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This paper is concerned with the application of complex geometrical optics equations to
sample thermal parameters determination by the photodeflection method. The thermal diffusivity
of a sample is determined using the four parameters least-squares-fitting of theoretical dependence
of normal photodeflection signal on angular modulation frequency to the experimental data.
The calculation of the signal on the basis of complex geometrical optics is proved to be more
accurate approach of determining the sample thermal diffusivity than that based on the geometrical
and wave optics.
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1. Introduction

The necessity of applying new materials in modern technology demands their testing
and characterization [1, 2]. One of the techniques used for determining the thermal
diffusivity of a wide range of specimens is the photodeflection method. In the simplified
version of this method, a modulated light beam of angular frequency Ω (the pump
beam) illuminates the sample surface uniformly, and another laser beam (the probe
beam) is used for detecting, through the optical beam deflection effect, the produced
thermal gradients (the thermal lens) (Fig. 1).

The interpretation of the photodeflection signal may cause problems, especially
when studying small objects and thin films in case of which it is necessary to use
high frequency of thermal waves. The well-known geometrical optics model (GOM)
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of describing the photodeflection signal [3, 4] is usually limited by frequency of several
kilohertz and is based on the assumption that the probe beam is a bundle of rays.
Each of them is deflected in the thermally disturbed medium. Their contribution to
the photodeflection signal is averaged in accordance with the probe beam intensity
distribution in the temperature field vicinity. Another approach [2, 5–7] is the wave
optics model (WOM) which describes the mirage effect by the use of the diffraction
theory. According to it, the field of thermal wave is considered to be a phase lens. This
means that only the phase changes in the electric field of the probe beam caused by
the temperature field are taken into account. Their influence on the amplitude
distribution of the probe beam is neglected. Such an approach can be used for thermal
parameters determination in a wider frequency range of thermal waves. We should use
it with care because this model still does not describe all the effects of probe beam
interaction with the field of thermal waves and for some parameters of the experimental
setup its agreement with experiment is not satisfying [8].

It was proved in [8, 9] that the method of calculating the photodeflection signal
based on the complex geometrical optics equations (the complex ray model, CRM
[8–13]) is a more accurate approach in comparison with those used so far. The complex
ray model assumes the probe beam to be a bundle of rays that propagate in a complex
space. In the field of thermal wave, the ray trajectory is changed as a consequence of
its optical path change resulting from the change in the gas refractive index and
the change in the refractive index gradient. These let us take into account the deflection
and the phase change of the probe beam in the field of thermal wave.

In this work, a method of determining thermal parameters of solid samples, by
the use of complex geometrical optics equations, is presented. The measurement
method is based on the mirage effect and the experimental data are analyzed using
four parameters least-squares regression fitting for the theoretical curves calculated
on the basis of CRM. The analysis is also performed for GOM and WOM and results
are compared to those received in the framework of complex geometrical optics.

Fig. 1. Schematic diagram of the photodeflection setup in the mirage effect geometry.



Thermal parameters of solids determination by the photodeflection method ... 447

2. Thermal field

The steady-state temperature field distribution in gas above a flat, thermally
homogeneous and isotropic sample with thickness d, produced by a modulated light
beam that heats its surface uniformly, is [14–16]:

(1a)
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Here ag is the constant rise of the temperature in gas, bg is the amplitude of the harmonic
component of the sample surface temperature, ϕg is the phase shift between the sample
surface temperature and the pump beam. The time-dependent part of the solution (1a)
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represents the so-called one-dimensional thermal waves, in which  and
 are the wave number of these waves in the gas and the sample,

respectively, κg and κs are thermal diffusivities of the gas and the sample, λg and λs
are their thermal conductivities, q0 is the energy flux that incidents on the sample
surface. The Eqs. (1b)–(1j) describe the situation in which the lower side of the sample
(x = –d ) is kept at the ambient temperature. 

3. The propagation of the Gaussian probe beam 
in the thermally disturbed medium
As a result of the probe beam interaction with the field of thermal wave, the light
intensity distribution in it is changed. The changes in the probe beam light intensity
are usually registered by the use of quadrant photodiode [3–6], what results in
the photodeflection signal which can be calculated as [3–8]:

(2)

where Kd is the photodetector constant, h is the height of the probe beam over the sample,
I(rD) is the probe beam light intensity in the detector plane, Ai is the amplitude of
the photodeflection signal, ϕi is the phase of it depending on the theoretical model used
(i = C for the CRM, i = G for the GOM, i = W  for the WOM).

All the theories of the photodeflection signal formation try to find the probe beam
light intensity after undergoing the thermal lens I (r) using different tools. As the result
of these theoretical calculations, the quantities Ai and ϕi are functions of many
parameters of the experimental setup as well as the thermal and geometrical parameters
of the sample. For the assumed detection geometry (Fig. 1) the set of these parameters
contains the height of the probe beam over the sample h, the angular modulation
frequency Ω, the probe beam radius a, the beam waist position L, the detector zD and
the sample zl positions, the sample thermal conductivity λs, its thermal diffusivity κs
and its thickness d.

It should be noticed that not all parameters, mentioned above, were taken into
account in works about GOM and WOM or they described experimental setups
different from ours by some details. That is why it was necessary to recalculate
the photodeflection signal on the basis of (2) for both models. The received results are
presented in Appendix B and C.

3.1. The complex geometrical optics model (CRM)

The complex ray model (CRM) assumes the probe beam (the Gaussian one) to be
a bundle of rays that propagate in a 6D complex space. Thus, each of these rays is
described by a set of equations called the ray trajectory [8–13, 17]. In the thermally
disturbed medium the probe beam interacts with the thermal lens and as a result of that
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it is deflected. Deflection means the change of the ray trajectory. The ray trajectory
change results in changing the amplitude of the electric field in the probe beam
[8–13, 17]. The probe beam propagation in optically nonhomogeneous medium results
also in its phase change caused by the change of the optical path of the ray (resulting
from deflection which causes the change of the geometrical path of the ray and
the change of the gas refractive index in the field of thermal wave). The correction
to the x coordinate of the ray and to the eikonal (a function describing the optical path
of the ray) is found on the grounds of the perturbation calculus [17]. It should be
remembered that the correction of the amplitude of the beam and its eikonal are
complex. It means that both of them influence the value of the amplitude and the phase
of the light beam intensity [8–13].

The photodeflection signal depends on λs and κs because of the amplitude of
the sample surface temperature bg and the phase shift between the sample surface
temperature and the pump beam ϕg depending on them. That is why the formulas
describing its amplitude and phase can be written as a function of bg and ϕg [8–13]
(see Appendix A):

(3)

(4)

where the normalizing factor NC(a, h, L, Ω , zD, zl) and the part of the phase change
ΛC(a, h, L, Ω, zD, zl), both independent of bg and ϕg, are expressed by rather
complicated analytical formulas shown elsewhere [8–13].

3.2. The geometrical optics model (GOM)

This model considers the probe beam to be a bundle of rays. Each of them is deflected
on the thermal lens proportionally to the temperature gradient in it. The photodeflection
signal is obtained by averaging their contribution in accordance with the undisturbed
probe beam intensity profile.

The amplitude AG of the photodeflection signal received in this case can be also
written as a product of the amplitude of the sample surface temperature bg and
the normalizing factor NG (a, h, L, Ω, zD, zl) independent of bg (see Appendix B):

AG = bg NG (a, h, L, Ω, zD, zl) (5)

whereas its phase ϕG is a sum of two components:

ϕG = ΛG (a, h, L, Ω, zD, zl) + ϕg (6)

First of them is not a function of thermal parameters of the sample, while the second
one is equal to the phase shift between the sample surface temperature and the pump
beam ϕg and depends on λs, κs and d [8–13].

AC bg NC a h L Ω zD zl, , , , ,( )=
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3.3. The wave optics model (WOM)

The idea of the wave theory is based on the thin lens approximation of the temperature
field in gas above the sample. Such assumption means that only the phase changes in
the electric field of the probe beam caused by its interaction with the field of thermal
wave are taken into account. Distortions of the amplitude distribution resulting from
the deflection on the refractive index gradients are out of interest in this theory. In case
of WOM, as in previous models, the photodeflection signal amplitude and phase are
described by (see Appendix C):

AW = bg NW (a, h, L, Ω, zD, zl) (7)

ϕW = ΛW(a, h, L, Ω, zD, zl) + ϕg (8)

It is seen from Eqs. (3)–(8) that in all cases the amplitudes and phases of
the photodeflection signal differ from each other only by the setup factors depending
on the parameters of an experimental setup. All information about sample thermal
parameters are included only in bg and ϕg factors. In the experiment we are able to
measure quantities Ai and ϕi, so the correct determination of bg and ϕg factors is
possible when the correct values of these setup factors Ni and Λi are known.

4. Experimental results 

In the experiments, the typical photodeflection setup was used. A laser diode with
the output wavelength of λe = 830 nm was used as a pump beam source. The pump
beam light was modulated by its turning on and off. A helium-neon laser (λ = 633 nm)
was used as a probe beam source. It provides a Gaussian beam.

A sample with known thermal properties was selected to test this method with air
as a deflecting medium. The zinc plate of 0.5 mm thickness was used in the experiments.
The thermal diffusivity was determined using a four parameter least-squares-fitting of
the normal photodeflection signal amplitude and phase versus the angular modulation

Fig. 2. The amplitude (a) and the phase (b) of photodeflection signal changes versus modulation
frequencies of temperature field Ω.

a b



Thermal parameters of solids determination by the photodeflection method ... 451

frequency of the temperature field Ω  (Fig. 2) for the thermal diffusivity κs of a sample,
the probe beam radius a, its waist position L and the height of the probe beam over
the sample h. To be able to fit both the amplitude and the phase of the signal, the least-
-square procedure was performed for the Argand’s graph (Fig. 3). Additionally,
the fitting was performed for such range of experimental setup parameters changes
that the experimental data are well described only by CRM (Fig. 2).

Figure 2 presents the photodeflection signal amplitude and phase changes as
functions of the angular modulation frequency of the excitation radiation Ω. It can be
seen from it that the amplitude not always decreases with the increase of Ω. There are
some frequency ranges in which an increase in signal amplitude is observed. This
behavior cannot be reproduced neither by the geometrical nor wave optics models
but can be reproduced within a complex ray model. The observed effect arises from
the fact that with the increase of frequency, the thermal wave attenuation increases.
But the temperature field gradient also increases. These two competitive processes can
mean that the amplitude of the photothermal signal does not decrease monotonously
with the increase of Ω, but there are some frequencies ranges in which the second
effect overbalances and the signal increases.

The results of the fitting, the values of obtained thermal parameters of the examined
sample and the parameters of an experimental setup are presented in the Table.

The least-squares method applied with calculations in the GOM and WOM yield
a value of the thermal diffusivity differing by more than ten percents from the literature
value. Calculations with the CRM give a more accurate value of the thermal parameters
of this sample.

Fig. 3. Argand’s graph for the data presented in
Fig. 2. Re(Sn) and Im(Sn) are respectively the real
and imaginary parts of the normal component
of  the photodeflection signal. 

T a b l e. Received values of thermal and experimental setup parameters determined on the basis of CRM,
WOM and GOM  

Material and tabulated 
thermal parameters [15] Model

Values of determined parameters

κs [m2/s] a [μm] L [cm] h [μm]

zinc
(κs = 4.18×10–5 m2/s, 
λs = 116 W/mK)

CRM 4.42×10–5 109 7.8 200
WOM 3.57×10–5 115 7.5 200
GOM 2.44×10–5 125 8.6 180
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In case of the experimental setup parameters determination, the differences between
the received values of a, h and L for all theories are about ten percents. It means that
the kind of a theoretical approach (GOM, WOM or CRM) used in the fitting
stronger influences the sample thermal parameters determination than the experimental
setup ones.

5. Conclusions

In the paper, the determination of thermal parameters of a zinc sample on the basis of
GOM, WOM and CRM was carried out.

The photodeflection signal depends on the thermal parameters of the sample
because the temperature on its surface is a function of those parameters. It can be
seen from Eqs. (3)–(8) that in all cases the signal amplitudes are proportional to
the temperature of the sample’s surface bg and differ from each other only by the factor
depending on the parameters of an experimental setup. Moreover, their phases consist
of two components – one of them is independent of κs and λs, while the second one
is equal to the phase shift between the sample’s surface temperature and the pump
beam ϕg.

There was shown in [2, 18–21] that the use of a geometrical optics approach for
determining the thermal parameters of samples often leads to errors, especially in
the case of measurements when high modulation frequencies of temperature field are
needed or a large probe beam radius is required, and also when the thermal diffusivity,
that needs to be determined, is small compared to that of the deflecting medium. It
means that the factor Ni (i = C for CRM, i = G for GOM, i = W for WOM) in Eqs. (3),
(5), (7) and the part of the phase change Λi independent of κs and λs influences
the correctness of determining the thermal parameters of different kinds of the samples.
In this work it has been proved that the complex ray model should be used for
determining those parameters because it gives more accurate values (the Table). It
means that the CRT gives both the correct qualitative and quantities interpretation of
the experimental data.

Appendix A

The quantities NC and ΛC are described by:
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(A14)

(A15)

(A16)

(A17)

and erf (ξ ) is the error function, Pl is the total power of an undisturbed probe beam, zR = ka2n0 is
the Rayleigh length, zRC = zR – iL is the complex Rayleigh length.

Appendix B

The normalizing factor NG and the part of the phase shift ΛG independent of thermal and geometrical
parameters of the sample received on the grounds of the geometrical optics model are expressed by:
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Appendix C

The NW  and ΛW  can be written in a form:
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