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Utilizing a ray tracing approach based upon Snell’s optical laws and a 4×4 homogeneous coordinate
transformation matrix, this study conducts a systematic analysis of the errors induced in the paths of
skew rays as they pass through an optical element with an ellipsoid boundary surface. The error
analysis performed in this study considers two principal sources of light path error, namely (1)
translational and rotational errors of the boundary surfaces, and (2) differential changes induced in
the position of the incident ray on the boundary surface and the unit directional vector of the re-
fracted/reflected ray as a result of changes in the position and unit directional vector of the light
source. The validity of the proposed methodology is demonstrated by analyzing an optical element
with an arbitrary ellipsoid boundary surface.
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1. Introduction

In general, the light rays within an optical system can be classified as either axial,
meridional or skew [1]. Evaluating the performance of optical systems during their
theoretical design stage requires the ability to determine the paths of these light rays as
they undergo successive reflection and refraction events at the boundaries of the vari-
ous optical elements within the system. This is generally achieved using a ray tracing
procedure in which Snell’s laws of reflection and refraction are applied at each bound-
ary surface encountered by the rays. Whilst this process is relatively straightforward for
the axial or meridional rays within the system, tracing the paths of skew rays is more
problematic since such rays propagate in an arbitrary plane and their precise point of
incidence upon the boundary surface is unknown. Nonetheless, their paths must be
traced if the performance of the optical system is to be reliably evaluated.

Due to the limitations of traditional manufacturing techniques, the lenses and mirrors
used in many optical systems have a simple planar or spherical form. However, this limits
the performance of the optical system and thus considerable effort has been expended in
developing aspherical lenses in recent decades. Compared to their planar or spherical
counterparts, aspherical lenses are both smaller and lighter and tend to provide an im-
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proved optical performance. Furthermore, in some instances, the use of aspherical ele-
ments facilitates the construction of optical systems with fewer lens components, thereby
achieving significant size and weight savings [2]. For example, the Gregorian two-mirror
system formed with a concave parabolic primary mirror and a concave elliptical secondary
mirror has been popular as a small erecting telescope for terrestrial observation [3].

Ray tracing provides a powerful technique for analyzing the performance of optical
lenses, and is an essential task when designing and analyzing optical systems. The traced
ray set generally includes the rays which start at a given set of object points and pass
through a given set of points on the aperture stop [4]. In the differential ray tracing proc-
ess, the effects of each optical component are evaluated by differentiating the equations
relating the configuration of the rays before and after their transformation at the compo-
nent surface [5, 6]. However, tracing the paths of skew rays as they pass through an as-
pherical surface is difficult since the precise point of intersection with the aspherical sur-
face cannot be determined directly. Nonetheless, SMITH [1] successfully developed an
iterative technique for performing aspherical-boundary skew ray tracing based upon
a series of approximations which continued until the approximation error converged to
a negligible value. Ray tracing approaches enable the sensitivity of an optical system to
design or manufacturing flaws to be assessed by relating the differential changes of the
reflected or refracted rays at a boundary surface to differential changes of the incident ray.
Such a technique allows the contribution of each boundary surface within the optical sys-
tem to be systematically examined. A sensitivity analysis also enables the establishment of
fundamental aberration functions, which simplify the task of determining the effects of
optical aberrations on the overall performance of an optical system [7, 8]. Furthermore,
sensitivity analysis allows the orientation of an image to be accurately determined. For
example, TSAI and LIN [9] applied the results of a sensitivity analysis to construct a merit
function describing the change in orientation of an image as it was successively re-
flected/refracted at a series of flat boundary surfaces within a prism.

The image quality of an optical system is governed primarily by the flaws and as-
sembly errors of its individual elements [10]. In designing and evaluating the image
quality of an optical system, an analogy can be drawn with the design of a NC (nu-
merical control) machine tool since in the same way that optical systems are com-
posed of a series of individual optical elements, machine tools comprise a structured
arrangement of interconnected links and joints, each having a unique set of resolution
characteristics. When designing a machine tool, it is necessary to identify the potential
sources of error within the system and to clarify their individual and collective effects
on the overall quality of the machined products. In an early study TLUSTY [11]
showed that the machining error of a NC machine tool varies as a function of the
combined effects of the individual errors in each of its six degrees of freedom. Ac-
cordingly, FERREIRA and LIU [12] developed a model based upon three rotational
errors, i.e., ∆Γi, ∆Ψi and ∆Φi, and three translational errors, i.e., ∆xi, ∆yi and ∆zi, to
enable the performance of a machine tool to be systematically examined.

In a previous study [13], the current author drew an analogy with the error model
presented in [12] to develop a skew ray sensitivity analysis model with which it is pos-
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sible to analyze the errors induced in a ray’s light path as it was reflected and/or
refracted at a flat optical boundary surface. The proposed model considered the effects
of six sources of light path error (i.e., three translational errors and three rotational
errors) on the deviation of the light path at the boundary surface. Furthermore, the
effects of changes in the incident position and unit directional vector of the re-
fracted/reflected ray caused by changes in the position and unit directional vector of
the light source were also examined. In the current study, this model is extended to
analyze the errors induced in the paths of skew rays incident upon an ellipsoid bound-
ary surface.

In performing the ray tracing analysis, a 4 × 4 homogeneous transformation matrix
is used to define the position and orientation of the local coordinate frame of each
boundary surface. The reflection/refraction paths of the incident rays are then deter-
mined using Snell’s conventional optical laws. In the analysis, a position vector

kji iziyix PPP ++  is written as a column matrix jPi = [Pix   Piy   Piz   1]T, where the pre-

superscript j of the leading symbol jPi indicates that this vector is referred with respect to
coordinate frame (xyz)j. Given a point jPi, its transformation kPi is represented by the
matrix product kPi = kAi 

jPi, where kAj is a 4 × 4 matrix defining the position and orienta-
tion (referred to hereafter as the configuration) of a frame (xyz)j with respect to another
frame (xyz)k [14]. The same notation rules are also applicable to the unit directional
vector jRi = [Rix   Riy   Riz   0]T. Note that if a vector is referred to the world coordinate frame
(xyz)j, its pre-superscript 0 is omitted for reasons of simplicity.

The remainder of this paper is organized as follows. Section 2 describes the use of
the 4 × 4 homogeneous transformation matrix and Snell’s optical laws to perform
skew ray tracing at an ellipsoid boundary surface, while Section 3 develops the corre-
sponding error analysis methodology. Section 4 demonstrates the application of the
proposed approach to the error analysis of an arbitrary optical element with a refrac-
tive ellipsoid boundary surface. Finally, Section 5 presents some brief concluding
remarks and indicates the intended direction of future research.

2. Skew ray tracing at ellipsoid boundary surface

A fundamental feature of optical elements with planar, spherical or aspherical bound-
ary surfaces is that these surfaces are all surfaces of revolution. Consequently, the
error analysis methodology proposed in this study commences by defining the bound-
ary surface in terms of revolution geometry and then applies a ray tracing technique to
establish the paths followed by skew rays as they undergo reflection and refraction at
this surface. The error analysis methodology developed in this study is applicable to
all rotationally-symmetric optical elements, including both spherical and aspherical
(e.g., paraboloidal, ellipsoid and hyperboloid). However, in defining these surfaces in
terms of revolution geometry, the parameterized form of the generating curve is dif-
ferent in every case. The current study therefore considers the specific case of an el-
lipsoid boundary surface for illustration purposes.
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As shown in Fig. 1, the boundary surface ir i of an ellipsoid optical element can
be obtained by rotating the generating line iqi = [aiCβi   0   biSβi   1]T, where

ai, bi ≥ 0, ai ≠ bi and 
22
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i ≤≤− , in the xi zi plane about the zi axis, i.e.
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where Rot(zi, αi) is the rotation transformation matrix about the zi axis and C and S
denote cosine and sine functions, respectively. Equation (1) provides a generic expres-
sion for parametrizing the boundaries of optical elements with ellipsoid surfaces in
terms of ai, bi and the polar angular position αi, βi. The unit normal vector ini
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where si is specified as either +1 or –1 such that the cosine of the incident angle has
a positive value, i.e., Cθi > 0. Having obtained general expressions for ini and ir i, any
skew ray can be traced simply by applying Snell’s optical laws of reflection and
refraction.

Fig. 1. Boundary formed by rotating surface geometry and skew ray tracing at ellipsoid boundary surface.
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In the derivations above, ir i and ini are both expressed with respect to the ellipsoid
boundary surface coordinate frame (xyz)i. The relative configuration of the world
frame (xyz)0 with respect to frame (xyz)i is given by
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where vectors [I ix   Iiy   Iiz   0]T, [Jix   Jiy   Jiz   0]T and [Kix   Kiy   Kiz   0]T describe the
orientations of the three unit vectors of frame (xyz)0 with respect to frame (xyz)i, and
vector and [tix   tiy   tiz   1]T is the position vector of the origin of frame (xyz)0 with
respect to frame (xyz)i. The unit normal vector of the ellipsoid boundary surface re-
ferred to frame (xyz)0 can be obtained by transforming ini to frame (xyz)0, i.e.
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In Figure 1, a light ray originating at point Pi–1 = [Pi–1x   Pi–1y   Pi–1z   1]T and di-
rected along the unit directional vector Ri–1 = [Ri–1x   Ri–1y   Ri–1z   0]T is reflected/refracted
at the ellipsoid medium boundary surface ir i at point Pi. Any intermediate point Qi

along the path of the incident ray can be described parametrically as follows:

T
ziziyiyixixii λPλPλPQ ]1[ 111111 −−−−−− +++= lll (5)

where λ ≥ 0 is the magnitude of vector Pi–1Qi. The parameter λ = λi corresponding to
the case in which Qi is coincident with the boundary surface at point

T
iziziiyiyiixixii λPλPλPP ]1[ 111111 −−−−−− +++= lll (6)

can be derived by equating the boundary surface ir i  with iQi, where iQi = iA0Qi is the
transformation of point Qi to frame (xyz)i, i.e.
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Note that in Eqs. (8) to (10), the following definitions apply:

ziixyiixxiixix PKPJPIB 111 −−− ++= ,     ziiyyiiyxiiyiy PKPJPIB 111 −−− ++= ,

ziizyiizxiiziz PKPJPIB 111 −−− ++= ,     ziixyiixxiixix KJIG 111 −−− ++= lll ,

ziiyyiiyxiiyiy KJIG 111 −−− ++= lll ,     ziizyiizxiiziz KJIG 111 −−− ++= lll

The ambiguous sign of the root term in Eq. (7) corresponds to the two possible points
of intersection of the ray with the ellipsoid boundary surface. However, only one of these
points is required in the current ray tracing analysis, i.e. the initial incident point, and thus
the appropriate sign must be carefully chosen. The parameters αi and βi describing the
polar angular position of the incident point on the ellipsoid boundary surface are crucial in
determining the path followed by the reflected/refracted ray, and are defined as follows:

),arctan( iii σρα = (11)
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where σi = Bix + λiGix + tix , ρi = Biy + λiGiy + tiy and τi = Biz + λiGiz + tiz� .
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In tracing the reflected/refracted ray at the ellipsoid boundary surface, the angle of
incidence, θi, is expressed as
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According to Snell’s law, the refraction angle θi between two optical media is given by
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where ξi–1 and ξi are the refractive indices of media i – 1 and i, respectively, and Ni =
ξi–1/ξi is the relative refractive index of medium i – 1 with respect to medium i. The
unit common normal vector mi of ni and Ri–1 can be derived as
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According to Snell’s optical law of refraction (reflection), the refracted (reflected)
unit directional vector Ri(Ri) can be obtained by rotating ni about mi at an angle θp =
π – θi(θp = θi) to obtain
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Further simplification of Eq. (16) is possible by utilizing the equations of
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From Eq. (17), the unit directional vector of the refracted ray Ri(θp = π – θi ) can be
expressed as
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while the unit directional vector of the reflected ray Ri (θp = θi  and Ni  = 1) is given by
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Following refraction (reflection), the light ray proceeds with point Pi as its new
point of origin and Ri as its new unit directional vector.

3. Error analysis at ellipsoid boundary surface

In optical systems, slight errors inevitably exist between the designed position and
orientation of the optical elements and their actual position and orientation following
the assembly process. In analyzing these errors, the relative positions and orientations
of the world frame (xyz)0 with respect to the ideal frame (xyz)i and the actual frame
(xyz)i′ can be expressed respectively as
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As shown in Fig. 2, the position and orientation errors of the ellipsoid boundary
surface considered in the present study can be described in terms of three translational
errors of the origin of frame (xyz)i′, i.e., ∆xi, ∆yi and ∆zi, and three rotational errors of
the three axes of frame (xyz)i′ with respect to frame (xyz)i, i.e., ∆Γi, ∆Ψi and ∆Φ i. The
overall effect of these six errors can be expressed mathematically using a matrix iAi of
the form
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Fig. 2. Definition of translational and rotational errors of coordinate frame.



















−
−+
+−

=

=

1000

������ ������������� ������������ )
�

,)Rot(
�

,)Rot(
�

,)Rot(
�

,
�

,Trans(
�

iiiiii

iiiiiiiiiiiii

iiiiiiiiiiiii

iiiiiiiiii'
i

z
Γ

 C 
Ψ

C 
Γ

 S 
Ψ

C 
Ψ

S 

y
Γ

 S 
Φ

C 
Γ

 C 
Ψ

 S 
Φ

S 
Γ

 C 
Φ

C 
Γ

 S 
Ψ

 S 
Φ

S 
Ψ

 S 
Φ

S 

x
Γ

 S 
Φ

S 
Γ

 C 
Ψ

 S 
Φ

C 
Γ

 C 
Φ

S  S �S
Ψ

 S 
Φ

C 
Ψ

 C 
Φ

C 

Γ
 x

Ψ
 y

Φ
 zzyxA

(22)

Since in an optical system, the translational and rotational errors are all very small,
Eq. (22) can be approximated by a first-order Taylor series expansion and rewritten in
the form
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From Eq. (24), it can be deduced that
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Furthermore, differentiating Eqs. (6), (18) and (19), it can be shown that the dif-
ferential changes in the incident point position, ∆Pi, the refracted light vector, ∆Ri and
the reflected light vector, ∆Ri, are given respectively by
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Combining Eqs. (29), (30) and (31), the differential changes in the incident point
position, ∆Pi, and the unit directional vectors of the refracted (reflected) rays, ∆Ri (∆Ri),
can be expressed as
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where [ei] = [∆xi   ∆yi   ∆zi   ∆Γi   ∆Ψi   ∆Φi]
T. Mi is a sensitivity matrix describing

the differential changes in the reflected/refracted ray unit directional vector and inci-
dent point on boundary surface r i as a result of differential changes in the light source
position and unit directional vector of the incident ray. Furthermore, 

i
M  is a 6 × 6

error matrix describing the differential changes in the reflected/refracted ray unit di-
rectional vector and incident point on boundary surface r i induced by differential
changes in the six degrees of freedom (i.e., three translational and three rotational) of
the frame (xyz)i of boundary surface r i. The corresponding light path error induced at
the (n – 1)-th boundary surface can be determined from
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In Eq. (33), Mi (i = 1 ~ n – 1) is an error analysis matrix which combines the ray
path errors caused by translational and rotational errors of the i-th boundary sur-
face with the differential changes induced in the unit directional vector of the
reflected/refracted ray and its incident point on the boundary surface by corre-
sponding changes in the light source position and unit directional vector of the inci-
dent ray, i.e.,
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4. Simulation of refraction event at ellipsoid boundary surface

This section demonstrates the validity of the proposed error analysis methodology by
considering the case of an optical element with an arbitrary refractive ellipsoid bound-
ary surface. As shown in Fig. 3, it is assumed that the light source is located at a posi-
tion P0 = [P0x   0   –50   1]T and the unit directional vector of the incoming ray has the

form of either R0 = [0   0   1   0]T or 
T








= 0
2

1
0

2

1
0l . In addition, the ellipsoid

Fig. 3. Refraction process at ellipsoid boundary surface with P0 = [P0x  0  –50  1]T and R0 = [0  0  1  0]T.

boundary surface has parameters of a1 = 50, b1 = 60 and to the refractive index ratio
the following values are assigned: N1 = 1.5, N1 = 2.0 or N1 = 2.5. The relative configu-
ration of the world frame (xyz)0 with respect to the ellipsoid boundary surface frame
(xyz)1 is given by
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Figure 4 illustrates the variation of 
1

1

x
z

∂
∂l  with changes in the light source position

P0x as a function of the ratio of the refractive index ratio N1. In general, it can be
seen that a total reflection event occurs at small values of P0x. From inspection, it is
found that the value of P0x associated with the total reflection phenomenon reduces
as the value of the refractive index ratio N1 increases. Moreover, it is evident that the
total reflection event occurs more readily for the incident ray with a unit directional
vector of R0 = [0   0   1   0]T than for that with a unit directional vector of

T








= 0
2

1
0

2

1
0l . It can also be seen that in the case of the incident ray with

a unit directional vector of R0 = [0   0   1   0]T, a significant error exists in the path of
the refractive light ray prior to the total reflection event.

Fig. 4. Variation of 
1

1

x
z

∂
∂l  with light source position P0x as function of refractive index ratio N1.
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Fig. 5. Variation of 
1

1Ψa z

∂
∂l

 with light source position P0x as function of refractive index ratio N1.

Figure 5 illustrates the variation of 
1

1Ψz

∂
∂l

 with changes in the light source position P0x

as a function of N1. The results clearly show that a rotational error of the boundary
surface has a significant effect on the deviation of the refractive ray as the incident ray
passes through the ellipsoid boundary surface. Comparing Figures 4 and 5, it is evi-
dent that a rotational error of the boundary surface has a greater effect on the deviation

of the refractive ray than a translational error. Figure 6 illustrates the variation of 
xP0

1

∂
∂l

with changes in the light source position P0x as a function of N1. It is evident that the
effect of ∆P0x on ∆R1 is significantly dependent on both the value of the refractive in-
dex, N1, and that of the unit direction vector of incoming ray, R1.

In general, Figs. 4–6 demonstrate that the orientation of the refracted light ray is
significantly dependent upon the incident position of the incoming light ray and the
translational and rotational errors of the boundary surface. For an incident ray with
a unit directional vector of R0 = [0   0   1   0]T, the variation in the unit directional vec-
tor of the refracted ray, ∆R1, tends to zero as the position of the light source approaches
the optical axis. The results have also shown that a total reflection event occurs when
the light source is displaced slightly from the optical axis. This phenomenon is par-
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ticularly apparent at higher values of the refractive index ratio, N1. Overall, the results
presented in Figs. 4–6 confirm the importance of performing an error analysis and
then applying an appropriate calibration effect when designing optical systems com-
prising elements with ellipsoid boundary surfaces.

Fig. 6. Variation of 
xP0

1

∂
∂l

 with light source position P0x as function of refractive index ratio N1.

5. Conclusions

This study has extended the error analysis methodology presented by the current
author in [13] for optical elements with flat boundary surfaces to the case of optical
components with ellipsoid boundary surfaces. The proposed methodology considers
two fundamental sources of error, namely the translational and rotational errors at
each boundary surface and the differential changes in the incident point position and
unit directional vector of the refracted/reflected ray as a result of differential changes
in the position and unit directional vector of the light source. The validity of the pro-
posed methodology has been demonstrated by analyzing an optical element with an
arbitrary ellipsoid boundary surface. In a future study, the error analysis methodology
presented in this paper will be further extended to the case of optical elements with
hyperbolic boundary surfaces.
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