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The aim of this study is to propose and test a new methodology for detection of oil spills in the world
oceans from advanced synthetic aperture radar imagery embedded in ENVISAT satellite
(ENVISAT-ASAR). The proposed and applied methodology includes four levels: data acquisition,
dark spots detection, features extraction and dark spots classification for discrimination between
oil spills and look-alikes. Level 1 contains the ENVISAT-ASAR wide swath mode data acquisi-
tion. Level 2 begins with a visual interpretation based on experience and a priori information con-
cerning location, external information about weather conditions, differences in shape, and contrast
to surroundings between oil spills and look-alikes, then filtering and segmentation. Level 3 con-
tains extraction of features from the detected dark spots. Level 4 aim is to discriminate oil spills
from look-alikes using the features extracted by means of object-based fuzzy classification. As
a result, oil slicks are discriminated from look-alikes with an overall accuracy classification of 91%
for oil slicks and 86% for look-alikes. Finally, to validate our results, the method has been tested
by comparing the areas of the automatically detected oil spills (object-based fuzzy classification)
with the areas of the manually detected oil spills (region of interest), by means of area ratios. 
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1. Introduction
Oil slicks on sea surface can have different sources such as man-made slicks from illegal
discharges of ships or spills resulting from ship accidents, slicks originated from bio-
logical activities such as photo-oxidation processes or by planktons, and geological
slicks originated as natural hydrocarbon seeps from a reservoir. Including every kind
of slick, 10% of ocean surface is estimated to be covered by slicks [1]. Natural seepage
detection is considered to be one of the significant preliminary works for offshore
petroleum exploration. However, it does not explain the whole petroleum system by
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itself, and it should be combined with regular exploration techniques such as seismic
interpretation, sample collection from the sea bottom, and geological survey. The oil slick
detection and mapping are becoming one of the standard tools for hydrocarbon explo-
ration activities and have been applied to most of the hydrocarbon basins in the world
such as Gulf of Mexico [2], Santa Barbara Channel, California [3], Australian Shelf [4],
and South Caspian Sea [5].

Radar systems are extensively used for the dark formation detection in the marine
environment, as they are not affected by local weather conditions and cloudiness and
work day and night [3]. They emit their own energy in the microwave range, which is
then reflected from the sea surface and received back at the sensor. A radar image is
a representation of the backscatter return and is mainly proportional to the surface
roughness at the scale of the radar wavelength (few centimeters) [6]. Synthetic aperture
radar (SAR) capabilities are widely well demonstrated, and thus it still turns out to be
the most efficient and superior satellite sensor in oil spill detection [7]. Parameters used
to detect oil slicks are functions of radar configuration, slick nature, meteorological
and oceanic conditions like the height of the waves, the amount of oil that has been
released, and the speed of the wind [1, 8]. SARs have some limitations, as the presence
of natural phenomena that can give false oil spill detections (look-alikes), such as oil
spills from oil-rigs, leaking pipelines, passing vessels as well as bottom seepages,
while look-alikes do include natural films/slicks, grease ice, threshold wind speed
areas (wind speed <3 m/s), wind sheltering by land, rain cells, shear zones, internal
waves, etc. [8].

Detection of oil spills from SAR imagery can be divided into three steps: 1) detection
of dark spots (suspicious slicks), 2) extraction of features from the detected dark spots,
and 3) classification of the dark spots (oil spills/look-alikes) [7]. This can be done man-
ually or automatically. In manual detection, a trained operator has to go through the entire
image, find possible oil spills and discriminate between the oil spills and the look-alikes.
Though a trained operator is able to detect oil spills from SAR images with some con-
fidence, it is time-consuming. It is also labor-intensive given the large number of SAR
images that must be analyzed in a short period of time for effective oil-spill monitoring,
especially after the launch of constellations like Sentinel-1A and 1B and the RCM
(RADARSAT Constellation Mission). For some areas and in sight of a local ground
station, products can be delivered within one hour [9]. The first Sentinel-1A satellite
was launched on April 3, 2014, it will ensure the continuity of the C-band SAR data
from the ERS-1/2 and ENVISAT missions, with the second Sentinel 1-B following in
2016. For further reading ESA websites are recommended (https://earth.esa.int/web/
guest/missions/esa-future-missions/sentinel-1). In addition, manual detection is con-
strained by the knowledge and experience of operators, whose results are subjective.

Discriminative features of oil spills and look-alikes are basically geometrical, ra-
diometric, textural, and temporal [7, 10]. Natural oil slicks originated from subsurface
should be permanent, and temporally many different slicks should be present in a close
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neighborhood with a repetitive manner. However, orientation, shape, and texture can
be different because of the weather conditions at the time of image acquisition [10, 11].
Thus, studies have been undertaken to develop fast, reliable and automated oil-spill
detection systems. Several classifiers have been employed for the discrimination of
oil spills and look-alikes: Bayesian classification scheme by combining prior knowl-
edge, Gaussian densities and rule-based density corrections [12, 13], linear discrimi-
nate analysis (LDA) approach basing on the Mahalanobis distance [14], a multiple linear
regression method for oil-spill classification [15], the artificial neural network (ANN)
approach to approximate the relation between dark-spot features and the class labels [16],
the support vector machine (SVM) [17], object-based fuzzy classification [11], bun-
dling, bagging, boosting and the generalized additive model (GAM) [18]. 

In this paper, we propose a multi-level methodology for detection of oil slicks using
ENVISAT-ASAR imagery and apply our methodology in a variety of conditions, in-
cluding different regions of the planet, and different dates. We establish that the method
can be used to support the identification of hydrocarbon seeps.

2. Materials – satellite sensor description and input data 

Microwave sensors are the most applicable tools for oil slick monitoring since they
are not affected by clouds, haze, weather conditions, and day/night differences. Synthetic
aperture radar is the most common method to detect offshore oil slicks. Parameters
used to detect oil slicks are functions of radar configuration, slick nature, meteoro-
logical and oceanic conditions like the height of the waves, the amount of oil that has
been released, and the speed of the wind [1, 19].

The advanced synthetic aperture radar (ASAR) sensor rides aboard the ENVISAT
satellite and provides radar imagery of the earth for studying oceans, atmosphere,
ice, and land [19]. ASAR was operational since the launch of the satellite on March
1, 2002 [19, 20], and the mission operated until April 8, 2012 [20]. The processing and
archiving of data from ESA’s (European Space Agency) ERS-2 and ENVISAT mis-
sions were unified in the ESA multi-mission facility infrastructure (MMFI). Since then
the MMFI served both missions until their end, for ERS-2 in July 2011 and ENVISAT
in April 2012. Nevertheless, the mission data are still being archived and are frequently
requested by users, with MMFI still serving those needs. It and the attendant processing
were transferred from the former mission-specific payload ground segments to a mod-
ern processing infrastructure [21].

ASAR has five mutually exclusive modes of operation: image mode (IM), alternate
polarization (APM), wide swath (WSM), wave (WM), global monitoring (GMM).
Image mode, has 30 m resolution, similar to ERS SAR, 7 possible mutual exclusive
swaths and 2 possible mutual exclusive polarizations (VV or HH). Alternate polariza-
tion mode, has 30 m resolution, 7 possible mutual exclusive swaths and 3 possible mu-
tual exclusive polarizations (HH/VV, HH/HV or VV/VH). Wide swath mode, 150 m
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resolution, has 1 unique swath (400 km) and 2 possible mutual exclusive polarizations
(VV or HH) [22]. In the literature, for oil slick detection VV polarized, C-band with
low incidence angle data is considered preferable [1, 8, 23–25]. The methodology pro-
posed has been applied on a dataset of 10 ENVISAT-ASAR images of wide swath
mode (WSM) [26].

3. Methods 
The proposed and applied methodology in this study is an implementation of pre-ex-
isting techniques, with a new approach, to 4 differing contextual levels, as shown
in Figure 1: 

– ENVISAT-ASAR data acquisition, 
– dark spots detection,
– feature extraction from the detected dark spots,
– classification of dark spots to discriminate oil spills from look-alikes.

3.1. Level 1: ENVISAT-ASAR data acquisition 

The ENVISAT-ASAR data are downloaded from the ESA (European Space Agency)
websites (https://earth.esa.int/web/guest/data-access) [26]. In this study, the wide
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Fig. 1. Representative framework of the methodology.
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swath mode, level 1b ASA_WSM_1P are used. The study area is covered by 10 dif-
ferent ENVISAT-ASAR images. The details of the dataset containing the information
about the region, date and start time of acquisition are given in Table 1.

3.2. Level 2: dark spots detection

The capability of ASAR in detecting oil slicks over the sea surface is well-known
and proven by several studies aiming at oil spill detection and discrimination using
ENVISAT-ASAR images [1, 6, 7, 13, 17, 27, 28]. Most of these studies are primarily
based on the dark spots detection; it is a preliminary task when detecting oil spills; it
is a critical and fundamental step prior to feature extraction and classification. There-
fore, unless an oil spill can be detected at this first step, it can never be detected at
a later step. Furthermore, the accuracies of feature extraction and classification greatly
rely on the accuracy of dark-spot detection. This level includes three steps.

Visual interpretation – Visual interpretation starts with a pre-processing stage
where artifacts (if applicable) resulting in different contrast trends across the images
(range falloff, gain control effects, etc.) have been determined and removed [29].
The de-trended images with balanced contrast have been scanned visually to determine
the target dark spots. The human eye is superior in observing a slick in the context of
the surrounding sea, and a trained human interpreter can discriminate oil slicks and
look-alikes based on experience and a priori information concerning location, external
information about weather conditions, differences in shape, and contrast to surround-
ings between oil slicks and look-alikes [12]. If the surroundings are homogeneous,
the human observer will have more belief in that the spot is an oil slick than with
heterogeneous surroundings [12]. With heterogeneous surroundings, the human eye
can easily determine if the spot is separated from the surroundings based on contrast
or orientation [27]. In this study the images have been thoroughly analyzed by different

T a b l e 1. List of images used.

Environment Date and time of acquisition Region 
Image A 
(image reference) 17/11/2002 at 10:44 UTC Northwest coast of Spain

Image B 25/11/2011 at 12:12 UTC Northeast of Rio De Janeiro Brazil coast 
Image C 28/04/2010 at 03:45 UTC Gulf of Mexico
Image D 09/05/2010 at 15:48 UTC Gulf of Mexico 
Image E 27/08/2008 at 09:20 UTC Northeast coast of Algeria 
Image F 31/03/2005 at 12:13 UTC Coast of South Africa 
Image G 07/12/2007 at 01:40 UTC South Korea coast
Image H 30/07/2004 at 20:08 UTC Southeast of the Baltic Sea
Image I 09/08/2006 at 09:54 UTC Lebanese coast
Image J 10/04/2004 at 01:55 UTC East China Sea
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experts using visual photo-interpretation techniques, furthermore the subset images are
extracted based on target areas containing dark spots on the bases of contrast level to
the surroundings, homogeneity of the surroundings, wind patterns, nearby bright spots
of ships, edge, and shape characteristics for natural slicks. Closely spaced, a number
of dark spot groups or large individual ones are limiting the subsets spatially. 

Filtering – Image filtering step aims to reduce speckle and to enhance the image [30].
Adaptive filtering methods are used to discriminate high contrast areas representing
possible oil discharges in the images. In general, the filter of image with noise removal:
Lee, Gamma, Frost or Kuan and two pass filters (3×3 median filter and 5×5 low pass
filter) are used in different oil spill discrimination studies [31, 32]. It is also observed
that these filters minimize the loss of information boundaries of high and low contrast-
ed areas. Filtering of the image with noise removal filters gives a clear output for dis-
crimination of dark areas from the remaining heterogeneous background [19, 33]. In
this study the Lee (3×3) filter is used.

Thresholding and segmentation – In segmentation neighboring pixels are com-
pared and they are merged into regions if they are similar. It runs iteratively to merge
the resulting regions. Two neighboring regions, Ri and Rj, are merged if they satisfy
the three following conditions: 

1. Thresholding condition: dist(Ri , Rj) ≤ T;
2. Neighborhood condition 1: Rj ∈ N(Ri) and dist(Rj , Ri) ≤ dist(Rk, Ri), Rk ∈ N(Ri);
3. Neighborhood condition 2: Rk ∈ N(Ri) and dist(Ri, Rj) ≤ dist(Rk , Rj), Rk ∈ N(Rj). 
In the above, T is the chosen similarity threshold, dist(Ri , Rj) is the Euclidean dis-

tance between the mean grey levels of the regions. Also, regions smaller than the cho-
sen area threshold are removed by merging them with their most similar neighbor [34].
In this approach, a detection window is passed through the ASAR image. An intensity
threshold segmentation algorithm is implemented for each window. Pixels with inten-
sities below the intensity threshold are regarded as potential dark-spot pixels while
the others are potential background pixels [35].

3.3. Level 3: features extraction for dark spots 
After segments have been created, features need to be extracted as an input to classifiers.
The features proposed by the researchers can be categorized into four groups: 1) phys-
ical and textural properties, 2) geometric shape, 3) contrast with background, and
4) contextual information [7]. Different researchers employed different features. For
example, TOPOUZELIS et al. (2007) adopted 10 features to train a neural network clas-
sifier [16], FISCELLA et al. (2000) used 11 features [14] and SOLBERG et al. (2007) used
13 features [13]. 

Although most classifiers relied predominantly on limited features, they tended to
present different patterns on feature ranking and permutation-based variable accuracy
importance (PVAI) values [18]. The importance of a variable may show great variation,
depending on which evaluation criterion is used. As a result, features that are useless
for a particular classifier may be of great help for another, while features that are useful
for one classifier may become useless for another. Some shape features and a contex-
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tual feature have very high PVAI values in most of the classifiers [18]. In this study,
we intend not to use all the features proposed by other researchers, because it will in-
crease the dimensionality of the dataset, thus the risk of over fitting. Therefore, we se-
lect 11 features out of all the available features as a classifier input. The selected
11 features related to: intensity value of pixels (layer values) (predictors no. 1 to 3),
shape (no. 4 to 7), to texture (no. 8 to 11) [27], see Table 2. 

The selected features in this study are used for defining the boundaries of the mem-
bership functions while making object-based fuzzy classification [27]. The index pa-
rameters are selected to identify the geometric shape of the dark spot and spectral
similarity of the neighboring pixels (background). Features related to shape (A, P, C,
Com and S ) are defining the geometric properties of the dark spot, because the dark
spot related with natural oil slicks should have larger width with respect to slicks cre-
ated by oil tankers or large ships. Similarly they should have less rounded shapes with
respect to low-wind areas and the algae or biological dampening effects. Secondly, fea-
tures related to texture (H, C and D) and intensity value of pixels (OSd, BMe and BSd)
are used to define spectral properties of dark spots. 

3.4. Dark spots classification
This level includes two steps: 1) automatic classification (object-based fuzzy classifi-
cation) and 2) manual classification (region of interest).

Automatic classification (object-based fuzzy classification). Several classifiers have
been used for classification of dark formations to oil spills or look-alikes, i.e., statistical
approach through computation of probabilities, neural networks, fuzzy logic, etc.

T a b l e 2. Summary statistics of features for oil spills and look-alikes separately.

OSd – standard deviation of gray-scale intensity values of the object; BMe – average intensity value of
the background area; BSd – standard deviation of the intensity value of the background; A – target area
(in number of pixels); P – target perimeter (in number of pixels); C = P2/A – complexity measure;
Com – compactness; S – spreading measure (the ratio between the target width and length); H – homo-
geneity; Con – contrast; D – dissimilarity.

No. Features Oil spill (min–max) Look-alikes (min–max)
1 OSd 8.1–42.2 31.5–71.8
2 BMe 31.6–161.7 42.2–194.0
3 BSd 10.1–56.6 21.5–76.1
4 A 17–16.619 325–170.384
5 P 64–2011 106–2807
6 C = P2/A 20.4–510.8 15.2–325.9
7 Com 2.1–2.4 1.5–2.5
8 S 72.1–100 54.9–99.9
9 H 0.024–0.040 0.038–0.042

10 Con 1.324–2.140 1.230–1.690
11 D 25–35 23–27
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The last stage includes defining membership functions based on extracted object fea-
tures [10]. In this paper an object-based fuzzy classification scheme is used for dis-
criminating dark spots, with a simple empirical class hierarchy consisting of two
classes which are “clear sea water” and “dark spots”. “Dark spots” class includes two
subclasses, namely “probable oil slicks” and “probable look-alikes”. Fuzzification de-
scribes the transition from a crisp system to a fuzzy system. The fuzzy rule can have
a single condition or can consist of a combination of conditions that have to be fulfilled
for a dark object to be assigned to a probability class [11]. A membership function as-
signs a membership degree or value between 0 and 1 to each feature. Boundaries of
membership functions are determined based on feature value intervals from randomly
selected representative segments that are supposed to belong to a specific class. In most
of the cases, “Boolean range function” is used, which assigns a value of “1” between
specific values and assigns “0” for the rest, in order to achieve sharp distinction of
“probable oil slick” and “probable look-alike” classes [27]. As a final stage of this clas-
sification, an accuracy assessment is performed by classification stability (CS) and best
classification result (BCR) methods, apart from comparisons of level 1 visual inter-
pretation results. CS explores differences in degrees of membership between the best
and the second best class assignments of each object, which can give evidence about
the ambiguity of an object’s classification. On the other hand, BCR determines whether
the object has memberships in more than one class. In the accuracy assessment of clas-
sification schemes, basic statistical information describing the classes like number of
image objects, mean, standard deviation, minimum value, and maximum value has
been calculated [27]. 

Manual classification (region of interest). Regions of interest (ROIs) are portions
of images, either selected graphically or selected by other means such as thresholding.
The regions can be irregularly-shaped and are typically used to extract statistics for
classification, masking, and other operations. ENVI (the Environment for Visualizing
Images, Research Systems, Inc., Boulder, USA) allows selection of any combination
of polygons, points, or vectors as a region of interest. Multiple regions of interest can
be defined and drawn in any of the main image, scroll, or zoom windows. Regions of
interest can be grown to adjacent pixels that fall within a specified pixel value thresh-
old. As done for the training dataset, each oil spill signature present in ENVISAT-
-ASAR data was manually digitized via ENVI’s region of interest (ROI) tool and saved
to oil spill position text files. ROIs were used as reference oil spill regions [6, 26, 28].
Lastly, to validate our results, the methodology has been tested with computing a suc-
cess percentage by comparing the areas of the automatically detected oil spills with
the areas of the manually detected oil spills, by means of area ratios.

4. Results and discussion

In our case, we have used wide swath mode level 1b images with spatial resolution
of 150 m. This class of filenames begins with the following convention:
ASA_MOF_1PXPDEyyyymmdd_hhmmss, where ASA denotes the sensor (ASAR),
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MOF is the functioning mode (IM, APM, WSM, WM, GMM), yyyymmdd is the year,
the month (01–12) and the day (01–31), respectively, hh is the hour (UTC) when
the sensor began collecting the scene’s data (00–23), mm is the minute (00–59), and
ss is the second (00–59).

Image A (reference image) is used to process oil spill pixels covering the Spain
Coast from the Prestige accident (2002). Because of the important number of oil spill
pixels on this image, it is considered like the reference image in this work (image A
of Fig. 2). The file of this image named ASA_WSM_1PXPDE20021117_104431_
000000672011_00180_03741_0009.N1 was received from an official source
(https://earth.esa.int/web/guest/data-access). In this case, our image was received on
the 17/02/2002 at 10:44:31 UTC, with wide swath mode, 00180 frame number and
03741 orbit number.

The other event, on November 14, 2011; US energy giant Chevron said Monday
it has suspended drilling following an oil spill in waters off Rio de Janeiro state.
The image of this event (image B of Fig. 3) is acquired by an advanced synthetic ap-
erture radar (ASAR) sensor from the ENVISAT satellite, and covers the oil spill pixels
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Fig. 2. Visual analyses of the image A (a), and the histogram (b).

Fig. 3. Visual analyses of the image B.
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in the northeast coast of Brazil. The file of this image named ASA_WSM_
1PXPDE20111125_121304_000026293109_00052_50928_0009.N1 was acquired
on November 25, 2011 with wide swath mode, 00052 frame number and 50928 orbit
number at 12:13:04 UTC. This image is used to corroborate our research.

Firstly, in the visual interpretation step, the ten images are manually interpreted
and Lee 3×3 noise removal filter is applied. Filtering of the image with noise removal
filters gives a clear output for discrimination of dark areas from the remaining hetero-
geneous background. ASAR imagery is highly speckled and the dark spot may have
different contrasts relative to its background under different conditions. If the spatial
distribution of intensity is considered, the dark spot and the background can be sepa-
rated further. Before addressing this idea in detail, it is necessary to clarify our termi-
nology to avoid any confusion [35].

In this paper, pixels with intensities below the intensity threshold are referred as
“probable dark-spot pixels” or “dark pixels”. Pixels with intensities above the intensity
threshold are referred as “probable background pixels” or “light pixels”. For each
image, we used the histogram to present intensity pixels distribution for each image
combination selected (number of pixels/intensity [0–255]), and to define the density
(number of pixels) of different intensity pixels (dark and light). We can observe that
dark pixels distribution in Fig. 2b (histogram of image A) presents a larger part com-
pared to light pixels, especially for the values in the range 20–50, because of the im-
portant number of dark spots in image A. 

We applied these interpretations on other images (image B to image J in Table 1)
and the results are shown in Fig. 4. Based on these interpretations, 21 subset images
are selected and 65 dark spots are detected to be investigated in further stages. Figures 2
and 3 present the visual analyses of images A and B, respectively; the square presents
possible oil slicks and the ellipse presents the possible look-alike.

For the segmentation of images, the segment scale parameter is decided as 20 after
several trials. Shape factor is set to 0.4. Smoothness parameter is set to 0.7 yielding
compactness to be automatically 0.3. Figures 5a and 6a present the detection of dark
spots to identify the oil spill pixels from image A and B, respectively, using automatic

Oil spills probability
Look-alikes probability
Background probability

1.0

0.8

0.6

0.4

0.2

0.0
0 50 100 150 200 250

P
ro

ba
bi

lit
y

Intensity

Fig. 4. Probability of detecting oil spills, look-alikes and background.
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segmentation conditions 1–3. We can observe a number of dark spots detected. Major
part of these dark spots detection problem is found to be connected with distinguishing
oil spills from other natural phenomena (look-alikes), e.g., low wind area, wind front
area and natural slicks that create dark patches in ENVISAT-ASAR images. 

After segmenting subsets images, the specific features related to “layer values”,
“shape”, and “texture” are automatically calculated for each segment. Sample seg-
ments are selected randomly, which are supposed to belong to one specific class.
The interval of feature values is determined and tabulated, as shown in Table 2.

Based on the extracted features tabulated (Table 2), the membership functions are
defined for the class hierarchy. For class “dark spot”, a Boolean range membership
function is defined using standard deviation of gray-scale intensity (OSd) values. Since
“probable oil slick” and “probable look-alike” classes are subclasses of “dark spot”
class, this membership function appears to be an inherited function for them, and
the rules are valid for the subclasses as well. The image is classified based on the mem-
bership functions, but some segments are found to be unclassified. In order to correct
the unclassified areas, the membership function and logical operators are modified and

a b

Fig. 5. Segmented subset image, simple scene for image A (a), representing the discrimination of two
dark spot classes (b). 

a b

Fig. 6. Segmented subset image, simple scene for image B (a), representing the discrimination of two
dark spot classes (b).
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tweaked for intersecting boundaries of feature values. At last, the resultant classified
image is obtained. The applied methodology combines pixel-based filtering, supervi-
sion of human interpreter, object-based segmentation, and fuzzy classification. In ob-
ject-based classification, the pixels are grouped to segments based on the two different
input data. Membership functions helped to adjust the specific character of every in-
dividual subset. The algorithm converts every segment to a binary object with the help
of Boolean range membership functions. 

Standard deviation of gray-scale intensity (OSd) values in image A are in the range
0–255 where the oil spills values are 7.3–40.1 and the look-alikes are 32.3–70.3, and
on other hand, OSd values in image B are in the range 0–255, where the oil spills values
are 10.1–54.3 and the false alarms are 33–69.2. Starting from the OSd values and
the target area (A), we can estimate the oil spill (OS) quality and quantity, for example
from image A, the number of common OSd values between the oil spill and false alarms
is small, so it is easy to discriminate between them because of the big quantity of
a heavy oil spill (Prestige accident). But in image B the common OSd values interval
is large because of the small quantity of an oil spill (natural or operational oil spill caus-
es). In addition to that, we can estimate the look-alikes nature, such as low wind, wind
front, etc. 

Figure 5b presents classification results for the subset image A and Fig. 6b for
the image B, representing the discrimination of two dark spot classes (oil slicks and
look-alikes). Oil spills locations have been enhanced and edged in red color, green
color presents probable look-alikes and white color presents clear sea water.

For the accuracy assessment, CS and BCR method is used to evaluate the accuracy
of the classes. In this respect, the classification accuracy is calculated from CS and
BCR, in which they show the basic statistics and probability of segments belonging to
the classes that they are assigned by the fuzzy logic defined by the membership func-
tions. Since there is neither training set for class definition nor control set for absolute
accuracy assessment, only the consistency of classes within themselves could be meas-
ured. However, it should be kept in mind that there is always a risk of obtaining wrong
results even if class stability results show high level of consistency.

As a result of “classification stability”, 89 segments out of 9.527 are classified as
“probable oil slicks” with an accuracy of 91%, 191 segments are classified as “probable
look-alikes” with an accuracy of 86% and 9.092 segments are classified as “clear sea
water” with an accuracy of 96%. Moreover, BCR showed that 97% of segments be-
longing to “probable oil slicks” has only one class; similarly, probability of segments
belonging to “probable look-alikes” and “clear sea water” are 96% and 98%, respec-
tively.

As done for the training dataset, each oil spill signature presents in ENVISAT-ASAR
data was manually digitized via ENVI’s ROI tool and saved to oil spill position text
files. ROIs were used as reference oil spill regions. Dark formations are usually clas-
sified as potential oil spills according to the following criteria: dark homogeneous
spots in a uniform windy area and linear dark areas, not extremely large, with abrupt
turns. And they are usually classified by visual interpretation as look-alikes according



Monitoring and identification of marine oil spills... 445

to the following criteria: low wind areas; coastal zones due to wind sheltering and elon-
gated dark areas with smooth turnings in spiral shape [26, 28].

Lastly, to validate our results, the methodology has been tested with computing
a success percentage by comparing the areas of the automatically detected oil spills
with the areas of the manually digitalization of oil spills via ROI, by means of area
ratios. 

An example of this procedure is shown in Figs. 7 and 8 from image A and B, re-
spectively. Figures 7 and 8 show the representative steps to validate the oil spills de-
tection methodology. The input images (image A and B) contain oil spills to be detected.
Applying the oil spills automatic detection (fuzzy classification) to the inputs image,
we obtain the result shown in Figs. 7a and 8a, where black regions in red ellipse/square
represent all candidate oil spills and green ellipse represents look-alikes. Manual digi-
talization of the oil spill (ROI) is shown in Figs. 7b and 8b, depicted by the green re-
gion. Finally, Figs. 7c and 8c show the comparison result in terms of an area ratio by
the percentage of success, red pixels are common pixels belonging to both automatic
detected pixels (in red ellipse (a)) and manually digitized pixels (in green region (b)).

a b c

Fig. 7. Comparison result (c) of automatic classification (fuzzy classification) (a), and manually
digitalized (ROI) (b) from image A.

a b c

Fig. 8. Comparison result (c) of automatic classification (fuzzy classification) (a), and manually
digitalized (ROI) (b) from image B.
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Figures 7c and 8c show that oil pills areas detected by the algorithm are in general dif-
ferent than those manually digitalized.

This is not surprising since the manual digitalization of an expert operator can often
include water pixels at the border of an oil spill contour and can connect disjoint regions
separated by few pixels. This implies an overestimation of the actual area covered by
the oil and a subsequent decreasing in the success percentage. The area ratio percentage
is 93% and 90% from image A (reference image) and B, respectively, so the applied
methodology can discriminate oil spills from look-alikes with good percentage in these
images (image A and B). The proposed oil spill classification method is tested with
eight other scenes of images (image C to image J in Table 3). 

Table 3 summarizes results of the application of the procedure described above to
the entire validation dataset of 89 oil spills. The overall percentage of correct identi-
fication of the area covered by the 21 subset images analyzed is 84.5%. In general,
these results are very encouraging and promising, because the method can detect max-
imum pixels of dark spots pixels and discriminate oil slicks from look-alikes. 

In some images, the percentage of correct identification is obviously lower than
the percentage derived analyzing only the number of identified regions. Since this meth-
od compares the overall area classified as oil by the automatic system with the ROI area
for each event, the limited decrease in percentage resulting from Table 3 indicates that
the system detected the presence of oil region despite the ambiguity of the area in which
oil and water are not really separated in some subsets. 

On the one hand, the smallest values are observed in some images (e.g., image E:
78%, image F: 79%, image I: 77%), because of:

– a small area of oil spills in this scene of image (operational or natural causes),
– a large area of look-alikes caused mainly by biogenic slicks and low-wind areas

(less than 3 m/s or superior to 12 m/s).

T a b l e 3. Area ratio comparison procedure applied to the validation oil spills (OS) dataset.

Location/OS source Number of subset images OS area/ROI area
Image A 2 93%
Image B 3 91%
Image C 2 83%
Image D 2 84%
Image E 1 78%
Image F 3 79%
Image G 2 80%
Image H 2 91%
Image I 1 77%
Image J 3 89%
Total 21 84.5%



Monitoring and identification of marine oil spills... 447

On the other hand, the largest values are observed in a number of images (e.g., im-
age A: 93%, image B: 91%) because of the important number of oil spill pixels in these
images (accidental causes). 

5. Conclusion

This paper presents an overview of environmental phenomena: oil spills. SAR sensors
are commonly used by oil spill monitoring systems due to their well demonstrated ca-
pability of detection. ASAR deployed on satellites is today an important tool in oil spill
monitoring due to its wide area coverage and day and night all-weather capabilities.
In this paper, an adapted methodology for detection of oil slicks in ENVISAT-ASAR
images is presented.

Major part of the oil slick detection problem is found to be connected with
distinguishing oil slicks from other natural phenomena that create dark patches in
the ENVISAT-ASAR image. The methodology worked satisfactorily in different cases
of oil slicks, by combining different approaches. The discriminative power of human
interpreter at the starting phase with the optimization of sea state conditions through
noise removal filters yielded a good basis for further segmentation steps. False clas-
sifications due to pixel-based approaches are minimized with the object-based ap-
proach, and further discrimination between oil slicks and look-alikes became
applicable through segmentation, fuzzy membership functions, and classification al-
gorithms. The accuracy of classification is different for different images. The overall
accuracy obtained by averaging 21 subsets of 10 images is 91% for oil slicks, 86% for
look-alikes and 96% for clear sea water.

Finally, we tested and validated the proposed methodology with computing a suc-
cess percentage by comparing the areas of the automatically detected oil spills (fuzzy
classification) with the areas of the manually digitalization of oil spills (region of in-
terest) by means of area ratios. Using an independent dataset of 89 oil spills events,
the overall percentage of correct identification of the area covered by 21 subsets ana-
lyzed is 84.5%. We have established that the method can detect the maximum of dark
spots pixels and discriminate oil slicks from look-alikes

There are some efforts which must be undertaken in future works. They are as fol-
lows: 

– An improvement of our results with in situ measurements to validate our work;
– A comparative study of different classification techniques;
– A comparative study between ASAR and optical sensors (e.g., SeaWiFS, MODIS),

to eliminate look-alikes from ASAR images;
– How to use classification results (possible oil spills) in the alert system of oil spills.
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