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ADAPTIVE ROLLING PLANS ARE GOOD 

0BHere we prove the goodness property of adaptive rolling plans in a multisector optimal 
growth model under decreasing returns in deterministic environment. Goodness is achieved as 
a result of fast convergence (at an asymptotically geometric rate) of the rolling plan to 
balanced growth path. Further on, while searching for goodness, we give a new proof of 
strong concavity of an indirect utility function – this result is achieved just with help of some 
elementary matrix algebra and differential calculus.  
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3B1. INTRODUCTION 

The idea of this paper comes from Kaganovich (1996) where a hypothesis 
is put forward that adaptive rolling plans are good (in Gale’s sense, see Gale 
(1967)), if there is uniform strong convexity of technology. Goodness of 
rolling plans in one sector models was proven in Bala et al. (1991). Fast 
convergence (at an asymptotically geometric rate) toward turnpike under 
linear technology (with suitably defined opitmality criterion) is known from 
Kaganovich (1998). We extend these results to the case where production of 
goods is described by neoclassical technology. 

Rolling planning is a procedure of constructing infinite horizon programs. 
After finding an optimal process starting from a given initial state and under 
a fixed and finite horizon length of planning, only the first step of the plan is 
executed and a new optimal plan is constructed starting from the just 
achieved state (Goldman 1968). When feasible processes of growth are those 
in which initial and final state of the economy is the same (changes may 
occur between initial and final periods), then we deal with adaptive rolling 
planning procedure. It is known that in one-sector case adaptive rolling plans 
are efficient and good (Bala et al. 1991)). Kaganovich (1996) proved that 
rolling plans converge toward turnpike,F

∗
FF

1
F which is a necessary but not 

                                                           
∗ Department of Mathematical Economics, Poznań University of Economics 
1 A summary of turnpike theory can be found in McKenzie (2002). 
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sufficient condition for goodness. Kaganovich (1998) showed that under 
linear technology and maximal growth rate as optimality criterion (for 
constructing adaptive rolling plans) rolling plans approach von Neumann ray 
at (asymptotically) maximal growth rate that can be achieved among all 
balanced growth processes. We prove that rolling plans are goodF

2
F under 

neoclassical technology of goods (theorem X5 X) and while proving it we use 
strong concavity (Vial 1983) of an indirect utility function near turnpike. To 
this goal, we firstly construct indirect utility function (definition). Our 
construction differs from a typical one (Venditti 1997) in that we express 
utility as a function of today’s and tomorrow’s inputs and not as a function 
of today’s and tommorow’s outputs (stocks of goods). Strong concavity was 
proven in Venditti (1997) for an economy where there is only one 
consumption good and all other goods are capital goods. In our case – to be 
in compliance with Kaganovich’s approach (Kaganovich 1996) – all goods 
are treated as consumption/production goods at a time, so that Venditti’s 
approach is not applicable here.F

3
F We also show that strong concavity of 

indirect utility function holds (under our assumptions) only if at most one 
production function is positively homogeneous of degree one and the other 
are subject to decreasing returns to scale.F

4
F  

The next two sections set notation and preliminaries. In section 4 and 5 
we included main results. Section 6 is a summary. 

4B2. NOTATION AND CONVENTIONS 

Symbol nR  denotes an n-dimensional real linear space, and n
+R  is  

its non-negative orthant. A point nx R∈  possesses coordinates nxx ,,1 … . 

If an element of  nR  is named jx , where j is a nonnegative integer, then 

),,( 1 njj
j xxx …= . For nxx R∈',  we write 'xx ≥  if nixx ii ,,1,' …=≥ ; 

                                                           
2 So that, the procedure of constructing adaptive rolling plans can be used to build an 
evolutionary mechanism – more on this see in Bala et al. (1991) or Kaganovich (1996). 
3 We tried to prove the strong concavity of indirect utility function when its arguments were 
outputs – but we did not succeed because in that approach we could not determine 

definiteness of a counterpart of matrix ''V  (equation 21), which is crucial. 
4 Assumptions on production functions similar to ours were taken in Hirota and Kuga (1971), 
Benhabib and Nishimura (1979a), Benhabib and Nishimura (1979b), Benhabib and Nishimura 
(1981). 
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 'xx >  means 'xx ≥  and 'xx ≠ ; 'xx >>  is equivalent to 
nixx ii ,,1,' …=> . By n

+Rint  we denote the interior of n
+R , i.e. the set 

of positive vectors. If m  and n  are positive integers, then for R∈a  
symbol nma ×  denotes a matrix composed of m  rows and n  columns with 

a  on each coordinate; na  stands for 1×na . For two matrices A , B  their 
(right) Kronecker product is written as BA⊗  (see Lancaster  
and Tismenetsky (1985), p. 407). The transposition of A  is denoted by  

TA . Euclid norm of nx R∈  is denoted as x . Writing 
nn BABAyx RR ⊂⊂×∈ ,,),(  we mean Ax∈ , By∈ . Given two 

matrices A  ( m  rows, n  columns) and B  ( n  rows, k  columns) and 
equation 0=AB , we deduce zero on right-hand-side is nm×0  (without 

writing this explicitly). Analogously: if 0, ≥∈ xx nR , then zero on the 
right-hand-side is n0 . The identity matrix of order n  is denoted as nI .  

For an element na R∈  by adiag we denote diagonal matrix of order 
nn×  with naa ,,1 …  on the diagonal. Symbol ‘ =: ’ reads as ‘by definition 

equals to’. 

5B3. PRELIMINARIES 

To achieve our goal we have to give a more detailed description of a 
technology set Z  than was done in Kaganovich (1996). Technology set Z  
is defined as  

⎩
⎨
⎧

≤=∈∃×∈= ∑
=
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where +
+

+ → RR 1: n
jf  is production function of j -th good, 

),,( 1 njj
j xxx …=  represents producible goods inputs and jl  stands for 

labour input,  nj ,,1…= . We assume for nj ,,1…=  



120                                                 P. MAĆKOWIAK 
 

(i) jf  is continuous on 1+
+
nR , twice continuously differentiable and 

strictly increasing over 1int +
+
nR  with 0

),(
,0

),(
>

∂

∂
>

∂

∂

j

j
j

j

ij

j
j

j

l
lxf

x
lxf
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ni ,,1…= , and strictly concave on interior of its domain and 
0),( >j

j
j lxf  only if 0,0 >>> j

j lx . Moreover, Hessian of jf  is 

negatively definite everywhere on 1int +
+
nR .  

(ii) There exists 0>β  such that if β>x , then for Zyx ∈),( : xy ≤ .  

(iii)There exists expansible stocks vector nx +∈R : xy >>  for some 
Zyx ∈),( .  

The construction of set Z  and assumption (i) guarantee that the set is 
closed and convex; free disposal is allowed and Z  admits weak strict 
convexity (external effects) on inputs: Zyx ∈),( , Zyx ∈)','(  with 'xx ≠  

imply that there exists Zyxxyyz ∈⎟
⎠
⎞

⎜
⎝
⎛ ++

>> ,
2

':
2

'
. These properties 

imply that assumptions imposed on production set in Kaganovich (1996) are 
met, and we can use results obtained therein.  

Consumption c  is valuated by an instantaneous utility function 

++ → RR nU :  which satisfies  
(iv)  U  is continuous, strictly concave and twice continuously 

differentiable on n
+Rint  with negatively defined Hessian.  

(v)  U is strictly increasing on n
+Rint : )'()(' cUcUcc >⇒> , with 

0)(
>

∂
∂

jc
cU

.  

Let us fix initially available input nx +∈R  and a positive integer number 

N . A sequence  ( ) nnnN
tttt cyx +++= ××⊂ RRR1),,(  is called feasible  

N-process from x  to nb +∈R , if  
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Sequence ( ) nnn
tttt cyx +++

∞

= ××⊂ RRR1),,(  is called feasible ∞ -process 

from x  if for all 1≥t  it holds Zyx tt ∈+ ),( 1 , ttt ycx ≤+  and 

Zyx ∈),( 1 . An N-feasible process from nx +∈R  to nb +∈R  is called  
N-optimal from x  to b  if it maximizes  

 ∑
=

N

t
tcU

1

)(                     (3) 

over the set of all N-feasible processes from x  to b . We are interested 
in properties of adaptive rolling plans defined as follows. F

5
F  

Definition 1 Fix nx +∈R . A sequence ( ) nnn
tttt cyx +++

∞

= ××⊂ RRR1),,(  
is called adaptive rolling plan from x  if for all …,2,1=t ,a sequence  

)),,(),,,(( 111 +++ tttttt cyxcyx  

is 2-optimal process from 1−tx  to 1−tx  where xx =0 .  
From now on we assume that there exists an adaptive rolling plan for a 

given initial inputs vector 0x .  

Definition 2 Triplet nnncyx +++ ××∈ RRR),,(  is called turnpike if it is 
optimal solution of the following problem  

.,,
,),(
,
)(max

ncyx
Zyx
ycx
cU

+∈
∈
≤+

R

 

Under our assumptions turnpike exists and is unique. In what follows we 
denote the turnpike as ),,( cyx  and its utility as )(cUU = . We also 
assume:  

(vi)  Turnpike consumption c  is positive, i.e. 0>>c .  
We shall show that adaptive rolling plans enjoy a goodness property Gale 

(1967) defined as  
Definition 3 Let nx +∈R0 . A feasible ∞ -process from 0x , 

( )∞=1),,( tttt cyx  is called good if 

                                                           
5 Compare it to definitions in Bala et al. (1991) or Kaganovich (1996). 



122                                                 P. MAĆKOWIAK 
 

 ∑
=

∞→
−∞>−

N

t
tN

UcU
1

))((inflim .     (4) 

It is known that for any ∞ -process suplim of the series on left-hand-side 
in (4) is always finite and if Alim in Ef A is finite then the series converges (Gale 
1967). Further, if a process is good then it converges to the turnpike – it is a 
necessary condition for goodness – and as it has been said this property 
holds in our setting (by results of Kaganovich 1996). Our goal is to prove 
that the speed of convergence toward turnpike is high enough to ensure that 
the condition (4) holds. We need to show that the indirect utility function (to 
be defined below) is twice continuously differentiable and strictly concave 
near the turnpike and that its Hessian is negatively definite at the turnpike.  

Definition 4 The indirect utility function +++ →× RRR nnV :  is defined 
asF

6
F  

)'(max:)',(',
),(

,:
xyUxxVxx

Zyx
yxy

n
n

−=∈∀
∈

≤∈
+

+R
R     (5) 

Certainly, function V  is concave and continuous for ', xx  near the 
turnpike x .  

6B4. STRONG CONCAVITY OF THE INDIRECT UTILITY 
FUNCTION NEAR TURNPIKE 

Now we shall use the strength of the definition of technology set Z  and 
assumptions. Fix nxx +∈R', . The optimization problem defining function V   

,
,),(

,'
)'(max

ny
Zyx

yx
xyU

+∈
∈

≤
−

R

                    (6) 

is – by assumptions (i), (iv) – equivalent to a concave maximization 
problem  

                                                           
6 If a set is empty then the maximum value of a function over the set equals ∞− , as a usual 

convention. 
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in the following sense: if nxx ,,1 … , with some choice of nll ,,1 …  

solves (7), then )),(,),,(( 1
1

1 n
n

n lxflxfy …=  solves (6) and every 

solution of (6) is obtained by some choice of nxx ,,1 …  and nll ,,1 …  
solving (7) – in fact this choice is unique (again by assumptions (i), (iv)).  

9B4.1. Non-homogeneous case 

We just keep assumption (i) in force.  
Lemma 1  There exists a neigbourhood nnW ++ ×⊂ RR  of ),( xx  such 

that function V is a twice continuously differentiable and strongly concave 
on W.F

7
F  

Proof: We divide the proof into three steps.F

8 
Step 1 Lagrange multipliers λ  and sectoral inputs ix  are twice 

continuously differentiable functions of x  and 'x .  
We know that there is a one-to-one relationship between solutions of (6) 

and (7). We shall show that solution of (7) depends twice continuously 
differentiably on )',( xx  in a neighbourhood of ),( xx . Let 

),( j
j

jj lxfy = , for j
j lx ,  nj ,,1…= , solving (7). By assumption (vi), 

                                                           
7 Symmetric matrix A is called negative-definite (nonpositive-definite) if all its eigenvalues 
are negative (nonpositive). If A is nonpositive-definite and is not negative-definite then we 
call it negative-semidefinite (Lancaster and Tismenetsky (1985), p. 179). It is known that a 
twice continuously differentiable concave function is strongly concave on W iff its Hessian is 
negative-definite on W with eigenvalues strictly separated from 0 – proof of this fact and 
definition of strong concavity (convexity) is contained in Vial (1983). 
8 The first one is rather standard as regards its idea, see Benhabib and Nishimura (1979a), 
Benhabib and Nishimura (1979b), Hirota and Kuga (1971). 
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jj
j

j xlxf >),( , nj ,,1…= . Obviously, by assumptions (i) and (v), for 

any solution nxx ,,1 … , nll ,,1 …  of (7) (under any given positive )',( xx ), 

it holds that ∑
=

=
n

j

jxx
1

 and 0>>jx  near ),( xx , since solution of (7) 

depends continuously on )',( xx  (by Berge’s maximum theorem, Lucas and 
Stokey (1989), p. 62). Therefore Lagrange function for )',( xx  near ),( xx  
can be written as  

=+ )',,,,,,,,,,( 11
11 xxlxlxL nn

nn λλλ ……  
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         (8) 
where nii ,,1, …=λ , denotes Lagrange multiplier. Necessary and 

sufficient conditions for optimality of a feasible solution nxx ,,1 … , 

nll ,,1 …  of (7) at ),( xx  read as (Takayama 1985, p. 91)  
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for all nji ,,1, …=  some positive optimal multipliers iλ , where 

),,,,( 1
1

n
n lxlxFF …=  and  

)),(,),,((),,,,( 1
1

11
1

n
n

nn
n lxflxflxlxF …… =  

Conditions (9) can be written in matrix notation as  
01'' 1 =⊗− × λnFU                 (10) 

where 'U  is the first derivative of U evaluated at 
xlxlxF n

n −),,,,( 1
1 … , ),,,,('' 1

1
n

n lxlxFF …=  and  
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By assumption of optimality of ),,,,(

1

1
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n
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x =  at ),( xx  it holds 

that  
0),,,( =xxG λx  

and since G  is of class 1C  in a neighbourhood of ),,,( xxλx , then – by 

the implicit function theorem – if we knew that 
),(

),,,(
λ

λ
x

x
∂

∂ xxG
 were 

invertible then we could express x  and λ  as continuously differentiable 
functions of )',( xx  close to ),( xx . After simple transformations we get 
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where ))(('''' xFUU −= x  is Hessian of U evaluated at xF −)(x , 

)('''' xFF =  and  
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1
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nffF xxx …=  

is a block-diagonal matrix of rank 2)1( +n  with Hessians 
)(,),( ''1''

1
n

nff xx …  on the diagonal. We shall show first that A  (defined in 

(12)) is a negative definite matrix. Certainly ''U  is a negative definite and so 
is ''F . Further ''))'diag(( 1 FIU n+⊗  is negative definite by assumption (i), 

so that A is negative definite. It is easily seen that for any )1(0 +∈≠ nnRx  
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Therefore matrix (12) is non-singular. Further,  
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By the implicit function theorem (Nikaido 1968, p. 85) there exists a 
neighbourhood W of ),( xx  and continuously differentiable function 

nnnWg +
+

+ ×→ RR intint: )1(  such that  
Wxx ∈∀ )',( : 0)',),',(( =xxxxgG and if Wxxg ∈≠ ),()',( λx  then 
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where ))',(),',(()',( xxxxxxg λx= . 
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By the envelope theorem (see Takayama 1985, p. 138) we get from (8) 
Wxx ∈∀ )',(  
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∂ xλλ …             (12) 

and since ),(),,( ⋅⋅⋅⋅ xλ  are continuously differentiable on W  then V  is 
twice continuously differentiable in W .  

Step 2 Hessian of the indirect utility function 
All we need now is to show that Hessian ),('' xxV  is negative definite. It 

holds (arguments omitted in the last line)  

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
−∂

−
∂

−∂
−

∂
∂

∂
∂

==

'
)')),(((')')),((('

'
),)(,,(),)(,,(

),('':''
11

x
xxxFU

x
xxxFU

x
xx

x
xx

xxVV
nn

xx

λλλλ ……

  

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+
∂

∂
−

∂
∂

−

∂
∂

∂
∂

=
''

'
),('''),('''

'
),)(,,(),)(,,( 11

U
x

xxFU
x

xxFU
x

xx
x

xx nn

xx

λλλλ ……

 

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

⎥
⎦

⎤
⎢
⎣

⎡

−
=

×

××

××

×+×

''0
00

'

'
00'''
00

1

1)1(

U
xx

xx
FU

I

nn

nnnn

nnn

nnnnn

λλ

xx

             (17) 

By (14), (15) and (17)   
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By (12) we can write  
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and by (18) we get  
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Step 3 Negative definiteness of Hessian 
Since V is concave, then ''V  is at least nonpositive definite. To show that 
''V  is negative definite we need to prove that it is non-singular. Suppose that 

there exists nnxx RR ×∈)',(  such that  
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This system of equations is equivalent (by (20)) to  

,
0

''''
0
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⎥
⎦

⎤
⎢
⎣

⎡
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⎦

⎤
⎢
⎣

⎡
− ×−

a
xUFAEB

x
E nTT                (22) 

,0'''''''''''''''''
0

''' 1111 =+−−⎥
⎦

⎤
⎢
⎣

⎡
− −−−− xUxUFABEBAFUxUFAFU

x
BEAFU TTT

                    (23) 

                                                           
9See (12) 
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where a  is some real number. Substituting ⎥
⎦

⎤
⎢
⎣

⎡
0
x

E  into (23) we get  

,0''''''''''
0

''' 111 =+−⎥
⎦

⎤
⎢
⎣

⎡ −×− xUxUFAFU
a

BAFU Tn  

which is equivalent to (after left-multiplying by TF ' )F

10
F  

,
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'''' 111
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⎥
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⎤
⎢
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− ××−

a
B

a
BxUFRA nnT                            (24) 

where  
''FI)'UR ⊗= )diag((: .                             (25) 

By invertibility of R , A  and since 11 '''' −− += RFUFIAR T  we get 
from (24)  

⎥
⎦

⎤
⎢
⎣

⎡
−= ×−

a
BRFUFxUF nTT 11 0

'''''''' , 

which is equivalent to  

⎥
⎦

⎤
⎢
⎣

⎡
−= ×−

a
BRFx n 11 0

'' . 

Putting x' into (22), observing that 

n
TTT IBREBBRFUFAEB −= −−− 111 ''''  and due to invertibility of E  

we get  

,
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0
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⎥
⎦

⎤
⎢
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⎡
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⎦

⎤
⎢
⎣

⎡ ×−

a
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x nT                  (26) 

But by definition of R  (see (25)) 1−R  is a block-diagonal matrix with 

negative definite matrices 
1

'' )())((
−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

∂
−∂ j

j
j

xf
c

xFU x
 on the diagonal. 

Moreover 111 +× ⊗−= nn IB  and (26) imply 

                                                           
10 Since partial derivatives of fi at ix  are positive and RAFUF T −='''' . 
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which is possible only if 0,0 == xa . From this we get 0'=x  (by the 

equation above to (26)), so that we have shown that equality 0
'

'' =⎥
⎦

⎤
⎢
⎣

⎡
x
x

V  

(see (21)) is possible only if 0'== xx , therefore ''V  is negative definite 
and w.l.o.g. we can assume that )',('' xxV  is negative definite on W , which 
ends the proof.   

Remark 1  It should be noted that the above proof „works” for all points 
nnxx ++ ×∈ RR intint)',(  for which optimal consumption (see (7)) is 

positive. This observation allows us to broaden the class of ‘base’ models for 
which the indirect utility function is strongly concave: models of type (7) 
generate strongly concave indirect utility functions if assumptions (i)-(vi) are 
met and for every  nnxx ++ ×∈ RR intint)',(   it holds that optimal 
consumption level is positive.F

11
F  

10B4.2. Homogeneous production functions 

Let us put aside the assumption of strict concavity and negative 
definiteness of Hessians of production functions. Suppose that for at least 
two j’s (w.l.o.g.  …,2,1=j ) it holds  

(vii) jf  is continuous on 1+
+
nR , positively homogeneous of degree 1 and 

twice continuously differentiable and strictly increasing over 1int +
+
nR  with 

0
),(

,0
),(

>
∂

∂
>

∂

∂

j

j
j

j

ij

j
j

j

l
lxf

x
lxf

, ni ,,1…=  and concave on interior of its 

domain and 0),( >j
j

j lxf  only if 0,0 >>> j
j lx . Moreover, rank of 

negatively semidefinite Hessian of jf  is n  everywhere on 1int +
+
nR .  

                                                           
11 Our approach eliminates inputs x, x' and consumption c=y−x' with 0 entries – 
corner solutions are excluded. 
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We shall proceed keeping in mind that – by Euler’s theorem (Lancaster 
1968, p. 335-336) – if jf  satisfies assumption (X4.2X) then  

jj
j

T

jj
j

j
j

yyfy

ff

xx

xxx

λλ =∈∃⇔=

=

:R0)(

)()(

''

'

 

where ++ ×∈= RRx intint),( n
j

jj lx . 

We shall show that if functions 1f  and 2f  fulfill (X4.2 X) (and the other 
ones satisfy (i) or ( X4.2 X)) then Hessian of the indirect utility function V  is 
nonpositive definite. Since the way of construction of V  is as before, then to 
show that V  is twice continuously differentiable (near ),( xx ) it is 
sufficient to show that matrix A  (see (12)) is negative definite. Certainly, A  
is nonpositive definite. It is negative semidefinite if singular. Suppose that 
for some :),,(0 )1(1 +

+∈=≠ nnn Rxxx …  0=xA . It implies 0=xx AT , 

which is possible only if 0'''' =xx FUF TT  and 0' =TT Fx . Since 
)('' j

jf x , nj ,,3…= , are negatively defined and by construction of ''F , 

then 03 === nxx … . By Euler’s theorem and assumption (X4.2X) on rank of 
Hessian ''

jf  there exist scalars jα  such that j
j

j xx α= , j=1, 2 (this 

observation comes from Hirota and Kuga (1971)). Since 0'''' =xx FUF TT  
only if 0' =xF , then using Euler’s theorem again brings  

)(
)(

0 j
jj

j
j

j f
f

xx
x
x

α=
∂

∂
= , 

which is possible only if 0=jα , since 0)( >j
jf x  by assumption. This 

implies 0=x  – contradiction, so that A is non-singular, and therefore 
negatively definite. We can use (21) to express ''V . Hessian ''V  is 
negatively definite if solution x,x' of (22), (23) (or equivalently (22), (24))  
is trivial (if it exists for a given value of a). We know that turnpike  

labour inputs are positive: 0>
j

l , nj ,,1…= . Take any 21 ,αα   

non-vanishing simultaneously, such that 02211 =+ ll αα . Let us  

define )1(1 ),,( +
+∈= nnn Rxxx …  as njj jj

j
j ,,3,0,2,1, …==== xxx α . 

Put 0=a , nffx +∈= Rxx )0,,0),(),((' 2
22

1
11 …αα , and  
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nx R∈  2
2

1
10

xx αα +=⎥
⎦

⎤
⎢
⎣

⎡x
. Substituting the values into system (22), (24) and 

observing that RAFUFFx T −== '''',']00[' 21 x…αα  and E 

is non-singular we see that ', xx  solve the system for 0=α  and 0'≠x . 

This means that ''V  is singular and therefore negative semidefinite. 
Suppose now that only 1f  satisfies (X4.2 X) and nff ,,2 …  satisfy (i). We 

shall show first that system (22), (24) has solution if 0=a . Let 
)1(1 )0,,0,( +

+∈= nnRxx … . Left-multiplying (24) by AxTE

A we get  
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which is possible only if 0=a . So that (22), (24) become  
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which – by Euler’s theorem – implies )0,,0,('''' 11
nn

T xUFA …xα=−  
for some R∈α and  

.''''
0

11 xα−=−=⎥
⎦

⎤
⎢
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⎡ − xUFAB
x TT  

Since 01 >l  it can hold only if 0=x , 0=α , but this shows that 
system (22), (24) has only a trivial solution, under 0=α  (if a ≠ 0 then it is 

an inconsistent system). We have shown that 0
'

'' =⎥
⎦

⎤
⎢
⎣

⎡
x
x

V  if 0'== xx , so 

that Hessian ''V  is negatively definite. Now we can stateF

12
F  

Theorem 1 Suppose assumptions (ii)-(vi) hold and production function fj 

satisfies assumption (i) or (X4.2 X), nj ,,1…= . The indirect utility function 

                                                           
12 Similar results, but for social production frontier only (not for utility), were 
derived in Lancaster (1968), p. 127-133. 
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V (see (6)) is strongly concave in a neighbourhood of turnpike if and only if 
the number of production functions satisfying (X4.2 X) is less than 2.  

7B5. ROLLING PLANS ARE GOOD 

From Kaganovich (1996) we know that for every rolling plan 

( )∞=1),,( tttt cyx  it holdsF

13
F  

),,(),,(lim cyxcyx tttt
=

∞→
                (28) 

To prove that a rolling-plan is good we shall show that it converges 
toward turnpike fast in a neighbourhood of turnpike. The main result of the 
paper is  

Theorem 2 Fix nx +∈R . Suppose that  ( )∞=1),,( tttt cyx  is an adaptive 
rolling plan from x. The sequence is a good process.  

Proof: By (28) we have  lim tt
x x

→∞
= . There exists a neighbourhood 'W   

of x  such that ' 'W W W× ⊂  where W satisfies the thesis of lemma X4.1X. 
Since x  is strictly positive, then for sufficiently large t’s  xt+1 solves 
uniquely  

{ }
' '

max ( , ') ( ', )t tx W
V x x V x x

∈
+                  (29) 

To prove the thesis it suffices (by concavity of V ) to show that mapping 
{ }arg max ( , ') ( ', ) : 'x V x x V x x x W+ ∈6   is contractive at x .F

14
F Since 

restriction 
W

V  is a function of 2C -class over W  it must hold for large t : 

1 'tx W+ ∈  and 1 1( , ) ( , ) 0
'

t t t tV x x V x x
x x

+ +∂ ∂
+ =

∂ ∂
. Let us define a function 

: ' ' nS W W× → R S as follows:  
( , ') ( ', )( , ') ' ' ( , ')

'
V x x V x xx x W W S x x

x x
∂ ∂

∀ ∈ × = +
∂ ∂

 

                                                           
13 After some mild modification of proof of theorem 1, p. 181, in Kaganovich (1996). 
14 For a neighbourhood W of x  we call mapping : ' 'h W W→  contractive at x  if 

[0,1) : ( ) ( )q qx W h x h x x xα α∃ ∈ ∀ ∈ − ≤ − , where q is a fixed positive integer 

number and ( ) : ( )q

q times

h x h h x= D…D��	�
 . 
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Then  
2 2

2 2

2 2

( , ') ( ', )( , ')
' '

( , ') ( ', )( , ')
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TV x x V x xS x x
x x x x x

V x x V x xS x x
x x x
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For every ( , ') ' 'x x W W∈ × ' it holds that ( , ')
'

S x x
x

∂
∂

 is an invertible matrix 

and therefore, since ( , ) 0S x x = , then there existsF

15
F a function : ' 'h W W→  

such that : ( , ( )) 0x W S x h x∀ ∈ =  and h  is continuously differentiable on 
'W . Moreover  

1( , ) ( , )'( )
'

S x x S x xh x
x x

−∂ ∂⎡ ⎤= − ⎢ ⎥∂ ∂⎣ ⎦
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Denote 
2 2 2

21 11 222 2

( , ) ( , ) ( , ), ,
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V x x V x x V x xV V V
x x x x

∂ ∂ ∂
= = =

∂ ∂ ∂ ∂
. We shall show 

that 1
11 22 21 21[ ] [ ]TV V V V−− + +  possesses no eigenvalue with modulus greater or 

equal to one – this will finish the proof, since then h  is contractive at x . By 
symmetry of 11 22V V+  and 21 21

TV V+  the eigenvalues of interest are real. 
Suppose that for some 0 nx≠ ∈R  and λ ∈R  it holds 

xxVVVV T λ=++− − ][][ 2121
1

2211 , 
which is equivalent to  

xVVxVV T ][][ 22112121 +=+− λ . 
Left-multiplying last equality by Tx , and using negative definiteness of 

11 22V V+  we get  

 
xVVx
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2211
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+

+
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By assumption, 11 21

21 22

'' ''( , )
TV V

V V x x
V V
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

 is negatively definite so that 

we have  

                                                           
15 If necessary, we can choose an open subset W''⊂W' with ''x W∈  instead of W'. 
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TT T T TxV V
x x x V V x x V V x

xV V
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and  
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Therefore  
11 22 21 21 11 22[ ] [ ] [ ]T T T Tx V V x x V V x x V V x+ < + < − +  

and  

21 21

11 22

[ ]
1 1

[ ]

T T

T

x V V x
x V V x

+
− < <

+
, 

which shows that 1λ < (see 30). This ends the proof.   

8B6. SUMMARY 

In this paper we have shown that adaptive rolling plans are good under 
the assumption of neoclassical technology. We have also shown (by use of 
rather elementary tools) strong concavity of indirect utility function. As we 
mentioned, in Bala et al. (1991) it was proven that in one-sector case 
adaptive rolling plans are good and efficient. ”Efficiency puzzle” of adaptive 
rolling plans in multiproduct economy seems to have been unsolved, so far.   
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