Eq. (31). For example, the error caused
by the polarizer is given by

Im {tr [f Atsf far2t% JOTy'i_ 2f 14t fA);
KeitTittst*"TvJolr®.~ntn} (34)
im {ir[TATsST A2Tvj O0Tpi_. T\£'Ts'j\J}

ReM w~"t-fpl/o

where Tp is the Jones matrix of imperfect polarizer. It should be underlined that the
above formula is valid for any polarizer (the same refers to the other elements)
imperfections, i.e., there were not made any restrictions referring to the kind and
value of imperfections.

If the errors of individual elements of the system are small, we can apply the
so-called first order error analysis. It means that the first order coupling coefficients
indicating how particular errors of elements influence the measurement result can be
found. Differentiating Eq. (31), we get

A(peT = arctan

N = 16{Re{tr[fA%TA 2tp J,, 2tunm }

+ AL 2/12Tp-"0"- 2WH21 A- 1)
dx J (35)

- Im{tr [A% fll4t2TRIO TIL2tu f\ft

x Re|trj® 8b fs felO ZI4T In

+tf,%tY 2TRJoni-2fU n ~ ]}

where dx can formally indicate the extinction error (dk), the residual ellipticity (dS),
the azimuth error (da) or the retardation error (dy), and d%jdx is the differential
Jones matrix fot the polarizer (see Appendix B).
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The expressions (34) and (35) are convenient for both numerical and analytical
error analysis. As an example, the first order coupling coefficients were found for the
polarizer, the birefringent sample and the analyser, respectively. After the necessary
calculations we get for the polarizer:

dPs _ 0 7 <°s _n 36a

dk > da " ds ’ (362)

for the birefringent sample:

A = d(Ps _ 36b
k0wt O o (360)

and for the analyser:

A d<Ps _

R da ot (366)
respectively.

In accordance with Equation (34), the exact error analysis was also carried out.
The ellipticity, azimuth and extinction errors in ail three cases were assumed to be
d# = +10°, Aot = £ 10°, Ak = 0-0.1, respectively. The results of the analysis are as
follows:

i) The polarizer extinction error and the polarizer residual ellipticity have no
influence on the measurement accuracy. The polarizer misalignment gives the
measurement error exactly equal to A(per —2Aot and A(per is not dependent on the
measured phase shift (ps.

ii) The measurement errors introduced by the misalignment and the residual
ellipticity of the birefringent sample are shown in Fig. 4. The residual dichroism of
the sample has no influence on the measurement accuracy.

iii) The analyser extinction error and the analyser misalignment have no
influence on the measurement accuracy. The analyser residual ellipticity introduces
the measurement error equal to A(per= —2 and A is not dependent on the
measurement phase shift gs.

It is now evident that critical for the measurement accuracy are the residual
ellipticity of the analyser and the azimuth error (misalignment) of the polarizer. In
the first order approximation, the misalignment and the residual ellipticity of the
sample have no influence on the measurement accuracy. However, the exact analysis
shows (Fig. 4) that these parameters can also affect the measurement results. It is
interesting that the extinction errors of the polarizer and the analyser, the residual
dichroism of the sample, residual ellipticity of the analyser and the misalignment of
polarizer do not introduce any measurement errors, except for the increase of the
S/N ratio.

5. Conclusions

The Fourier representation of time-dependent polarizing systems, proposed.recently
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for Mueller notation, has been extended also on the Jones notation. The harmonic
components of the coherency matrix, the Jones vector as well as the Jones matrix
have been defined and their basic properties described.

Particular attention has been paid to the case of measuring system with a single
periodical modulator. It was possible to derive simple analytical expressions for the
amplitudes Ik and phase shifts tpk (Egs. (25a, b)) of any harmonic components of the
output intensity. These results are of major importance in practice, since Ik and tgk
are most often directly measured. Knownig the formulas (25), it is possible to
estimate systematic errors of measurements caused by individual elements of
measuring system. This was demonstrated by the example of the birefringence
measuring system with linear phase modulation. The advantages of the error analysis
using the proposed Fourier formalism are as follows:

i) The derived formulas (Eg. (34) and (35)) are general, i.e., they can be applied
to the class of measuring systems with the same modulation and detection technique
as for example polarimeters, interferometers, etc. Only the sequence of the Jones
matrices in Egs. (34) and (35) should be replaced in order to correspond to the
measuring system being analysed.

if) Since the differential Jones matrices have been defined, it is possible to
determine the exact as well as the first order measurement errors.

iii) Since the errors are expressed by the Jones matrices representing individual
elements of the measuring system, they can be easily calculated by means of
matrix-oriented software.

It should be also underlined that the proposed Fourier representation for Jones
notation has one important disadvantage. It is useful for error analysis of measuring
system with the linear modulators (as in the example) rather than with sinusoidal
ones. The Fourier spectrum of the linear modulators is finite (Eq. (29)) and due to
this fact we avoid the infinite summation in Egs. (25). For the measuring system with
sinusoidal phase modulation, the Mueller notation should be recommended. It deals
directly with intensity (not amplitudes) and in formulas (25) the infinite summation
does not occur.

Appendix A

The properties of the Fourier transform of matrix functions will be discussed in this
Appendix. First, a definition of convolution and the cross-correlation, generalized
over the case of matrix functions, will be presented.
Convolution and cross-correlation defined as [15]
©
f(w) X g(co) = J f{oj)g{co-(o )d(o\ (Al

0

{to)+g{(0) = T H{(0)g*{0™-(D)dco’, (A2)

— 00
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is often used in the Fourier analysis of scalar signals. The above definitions can be
generalized over the case of matrix functions used to represent the polarizing
elements. A matrix convolution and cross-correlation will be defined as

/(co) XO(w) = —JGD ?(a)")g(co-a)")d(o\ (A3)
A+ @)= J AQ)81{a)"-a))dw, (Ad)

— 00

where the dimensions of matrices/ and g are equal to Ix k and kxm , respectively,
and the symbol f denotes the Hermitian adjoint of matrix. It can be easily proved
that matrix convolution and matrix cross-correlation have the properties almost
identical to their scalar equivalents.

The majority of theorems referring to the Fourier transform of scalar functions
can be generalized over the case of matrix functions applied in the description of
polarization phenomena. The Table presents a few of those theorems that are of
major importance. Only some of them have been used in the present paper.

Theorems referring to the Fourier transformation of matrix functions

Theorems of: Time-domain (£(t)) Frequency-domain (/(co))
1 Similarity P(qt)

X )
2. Addition P(t) + G(t) f(co)+g(co)

3. Translation e -i2«100,f((0)

4. Modulation cos UtP{t) Im((0—u 4 _p<ot
2V 2n 2it)

5. Convolution i'M xg(w)
6. Correlation P(t)GHLY) t(cD)*d(co)
7. Derivative dF(t)/dt Unto/ (&)

o . d ~ dF(t)
8. Derivative of convolution - [l«) x ex)] = — X 8L = X

dt dt

Proofs of the above theorems are analogous to the scalar case [15]. Generaliza-
tion of the convolution and the cross-correlation over matrix functions can also be
defined on the basis of Kronecker product (direct product) of matrices. In this paper,
convolution and correlation in the sense of Kronecker, are understood as

f{co’ -0j")d(D\
_Jm{CO )og(co-0j)d(D (AS)

?2(co)<&g(aj) = f J{co)o”{co-0j!)d(o\ (AB)

00
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where o0 denotes the Kronecker product of the matrices. It can be shown that
theorems 5-7 hold true also when the convolution and matrix correlation under-
stood in a conventional way (formulae (Al) and (A2)) have been substituted by the
convolution and correlation in the Kronecker sense.

Appendix B

The Jones matrix of birefringent elliptic dichroic media can be found in [11] and
[16]. For the zero azimuth of the faster eigenwave, we have

kexp(—}y)sin25 + cosy, —0.5] sin29 [ 1—kexp (—V)]
20(M .y) = . (BI)
0.5jsin29[1 —Jeexp(—y)~\,  sin29 + fccos29exp(—fy)

and in the general case
T(k,S,y,x) = R(a)t0ii(-<x) (B2
where

cosa, sina
R(*) = _ (B3)
—sina, cosa

and ks k{ indicate the amplitude transmission coefficients for slower and faster
eigenwaves; y is the phase retardation between faster and slower eigenwaves; a, 9 is
the azimuth and ellipticity of the faster eigenwave, respectively.

The Jones matrices of individual elements of measuring system can be found by
substitution into Eq. (BI) respective values kf, 96, a,, where the index i indicates
ideal matrix. However, every real element of a measuring system is charged with the
errors dk, d8, dy, dat. If they are small, we can apply the first order approximation to
find the Jones matrix of the real element

f er(/c,9,y,a) = T(kt&ifyttad+ — dk+ — d9+ — dy+ — dat B4

where df/dx for x = (k,9,y,a) are the differential Jones matrices. In this Appendix,
the analytical form of the differential Jones matrices in the most general case were
found. After differentiating Eq. (B2) we get:

i) for the azimuth

8t eR(x) fn n f#R(-«)

H - %R{~ J) +R{a)T° B5)
where

dR(a) —sina, cosa dR(—a) —sina, —¢€o0sa

b2 —€0sa, —sina da cosa, —sina



152
if) for the phase retardation
dt o °
== +— 'a)
dy
where
oy exp (i) -jsin25 ~ —0.5sin25
ay pL-ly

0.5sin25, —7cos25

iii) for the ellipticity
dt A dt0OA

where

3T .
-/=d-exp (-ir))

—sin25, —jcos2S

j c0s25, sin25

iv) for the extinction ratio

W. U rbanczyk

(B6)

(B7)

(B3)

Verified by Hanna Basarowa

where
sin25, 0.57'sin25
dk = exp(-jy) )
—057sin25, co0s25
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MapMOHMYECKMIA aHa/IM3 BPEMEHHO 3aBUCUMbIX MOMAPU3aLMOHHBIX CUCTEM
B HoTauum [IKoHca

Mogynaums CoCTOSIHUS MOMsSipU3auuyM B HAcTOslLLee BPeMs LUMPOKO TNPUMEHSIETCA B OMTUYECKMX
M3MEPUTESIbHBIX CUCTeMax. Kaxaas usMepuTesibHasi CMCTeMa COCTOMT M3 OTAE/bHbIX MOSPU3ALMOHHBIX
3/1EMEHTOB, KOTOPble MOXHO OMUcaTb MPU MOMOLLM MaTpul, Mionnepa nnm [yoHca. apMOoHUYECKNii
aHanms, NpeanoXeHHbI paHblle Ans HoTauuu Mionnepa, pacluMpeH B HACTOsLell cTaTbe Takke Ha
HoTauuio [xoHca. OnpefeneHbl rapMoHMUYECKMe OTBETbl MaTpuubl [yOHCa, MaTpuubl KOrepeHuum,
BeKTopa [)KoHca M onucaHbl UX OCHOBHble CBOWCTBa. OnpefefieHbl TakkKe rapMOHUYECKMe MaTpuLbl
Hau6onee 4acTo ynoTpebnsieMblX MOAYNATOPOB. [laHbl aHaMTUYecKne (OpMy/bl, onpedenstolime
amnAUTYAbl, a TakXKe CABUIM Mo hase ANs 0TAeNbHbIX FAPMOHNYECKUX COCTABHbIX 3/1EMEHTOB KOHEYHOTO
HanpsKeHVs NyyKa, BbIXOASLLEr0 U3 U3MEPUTEIbHOW CUCTEMbI C OAUHOYHBLIM MOAYNSATOPOM. MpUrog-
HOCTb rapMOHMYECKOr0o aHasin3a fis onpeaesieHnst CUCTeMATUYECKMX MOrpewwHoCTen n3mepeHnst 6bina
NpeAcTaBfieHa Ha NMPUMepe CUCTEMbI /1 U3MEPEHUS BOHOIO Jy4enpesioMeHUs C IMHERHOW Mogynsi-
umeit hasbl. OnpegeneHbl AudiepeHLManbHble MaTpULbl [XKOHCA, Aatolie BO3MOXHOCTb MepBUYHONO
aHafim3a CUCTMATUYECKUX MOrpewHOCTed navepeHus.

Mepesen CTaHucnas MaHUa>K



