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Optical time-division multiplexing is a natural multiplexing technique leading to terabit/s trans-
mission capacity for many services that will be found in near future optical telecommunication
networks. In this paper we have conducted a theoretical study of all-optical time-division multi-
plexing switching using GaAs-AlGaAs based microring resonator together with performances
characteristics. The proposed circuit is more compact, simple and will be helpful in designing
all-optical telecommunication circuits in near future. Numerical simulation results confirming de-
scribed methods are given in this paper. 
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1. Introduction

The growth of the Internet has led to a rush in demand for bandwidth in telecommu-
nications networks. This trend has stimulated the rapid evolution of optical networking
technologies in recent years [1, 2]. In packet routing, the optical signal entering the rout-
er is converted to an electronic signal and demultiplexed into lower-rate streams that
are electronically routed in the switch core and then re-multiplexed to a high-speed
electronic signal that is an output from the router on the specified optical wavelength.
This optical–electronic–optical conversion leads to router congestion [3] and reduced
capacity in today’s networks. So to accommodate the modern broadband network, very
high-speed signal processing technologies must be developed not only for transmission
lines, but also for transmission nodes. The goal is to handle signal rates of more than
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several terabits so that enormous amounts of information including data, pictures and
videos can be provided to many subscribers through optical fiber cables. So the work
is underway to develop second-generation optical networks that provide continuous
optical paths using optical add-drop multiplexers (OADMs). With these technologies,
individual wavelength channels can be routed between nodes or switched on/off the net-
work using all-optical techniques. The key technologies include ultrashort optical
pulse generation/modulation, all-optical multiplexing/demultiplexing, optical linear or
nonlinear transmission, all-optical repeating, all-optical regenerating, optical sam-
pling, etc. Multiplexing and demultiplexing [4–8] are two essential features in almost
all the data and signal communication and networking systems, where a lot of infor-
mation is being handled without any mutual disturbances. Electronic systems are in-
capable of processing a large number of data at high speed (far above gigahertz). Optics
is a promising candidate in this regard [9–14].

The dream of photonics is to have a completely all-optical technology. Optical
nonlinear materials (ONLM) provide a major support to optical switching based
all-optical logic and algebraic processing [15–28]. In this paper we have tried to exploit
the advantages of special nonlinear characteristics of a ring resonator [29–36] for
designing time-division multiplexing schemes which will work in all-optical domain
[37–38]. The proposed all-optical multiplexer can exhibit its switching speed far above
present day electronic switches. The proposed circuit is simpler and less complex rather
than the reference one [39] and better suited for an integrated circuit design. The optical
time multiplexing scheme using an optical coupler and optical delay line has been re-
ported [40], where the circuit is serial in nature. In that paper, ZHAN-QIANG HUI and
JIAN-GUO ZHANG modulated the optical data signal with a return to zero (RZ) pseudo-
random binary sequence (PRBS) and had sent it to the input of the multiplexer serially.
But the advantage of our paper is that the proposed structure is parallel in nature. All
the optical data inputs can be given simultaneously and according to the select inputs,
any one of the given data can be transferred to the output. On the other hand, the design
reported in reference [40] has used 1×2, 2×2, 2×1 couplers and optical delay lines.
So higher order optical time-division multiplexing (OTDM) design is quite difficult
as the input power of the optical couplers is divided into two parts. 

The main advantages/novelties of the proposed model represented in this paper are:
– The proposed circuit is all-optical in nature. 
– The proposed OTDM circuit is designed using only microring resonators and

the circuit is very attractive due to its (microring resonator) intrinsic advantages like
compactness and reduced power consumption.

– Another potential advantage of OTDM circuit using the microring resonator is
the possible simplification of network management and versatile implementation of
network functionalities for enhanced signal processing applications.

– The proposed model can easily be extended for higher order inputs due to simple
circuitry. No major modification and no other components rather than ring resonator
is needed in designing the circuit.
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The paper is organized as follows: Operational principle of all-optical switches
using the microring resonator is discussed in Section 2. In Section 3, the theory, design
and simulation results and discussion of the proposed scheme for time-division mul-
tiplexing are explained and Section 4 is a conclusion of the paper.

2. Microring resonator based optical switch

The GaAs-AlGaAs based microring resonator consists of unidirectional coupling
between a ring resonator and input-output waveguides. Parameters k1 and k2 are the cou-
pling coefficient between the input waveguide and the ring and the ring and the output
waveguide, respectively. A fraction k1 of the incoming field is transferred to the ring
having radius r as shown in Fig. 1a. When the optical path-length of a roundtrip is
the integer multiple of the effective wavelength, the microring resonator will have
“ON  resonance” (i.e., a constructive interference will occur). At resonance, the drop
port shows maximum transmission and through the port shows a minimum transmit-
tance. A logic switch can be produced if the resonator is made of a nonlinear material.
Through nonlinear property of the material, the refractive index can be changed by
the intensity of light in the resonator. A green laser (λ = 532 nm) is used to pump
the ring from top of the ring [41] as shown in Fig. 1b. The high density carriers are
generated (pumping introduces extra electron–hole pair) as the optical pump pulse is
almost fully absorbed in the microring waveguide. These carriers effectively result in
a net decrease of the refractive index of the microring waveguide and cause a tempo-
rarily blue shift of the microring resonance wavelength [42]. Hence the microring res-
onator acts as an optical switch and the status of the switch is controlled by the optical
pump pulse.

Let us consider: Ei1 and Ei2 are the input and add port field, respectively, and
Et and Ed are the through port and drop port field, respectively, as shown in Fig. 1a.
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Fig. 1. Single ring resonator (a) and optical pumping process (b).
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The fields at the points a, b, c and d are Era, Erb, Erc and Erd, respectively. Then we
can write [43–46]

(1)

(2)

(3)

(4)

where, L = 2πr is the circumference of the ring, α  is the intensity attenuation coeffi-
cient of the ring, γ  is the intensity insertion loss coefficient of the directional coupler,
kn = 2πneff /λ is the wave propagation constant, λ is the resonant wavelength of the ring,
neff = n0 + n2 I = n0 + n2P/Aeff is the effective refractive index, where n0 and n2 are
the linear and nonlinear refractive indexes, respectively, I and P are the intensity and
power of the optical pump signal, Aeff is the effective cross-sectional area of the ring
resonator.

The fields at the through port and drop port can be written as [43–46]

(5)

(6)

Equations (5) and (6) can also be expressed as follows (detail calculation is given
in Appendix) 

(7)

(8)

where D = (1 – γ )1/2, x = Dexp(–αL /4) and ϕ = knL /2. 
The above equations help to design a ring resonator as a switch and the above

nonlinear characteristics of the microring resonator is utilized for designing a reverse
tree-net architecture in all-optical domain which can successfully be exploited for
time-division all-optical data multiplexing scheme.
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3. Designing of time-division multiplexing scheme

3.1. Theoretical model

Multiplexer or data selector is a logic circuit that accepts several data inputs and allows
only one of them at a time to go to the output. The routing of the desired data input to
the output is controlled by select (control) inputs. Figure 2 shows the functional dia-
gram of a general multiplexer where normally there are 2n input lines and n select lines
whose bit combination determines which input is to be selected.

In our proposed all-optical 4×1 multiplexing scheme, D0, D1, D2, and D3 are
the input data signals, A and B are the control signals and Y  is the output signal. Switch-
ing property of the microring resonator (MRR), discussed above in Section 2, can be
exploited successfully for designing an all-optical multiplexing scheme. Figure 3
shows the architecture for designing all-optical 4×1 multiplexing schemes where
the output is taken from the drop port of the MRR3. Figure 4 shows the proposed ex-
perimental setup of an all-optical 4 ×1 multiplexing scheme.
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Fig. 2. Block diagram of a multiplexer. 
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Fig. 3. All-optical 4×1 multiplexing scheme.
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The logic levels applied to the A and B control inputs (pump signals) determine which
port of the rings is enabled, so that its data input passes through the ring to the output.
The expression for the output is given by:

(9)

3.2. Simulation result 

In simulation, the parameters [30, 46–48] used for GaAs-AlGaAs microring resonator
are summarized in Table 1. 

The operational principle is discussed for different possible combinations, and
computer simulated results (using MATLAB 7.6) are reported in Fig. 5. Result is also
given in a tabular form as shown in Table 2.

Case 1 (when A = B = 0). When A = 0 and B = 0 (i.e., no pump signal is applied to
the rings), input data signals D0 and D2 will appear at the drop port of MRR1 and MRR2
which act as the input port and add port of MRR3, respectively. As B = 0, the input
port signal D0 will appear at the drop port of MRR3 which is the desired output. This
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Fig. 4. Proposed experimental setup of an all-optical 4×1 multiplexing scheme.
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T a b l e 1. Parameters and their optimum values used in simulation.

Parameters Optimized value
Coupling coefficient for MRR1 0.25
Coupling coefficient for MRR2 0.25
Coupling coefficient for MRR3 0.25
Resonant wavelength 1.55 μm
Radius of the ring 7.08 μm
Effective cross-sectional area 0.25 μm2

Resonant wavelength with pumping power 1.5485 μm
Change of refractive index when pumping power applied 3×10–3

Intensity attenuation coefficient of the ring 0.0005 μm–1
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shows that the input data signal D0 can be sent to the output terminal Y when control
signals are A = 0 and B = 0.

Case 2 (when A = 1, B = 0). When first control pump signal A is on state and second
control pump signal B is off state, input data signals D1 and D3 will appear at the drop
ports of MRR1 and MRR2 which act as the input port and add port of MRR3, respec-
tively. As B = 0, the input port signal D1 will appear at the drop port of MRR3
which is the desired output. This shows that the input data signal D1 can be sent to
the output Y keeping control signals A = 1 and B = 0.

Case 3 (when A = 0, B = 1). When first control pump signal A is off state and
second control pump signal B is on state, input data signals D0 and D2 will again
appear at the drop ports of MRR1 and MRR2 which act as the input port and add port
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Fig. 5. Simulation output of 4×1 multiplexer. 

T a b l e 2. The truth table of 4×1 multiplexer (X – “don’t care”). 

Control 
(select) inputs Data inputs

Output YA B D0 D1 D2 D3

0 0 0 X X X 0
D00 0 1 X X X 1

1 0 X 0 X X 0
D11 0 X 1 X X 1

0 1 X X 0 X 0
D20 1 X X 1 X 1

1 1 X X X 0 0
D31 1 X X X 1 1
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of MRR3, respectively. But as B = 1, the add port signal D2 will appear at the drop
port of MRR3 which is the desired output. This shows that the input data signal D2
can be sent to the output Y keeping control signals A = 0 and B = 1.

Case 4 (when A = B = 1). When both control pump signals (A and B) are on state,
input data signals D1 and D3 will again appear at the drop ports of MRR1 and MRR2
which act as the input and add port of MRR3, respectively. But as B = 1, the add port
signal D3 will appear at the drop port of MRR3 which is the desired output. This shows
that the input data signal D3 can be sent to the output Y keeping control signals
A = B = 1.

All the eight possible combinations as shown in simulation results are shown in
Table 2.

3.3. Discussion
To measure the performance of the proposed circuit, we define and calculate different
“figure of merits” from the simulation output, such as the on-off ratio, extinction ratio,
contrast ratio and amplitude modulation [49–52].

One important parameter of the microring resonator based multiplexer circuit is
the on-off ratio which is the ratio of the on-resonance intensity to the off-resonance
intensity which is given by

(10)

High performance microring resonator based multiplexer circuit can be realized
using the high on-off ratio >20 dB and the calculated value from the simulation is
nearly 25 dB. 

Output signal is switched on and off  by the input pulses and control pulse, showing
ultrafast rising and falling edges. When input = 1 and control = 1, the signal starts to
rise and when input = 0, control = 1, the signal goes to a low level. The rise time and
falling time for the proposed model is shown in Figs. 6a and 6b, respectively. From
the figures, we have calculated switching speed of 4 ps for rise time and 3.8 ps for fall-
ing time. 

High extinction ratio (ER) makes the ultrafast all-optical multiplexer suitable to
be exploited to control all-optical switch. The high value of extinction ratio distin-
guishes the high (1) to the low (0) level very clearly.

(11)

where  and  are the minimum and maximum values of the peak intensity of
the high (1) and low (0) level, respectively. The dependence of the output ER on
the coupling coefficient is shown in Fig. 7. To find the optimum value of ER, we
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change the coupling coefficient of the MRR3 of the proposed scheme. The graph shows
that the ER becomes maximum (20.8 dB) at 0.2 coupling coefficient which is our de-
sired value.

The output contrast ratio (CR) is defined as the ratio of the mean value of output
intensity for 1  to the mean output intensity for 0  and given as 

 (12)

For optimum performance the CR must be as high as possible so that the main
fraction of the input can exist at the output. The dependence of the output CR on
the coupling coefficient is shown in Fig. 8. To find the optimum value of CR, we
change the coupling coefficient of the MRR3 of the proposed scheme. The graph shows
that the CR becomes maximum (20.1 dB) at 0.2 coupling coefficient which is our de-
sired value. 
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The amplitude modulation (AM) can be defined as 

(13)

where  and  are the maximum and minimum value of intensity at the high (1)
level. Typically, this metric must be lower than 1 dB [53]. The dependence of the out-
put AM on the coupling coefficient is shown in Fig. 9. To find the optimum value
of AM, we change the coupling coefficient of the MRR3 of the proposed scheme.
The graph shows that the AM becomes minimum (0.11 dB) at 0.2 coupling coefficient
which is our desired value. 

4. Conclusion
In conclusion we can say that applying the proper control signals, one can send any
desired input data to the output channel. In this paper, we present ultrafast optical
time-division multiplexed networks as a feasible means of achieving a highly capable
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next-generation all-optical packet-switched network which provides simple network
management and self-routing of packets. Here, we have exploited the reverse tree net
architecture for designing a time-division multiplexing scheme. Basically, the pro-
posed multiplexer is very much suitable in all-optical digital signal communication.
The proposed scheme can easily and successfully be extended and implemented for
higher order (8×1, 16×1, 32×1 and so on) multiplexing scheme. This can be done by
proper incorporation of ring resonator based optical switches, extending the reverse
tree and by suitable branch selection using a control signal. Also it has been pointed
out in the paper that the successful ultrahigh speed transmission is attributed to the new-
ly developed all-optical signal processing techniques and they are expected to play im-
portant roles in constructing future all-optical photonic networks in the 21st century.

Appendix – Calculation of through port and drop port 
output fields of  microring resonator

The field Era, Erb, Erc, Erd can be written as (see Fig. 1a)

(A1)

(A2)

(A3)

(A4)

where kn = 2πneff /λ is the wave propagation constant, λ is the resonant wavelength of
the ring, neff = n0 + n2I = n0 + n2P/Aeff is the effective refractive index, where n0 and
n2 are the linear and nonlinear refractive indexes, respectively, I and P are the intensity
and power of the optical pump signal, Aeff is the effective cross-sectional area of
the ring resonator.

The fields at the through and drop port can be written as [38–41]

(A5)

(A6)

Putting the value of Erd from Eq. (A4) in Eq. (A1), we get

(A7)

where D = (1 – γ )1/2, x = Dexp(–αL /4) and ϕ = knL /2.
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Similarly putting the value of Erb from Eq. (A2) in Eq. (A3), we get

(A8)

Putting the value of Erc from Eq. (A8) in Eq. (A7), we get

(A9)

Similarly putting the value of Era from Eq. (A7) in Eq. (A8), we get

(A10)

Using Equation (A4), Eq. (A5) can be written as

(A11)

Putting the value of Erc from Eq. (A10) into Eq. (A11), we have
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Using Equation (A2), Eq. (A6) can be written as

(A13)

Putting the value of Era from Eq. (A9) into Eq. (A13), we have

(A14)

So Et and Ed are the through port and drop port fields of the ring resonator.
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