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1. Introduction 

The Hilbert space constitutes a significant object of considerations in 
physics as well as in economics [Elsberg 1961], and even in psychology 
[Kahneman, Tversky 1979]. L.J. Savage [Savage 1954] is believed to be the 
precursor of the axiomatic approach to the problem of preferences. In the the-
ory of Subjective Expected Utility (SEU), subjective probability distribution 
related to decision makers is introduced. In the paper [Eichberger, Pirner 
2017], J. Eichberger and H.J. Pirner described a way of applying an abstract 
Hilbert space as possibility space in decision theory. The problem of applying 
the Hilbert space theory in econometrics also arises in Polish literature, for 
instance in the concept of extended regression. In the model described by 
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B. Fałda and J. Zając [Fałda, Zając 2012] regression functions are the solu-
tions of a specified extremal problem in the finite or infinite-dimensional Hil-
bert space. 

In the first part of this paper presents the essential problems with the for-
mulation of quantum mechanics in the real Hilbert space, attempting to prove 
that only an isomorphic structure with a complex one allows for obtaining 
relevant results. 

The second part analyzes a quaternionic quantum theory, and discusses 
ways of building characteristic for quantum mechanics structures using qua-
ternionic Hilbert space. 

The third part introduces the Schrödinger equation in the case of qua-
ternionic Hilbert space. 

Finally, the author  compares the individual Hilbert spaces over the afore-
mentioned numerical rings (or fields) in order to make conclusions about the 
advantages of the complex Hilbert space. At the same time,  we notice that 
there are indications that the quaternionic Hilber space can introduce a new, 
as yet mysterious, quality into science. 

From the point of view of applications in quantum mechanics, similar 
considerations were made in the work of Schlichtinger [2017]. 

2. The real quantum theory 

The Schrödinger equation in the case of the real Hilbert space 
ℋ = 𝐿𝐿ℝ2 (ℝ3) is considered. 

In the complex Hilbert space, Stone's theorem is used to study the prop-
erties of a time evolution [Reed, Simon 1972]. The content of this theorem is 
as follows: 

Let 𝑈𝑈(𝑡𝑡) be a strongly continuous, one-parameter group over the com-
plex Hilbert space ℋ. Then there exists a self-adjoint operator 𝐻𝐻 ∈ ℋ such that 

𝑈𝑈(𝑡𝑡) = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖, 
where 𝑡𝑡 indicates time. 

According to the above, the Schrödinger equation can be obtained for 
a complex case. Due to the fact that the wave function 𝜓𝜓(𝑡𝑡) = 𝑈𝑈(𝑡𝑡)𝜓𝜓0, the 
expression takes the form: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

𝜓𝜓0 =
𝑑𝑑�𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖�

𝑑𝑑𝑑𝑑
𝜓𝜓0 = −𝑖𝑖𝑖𝑖𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝜓𝜓0 = −𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡), 

where 𝐻𝐻 is a Hamiltonian.  
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Therefore 

𝑖𝑖
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝐻𝐻𝜓𝜓(𝑡𝑡). 

Since 𝐻𝐻 = −𝑖𝑖𝐻𝐻� [Adler 1995], hence 

𝑖𝑖
𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝑖𝑖𝐻𝐻�𝜓𝜓(𝑡𝑡). 

In the real Hilbert space, due to the lack of imaginary unit 𝑖𝑖 the Schrö-
dinger equation takes the form [Adler 1995]: 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= −𝐻𝐻�𝜓𝜓(𝑡𝑡). 

In this case the Hamilton operator 𝐻𝐻� is a real anti-self-adjoint operator, 
i.e. 

𝐻𝐻�∗ = −𝐻𝐻�. 
Subsequently, the eigenstates of the energy operator in real quantum me-

chanics in finite dimensional space will be considered. The issue of the energy 
operator eigenvalues may be written as follows:  

𝐻𝐻�𝜓𝜓𝑖𝑖 = 𝐸𝐸𝜓𝜓𝑖𝑖 . 
In the finite dimensional case, operator 𝐻𝐻� can be presented as a real skew-

symmetric matrix. The canonical form of such a matrix is [Moretti,  
Oppio 2016] 

𝐻𝐻� = �0 −1
1 0 �⊗ 𝐷𝐷, 

where ⊗ means the Kronecker product, and 𝐷𝐷 is the real diagonal matrix. 
Due to the fact that matrix 𝐷𝐷 is a real diagonal matrix, its real values will 

be real numbers lying on the diagonal. Therefore, the eigenvalues of operator 
𝐻𝐻� will be the products of the eigenvalues of matrix 𝐷𝐷 and the eigenvalues of  
the following matrix 

𝐶𝐶 = �0 −1
1 0 �. 

After short transformations, the equation for the eigenvalues of the above 
matrix takes the form 

𝜆𝜆2 + 1 = 0, 
whose only solutions are 𝜆𝜆 = ±𝑖𝑖. This implies that in real quantum mechanics 
there are no eigenstates of energy. 
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Another argument that testifies to the difficulties in the formulation of 
quantum mechanics in real space is a certain inaccuracy that manifests itself 
when trying to formulate the uncertainty principle. 

Let 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 be Hermitian operators and let them fulfil the commutation 
relation 

[𝐴𝐴,𝐵𝐵] = 𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 = 𝑖𝑖ћ𝐶𝐶. 
Factor ћ indicates Planck constant ℎ divided by 2𝜋𝜋, however for the sake 

of clarity it can be assumed that ћ is equal to unity. 
With this assumption, the above formula appears as 

[𝐴𝐴,𝐵𝐵] = 𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵 = 𝑖𝑖𝑖𝑖. 
It may be noted that the commutator of two Hermitian operators is an 

anti-Hermitian operator: 
[𝐴𝐴,𝐵𝐵]∗ = (𝐴𝐴𝐴𝐴 − 𝐵𝐵𝐵𝐵)∗ = 𝐵𝐵∗𝐴𝐴∗ − 𝐴𝐴∗𝐵𝐵∗ = 𝐵𝐵𝐵𝐵 − 𝐴𝐴𝐴𝐴 = −[𝐴𝐴,𝐵𝐵]. 

The above fact seems to prove that the imaginary unit 𝑖𝑖 is a necessary 
element. If 𝐶𝐶 is a Hermitian operator by assumption, compliance can be en-
sured only by the existence of factor 𝑖𝑖. 

It is possible to undertake attempts to replace imaginary unit 𝑖𝑖 using oper-
ator 𝐽𝐽 of the complex structure. However, the receipt of the uncertainty rule 
in such a procedure requires that 𝐽𝐽 satisfies the properties 

i) 𝐽𝐽2 = −𝐼𝐼, 
ii) 𝐽𝐽𝑇𝑇 = −𝐽𝐽. 
Where 𝐼𝐼 means the identity operator [Moretti, Oppio 2016; Adler 1995]. 
Let ℋℝ be a Hilbert space over the field of complex numbers with the 

real scalar product. In the thus created real space, multiplication by complex 
scalars can be defined as follows: 

(𝑎𝑎 + 𝑏𝑏𝑏𝑏)𝜓𝜓 = 𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏. 
The scalar product can be written as 

〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 = 〈𝜓𝜓,𝜑𝜑〉 + 𝑖𝑖〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉. 
It is shown that the scalar product that was defined above fulfils all four 

properties characteristic for a complex scalar product. 
1) It is demonstrated that 〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 > 0 for any 𝜓𝜓 ≠ 𝜃𝜃 and that 〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 = 0 

if and only if  𝜓𝜓 = 𝜃𝜃. 
By definition: 

〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 = 〈𝜓𝜓,𝜓𝜓〉 + 𝑖𝑖〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉. 
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On the basis of property ii) of operator 𝐽𝐽: 
〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉 = −〈𝐽𝐽𝐽𝐽,𝜓𝜓〉. 

From the symmetry of the scalar product: 
〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉 = 〈𝐽𝐽𝐽𝐽,𝜓𝜓〉. 

It follows that 
〈𝐽𝐽𝐽𝐽,𝜓𝜓〉 = −〈𝐽𝐽𝐽𝐽,𝜓𝜓〉 = 0. 

Therefore 
〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 = 〈𝜓𝜓,𝜓𝜓〉 ≥ 0. 

Since 〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 = 〈𝜓𝜓,𝜓𝜓〉, hence scalar product 〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 becomes a common 
scalar product, that is why 〈𝜓𝜓,𝜓𝜓〉𝐽𝐽 = 0 if and only if 𝜓𝜓 = 𝜃𝜃. 

2) The following relation is proven:  〈𝜓𝜓 + 𝜑𝜑, 𝜉𝜉〉𝐽𝐽 = 〈𝜓𝜓, 𝜉𝜉〉𝐽𝐽 + 〈𝜑𝜑, 𝜉𝜉〉𝐽𝐽. 
By definition 

〈𝜓𝜓 + 𝜑𝜑, 𝜉𝜉〉𝐽𝐽 = 〈𝜓𝜓 + 𝜑𝜑, 𝜉𝜉〉 + 𝑖𝑖〈𝜓𝜓 + 𝜑𝜑, 𝐽𝐽𝐽𝐽〉. 
The right side of equality is the same as 

〈𝜓𝜓, 𝜉𝜉〉 + 〈𝜑𝜑, 𝜉𝜉〉 + 𝑖𝑖〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉 + 𝑖𝑖〈𝜑𝜑, 𝐽𝐽𝐽𝐽〉 = 〈𝜓𝜓, 𝜉𝜉〉𝐽𝐽 + 〈𝜑𝜑, 𝜉𝜉〉𝐽𝐽, 
which ends the proof. 

3) It is shown that 〈𝛼𝛼𝛼𝛼,𝜑𝜑〉𝐽𝐽 = 𝛼𝛼〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 dla 𝛼𝛼 ∈ ℂ. 
Again, by definition: 

〈𝛼𝛼𝛼𝛼,𝜑𝜑〉𝐽𝐽 = 〈𝛼𝛼𝛼𝛼,𝜑𝜑〉 + 𝑖𝑖〈𝛼𝛼𝛼𝛼, 𝐽𝐽𝐽𝐽〉, 
where 𝛼𝛼 = 𝑎𝑎 + 𝑏𝑏𝑏𝑏. 

Therefore 
〈𝛼𝛼𝛼𝛼,𝜑𝜑〉 + 𝑖𝑖〈𝛼𝛼𝛼𝛼, 𝐽𝐽𝐽𝐽〉 = 〈(𝑎𝑎 + 𝑏𝑏𝑏𝑏)𝜓𝜓,𝜑𝜑〉 + 𝑖𝑖〈(𝑎𝑎 + 𝑏𝑏𝑏𝑏)𝜓𝜓, 𝐽𝐽𝐽𝐽〉

= 〈𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏𝑏𝑏, 𝐽𝐽𝐽𝐽〉
= 〈𝑎𝑎𝑎𝑎,𝜑𝜑〉 + 〈𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑎𝑎𝑎𝑎, 𝐽𝐽𝐽𝐽〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏𝑏𝑏, 𝐽𝐽𝐽𝐽〉
= 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 〈𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏𝑏𝑏, 𝐽𝐽𝐽𝐽〉. 

Using the above-mentioned properties of operator 𝐽𝐽, the homogeneity 
with respect to the first argument and the symmetry of the scalar product, it 
can be noted that 
𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 〈𝑏𝑏𝐽𝐽𝐽𝐽,𝜑𝜑〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏𝑏𝑏, 𝐽𝐽𝐽𝐽〉 = 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 〈𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏, 𝐽𝐽𝑇𝑇𝐽𝐽𝐽𝐽〉

= 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 〈𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏, 𝐼𝐼𝐼𝐼〉
= 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 〈𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏,𝜑𝜑〉. 
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However, by transforming the left side of equality 〈𝛼𝛼𝛼𝛼,𝜑𝜑〉𝐽𝐽 = 𝛼𝛼〈𝜓𝜓,𝜑𝜑〉𝐽𝐽, 
one may obtain 
𝛼𝛼〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 = 𝛼𝛼〈𝜓𝜓,𝜑𝜑〉 + 𝑖𝑖𝑖𝑖〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉 = (𝑎𝑎 + 𝑏𝑏𝑏𝑏)〈𝜓𝜓,𝜑𝜑〉 + 𝑖𝑖(𝑎𝑎 + 𝑏𝑏𝑏𝑏)〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉

= 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉 + 𝑏𝑏𝑏𝑏〈𝜓𝜓,𝜑𝜑〉 + 𝑎𝑎𝑎𝑎〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉 − 𝑏𝑏〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉
= 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 𝑏𝑏𝑏𝑏〈𝜓𝜓,𝜑𝜑〉 − 𝑏𝑏〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉. 

Now it is enough to show that both sides are equal. 
𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 〈𝑏𝑏𝑏𝑏𝑏𝑏,𝜑𝜑〉 + 𝑖𝑖〈𝑏𝑏𝑏𝑏,𝜑𝜑〉 = 𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 𝑏𝑏〈𝐽𝐽𝐽𝐽,𝜑𝜑〉 + 𝑏𝑏𝑏𝑏〈𝜓𝜓,𝜑𝜑〉

=   𝑎𝑎〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 + 𝑏𝑏𝑏𝑏〈𝜓𝜓,𝜑𝜑〉 − 𝑏𝑏〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉, 
which ends the proof. Anti-linearity of the scalar product in the second argu-
ment results from subsections 3 and 4. 

4) It is proven that 〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 = 〈𝜑𝜑,𝜓𝜓〉𝐽𝐽���������. 
In essence, 

〈𝜓𝜓,𝜑𝜑〉𝐽𝐽 = 〈𝜓𝜓,𝜑𝜑〉 + 𝑖𝑖〈𝜓𝜓, 𝐽𝐽𝐽𝐽〉 = 〈𝜑𝜑,𝜓𝜓〉 − 𝑖𝑖〈𝜑𝜑, 𝐽𝐽𝐽𝐽〉 = 〈𝜑𝜑,𝜓𝜓〉𝐽𝐽���������, 
which follows again from property ii) of operator 𝐽𝐽. 

It turns out, therefore, that all the axioms of a complex scalar product are 
fulfilled for 〈𝜓𝜓,𝜑𝜑〉𝐽𝐽. 

The behaviour of operators in the above space is also important to consider. 
Let 𝐴𝐴 be a self-adjoint operator in the sense of real adjointness, i.e. 

𝐴𝐴 = 𝐴𝐴𝑇𝑇. However, it is worth noting that for operator 𝐴𝐴 to be observable, it 
should commutate with operator 𝐽𝐽, i.e. [𝐴𝐴, 𝐽𝐽] = 0. 

It is proved that due to the fact that the above operators are commuting, 
it follows that operator A must be self-adjoint in the sense of complex ad-
jointness, i.e. 𝐴𝐴 = 𝐴𝐴∗. 

〈𝐴𝐴𝐴𝐴,𝜑𝜑〉𝐽𝐽 = 〈𝐴𝐴𝐴𝐴,𝜑𝜑〉 + 𝑖𝑖〈𝐴𝐴𝐴𝐴, 𝐽𝐽𝐽𝐽〉 = 〈𝜓𝜓,𝐴𝐴𝐴𝐴〉 + 𝑖𝑖〈𝜓𝜓,𝐴𝐴𝐴𝐴𝐴𝐴〉
= 〈𝜓𝜓,𝐴𝐴𝐴𝐴〉 + 𝑖𝑖〈𝜓𝜓, 𝐽𝐽𝐽𝐽𝐽𝐽〉 = 〈𝜓𝜓,𝐴𝐴𝐴𝐴〉𝐽𝐽. 

There is no doubt, therefore, that the above real formulation is an attempt 
to create a space of quantum mechanics without the use of complex numbers, 
but with the preservation of the most important properties of their structure.  

3.The quaternionic quantum theory 

Let ℋ be the right, quaternionic Hilbert space and let 𝑇𝑇:𝐷𝐷(𝑇𝑇) → ℋ be 
right-linear operator endowed with a dense domain. An adjoint operator 
𝑇𝑇∗:𝐷𝐷(𝑇𝑇∗) → ℋ  is the only one operator that is characterized by the following 
properties: 

i) 𝐷𝐷(𝑇𝑇∗) ≔ {𝑢𝑢 ∈ ℋ:∃𝑤𝑤𝑢𝑢 ∈ ℋ, 〈𝑤𝑤𝑢𝑢, 𝑣𝑣〉 = 〈𝑢𝑢,𝑇𝑇𝑇𝑇〉   ∀𝑣𝑣 ∈ 𝐷𝐷(𝑇𝑇)}, 
ii) 〈𝑇𝑇∗𝑢𝑢, 𝑣𝑣〉 = 〈𝑢𝑢,𝑇𝑇𝑇𝑇〉   ∀𝑣𝑣 ∈ 𝐷𝐷(𝑇𝑇), ∀𝑢𝑢 ∈ 𝐷𝐷(𝑇𝑇∗). 
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Due to the fact that only finite-dimensional operators are considered, the 
above definition is reduced to the following form: 

〈𝑇𝑇∗𝑢𝑢, 𝑣𝑣〉 = 〈𝑢𝑢,𝑇𝑇𝑇𝑇〉   ∀𝑣𝑣,𝑢𝑢 ∈ ℋ. 
If 𝑇𝑇∗ = 𝑇𝑇, then such an operator is called a self-adjoint or Hermitian op-

erator. 
The issue of Hermitian operator's 𝑇𝑇 eigenvalue is considered. 

𝑇𝑇𝑇𝑇 = 𝑢𝑢𝑢𝑢. 
Therefore: 

𝑞𝑞 =
〈𝑢𝑢,𝑢𝑢〉𝑞𝑞
〈𝑢𝑢,𝑢𝑢〉

=
〈𝑢𝑢,𝑢𝑢𝑢𝑢〉
〈𝑢𝑢,𝑢𝑢〉

=
〈𝑢𝑢,𝑇𝑇𝑇𝑇〉
〈𝑢𝑢,𝑢𝑢〉

. 

From self-adjointness of operator 𝑇𝑇: 
〈𝑢𝑢,𝑇𝑇𝑇𝑇〉
〈𝑢𝑢,𝑢𝑢〉

=
〈𝑇𝑇∗𝑢𝑢,𝑢𝑢〉
〈𝑢𝑢,𝑢𝑢〉

=
〈𝑇𝑇𝑇𝑇,𝑢𝑢〉
〈𝑢𝑢,𝑢𝑢〉

=
〈𝑢𝑢𝑢𝑢,𝑢𝑢〉
〈𝑢𝑢,𝑢𝑢〉

=
〈𝑢𝑢,𝑢𝑢〉𝑞𝑞�
〈𝑢𝑢,𝑢𝑢〉

= 𝑞𝑞�. 

Then 𝑞𝑞 = 𝑞𝑞�. 
This means that in the quaternionic Hilbert space, the Hermitian operator 

has real eigenvalues, just as it does in the complex Hilbert space. 
In view of the above fact, due to the alternation of quaternions with real 

numbers, the sphere of eigenvalues 
𝑆𝑆𝑞𝑞 ≔ �𝜆𝜆−1𝑞𝑞𝑞𝑞 ∈ ℍ: 𝜆𝜆 ∈ ℍ\{0}� 

is reduced to the form 
𝑆𝑆𝑞𝑞 ≔ {𝑞𝑞 ∈ ℝ}. 

If 𝑢𝑢 i 𝑢𝑢′ are eigenstates of Hermitian operator 𝑇𝑇 and have different eigen-
values 𝑞𝑞 ≠ 𝑞𝑞′, then: 

〈𝑢𝑢,𝑇𝑇𝑇𝑇′〉 = 〈𝑢𝑢,𝑢𝑢′〉𝑞𝑞′ = 〈𝑇𝑇𝑇𝑇, 𝑢𝑢′〉 = 𝑞𝑞〈𝑢𝑢,𝑢𝑢′〉. 
Because the eigenvalues 𝑞𝑞 and 𝑞𝑞′ of Hermitian operator are real, the fol-

lowing formula is logically correct: 
(𝑞𝑞 − 𝑞𝑞′)〈𝑢𝑢, 𝑢𝑢′〉 = 0, 

which implies that 
〈𝑢𝑢,𝑢𝑢′〉 = 0. 

Therefore, eigenstates with different eigenvalues are orthogonal. T9he 
spectral representation of operator 𝑇𝑇 appears as follows: 

𝑇𝑇 = �𝑞𝑞𝑖𝑖
𝑖𝑖

𝑃𝑃𝑢𝑢𝑖𝑖 , 

where 𝑃𝑃𝑢𝑢𝑖𝑖(𝑣𝑣) = 𝑢𝑢𝑖𝑖〈𝑢𝑢𝑖𝑖 , 𝑣𝑣〉 is a projection operator on state 𝑢𝑢𝑖𝑖.  
All assuming that the eigenstates of Hermitian operator 𝑇𝑇 are normalized, 

i.e. 
‖𝑢𝑢𝑖𝑖‖ = 1. 
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It can also be shown that matrix elements are of the same form as in quantum 
mechanics over the space of complex numbers [Moretti, Oppio 2016].  

In economics, eigenvalues are present in correspondence analysis. They 
measure the volatility of considered variables. Eigenvalues occur in the spec-
tral decomposition that is associated with a correspondence analysis and the 
principal component analysis. In the correspondence analysis [Stanimir 
2005], the considered matrices are usually positive-definite. In this case ei-
genvalues are positive. The expansion of analysis onto a wider field may lead 
to complex or quaternionic eigenvalues, therefore the analysis presented 
above is significant in the context of economic appliance. 

4. The quaternionic Schrödinger equation 

The problem of applying Schrödinger equation to economics was con-
sidered in many papers, among others [Drabik 2011]. 

The study of the transformations of symmetry in quaternionic quantum 
mechanics may be reduced to the study of unitary quaternionic operator 𝑈𝑈, 
which is defined as follows [Reed, Simon 1972]: 

𝑈𝑈∗𝑈𝑈 = 𝑈𝑈𝑈𝑈∗ = 1. 
In analogy to Stone's theorem, it would be conclusive if the following 

identity were fulfilled: 
𝑈𝑈 = 𝑒𝑒𝐻𝐻� , 

where 𝐻𝐻� is an anti-selfadjoint operator. 
Then, definitional terms take the form: 

𝑈𝑈𝑈𝑈∗ = 𝑒𝑒𝐻𝐻��𝑒𝑒𝐻𝐻��
∗

= 𝑒𝑒𝐻𝐻�𝑒𝑒𝐻𝐻�∗ = 𝑒𝑒𝐻𝐻�𝑒𝑒−𝐻𝐻� = 𝑒𝑒0 = 𝐼𝐼. 
It is also important to consider the time evolution. 
It is postulated that the evolution in time is a symmetry that retains the 

probability. In other words, if, 𝜓𝜓(𝑡𝑡) and 𝜑𝜑(𝑡𝑡) are two random state vectors at 
time 𝑡𝑡 and 𝜓𝜓(𝑡𝑡 + 𝛿𝛿𝛿𝛿) and 𝜑𝜑(𝑡𝑡 + 𝛿𝛿𝛿𝛿) are respectively state vectors at the mo-
ment 𝑡𝑡 + 𝛿𝛿𝛿𝛿, then [Adler 1995]: 

|〈𝜓𝜓(𝑥𝑥, 𝑡𝑡),𝜑𝜑(𝑥𝑥, 𝑡𝑡)〉| = |〈𝜓𝜓(𝑥𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿),𝜑𝜑(𝑥𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿)〉|. 
Under the quaternion extension of Wigner's theorem, there must exist 

uniform quaternionic operator 𝑈𝑈[𝑡𝑡, 𝛿𝛿𝛿𝛿], for which: 
𝜓𝜓(𝑥𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝑈𝑈[𝑡𝑡, 𝛿𝛿𝛿𝛿] 𝜓𝜓(𝑥𝑥, 𝑡𝑡)   ∀𝜓𝜓.  

Expansion of terms 𝑈𝑈[𝑡𝑡, 𝛿𝛿𝛿𝛿] and 𝜓𝜓(𝑡𝑡 + 𝛿𝛿𝛿𝛿) to the first row with infinites-
imally small 𝛿𝛿𝛿𝛿 and expansion coefficient 𝑈𝑈 that is defined as –𝐻𝐻�(𝑡𝑡) leads to 
the formula: 

𝑈𝑈[𝑡𝑡, 𝛿𝛿𝛿𝛿] = 1 − 𝛿𝛿𝛿𝛿𝐻𝐻�(𝑥𝑥), 
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subsequently, 

𝜓𝜓(𝑥𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) = 𝜓𝜓(𝑥𝑥, 𝑡𝑡) − 𝛿𝛿𝛿𝛿𝐻𝐻�(𝑥𝑥)𝜓𝜓(𝑥𝑥, 𝑡𝑡). 
After dividing the above equation both sides by 𝛿𝛿𝛿𝛿: 

𝜓𝜓(𝑥𝑥, 𝑡𝑡 + 𝛿𝛿𝛿𝛿) − 𝜓𝜓(𝑥𝑥, 𝑡𝑡)
𝛿𝛿𝛿𝛿

= −𝐻𝐻�(𝑥𝑥)𝜓𝜓(𝑥𝑥, 𝑡𝑡), 
where the expression on the left is identical to the definition of the time de-
rivative from the wave function 𝜓𝜓(𝑥𝑥, 𝑡𝑡), one can therefore write: 
  𝜕𝜕

𝜕𝜕𝜕𝜕
𝜓𝜓(𝑥𝑥, 𝑡𝑡) = −𝐻𝐻�(𝑥𝑥)𝜓𝜓(𝑥𝑥, 𝑡𝑡).    (1) 

The Schrödinger equation was obtained. 
Let 

𝐻𝐻�(𝑥𝑥) = 𝐻𝐻�0(𝑥𝑥) + 𝑖𝑖𝐻𝐻�1(𝑥𝑥) + 𝑗𝑗𝐻𝐻�2(𝑥𝑥) + 𝑘𝑘𝐻𝐻�3(𝑥𝑥), 
where 
   𝐻𝐻�0(𝑥𝑥) + 𝑖𝑖𝐻𝐻�1(𝑥𝑥) = 𝐻𝐻�𝛼𝛼(𝑥𝑥),    (2) 

   𝑗𝑗 �𝐻𝐻�2(𝑥𝑥) − 𝑖𝑖𝐻𝐻�3(𝑥𝑥)� = 𝑗𝑗𝐻𝐻�𝛽𝛽(𝑥𝑥).   (3) 

Moreover, let 
𝜓𝜓(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓0(𝑥𝑥, 𝑡𝑡) + 𝑖𝑖𝑖𝑖1(𝑥𝑥, 𝑡𝑡) + 𝑗𝑗𝜓𝜓2(𝑥𝑥, 𝑡𝑡) + 𝑘𝑘𝑘𝑘3(𝑥𝑥, 𝑡𝑡), 

where 

   𝜓𝜓0(𝑥𝑥, 𝑡𝑡) + 𝑖𝑖𝑖𝑖1(𝑥𝑥, 𝑡𝑡) = 𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡),  (4) 

 𝑗𝑗�𝜓𝜓2(𝑥𝑥, 𝑡𝑡) − 𝑖𝑖𝑖𝑖3(𝑥𝑥, 𝑡𝑡)� = 𝑗𝑗𝑗𝑗𝛽𝛽(𝑥𝑥, 𝑡𝑡).  (5) 

Then equation (1) takes the form: 
𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) +

𝜕𝜕
𝜕𝜕𝜕𝜕
𝑗𝑗𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡) 

 = −�𝐻𝐻�𝛼𝛼(𝑥𝑥) + 𝑗𝑗𝐻𝐻�𝛽𝛽(𝑥𝑥)� �𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) + 𝑗𝑗𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)�.  (6) 
Equation (2) may also be represented by two equations by separating the 

real and quaternion parts, i.e. 

  𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) = −𝐻𝐻�𝛼𝛼(𝑥𝑥)𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) + 𝐻𝐻�𝛽𝛽(𝑥𝑥)𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡),  (7) 

            𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡) = −𝐻𝐻�𝛽𝛽(𝑥𝑥)𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) − 𝐻𝐻�𝛼𝛼(𝑥𝑥)𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡).   (8) 

According to the above definitions (2), (3), 𝐻𝐻�𝛼𝛼(𝑥𝑥)and 𝐻𝐻�𝛽𝛽(𝑥𝑥) are operat-
ors in the complex Hilbert space and 𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡),𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡) (def. (4), (5)) are the 
wave functions in this space. Therefore, the quaternionic Schrödinger equa-
tion was presented by a system of two equations in the complex Hilbert space. 



104 Agnieszka Matylda Schlichtinger 
  
 

To write the above set of equations, one may also use the two-component 
complex Hilbert space. The following designations are assumed: 

𝝍𝝍(𝑥𝑥, 𝑡𝑡) = �
𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡)
𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)�. 

Then equation (1) can be written as: 
     𝜕𝜕

𝜕𝜕𝜕𝜕
𝝍𝝍(𝑥𝑥, 𝑡𝑡) = −𝑯𝑯�(𝑥𝑥)𝝍𝝍(𝑥𝑥, 𝑡𝑡),  (9) 

where 

𝑯𝑯�(𝑥𝑥) = �
𝐻𝐻�𝛼𝛼(𝑥𝑥) −𝐻𝐻�𝛽𝛽(𝑥𝑥)
𝐻𝐻�𝛽𝛽(𝑥𝑥) 𝐻𝐻�𝛼𝛼(𝑥𝑥)

�. 

It is proved that equation (9) is equivalent to the Schrödinger equation 
(2) in the quaternionic Hilbert space. 

𝜕𝜕
𝜕𝜕𝜕𝜕
𝝍𝝍(𝑥𝑥, 𝑡𝑡) =

𝜕𝜕
𝜕𝜕𝜕𝜕
�
𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡)
𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)� = �

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡)

𝜕𝜕
𝜕𝜕𝜕𝜕
𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)

�. 

−𝑯𝑯�(𝑥𝑥)𝝍𝝍(𝑥𝑥, 𝑡𝑡) = −�
𝐻𝐻�𝛼𝛼(𝑥𝑥) −𝐻𝐻�𝛽𝛽(𝑥𝑥)
𝐻𝐻�𝛽𝛽(𝑥𝑥) 𝐻𝐻�𝛼𝛼(𝑥𝑥)

��
𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡)
𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)�       

= −�
𝐻𝐻�𝛼𝛼(𝑥𝑥)𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) − 𝐻𝐻�𝛽𝛽(𝑥𝑥)𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)
𝐻𝐻�𝛽𝛽(𝑥𝑥)𝜓𝜓𝛼𝛼(𝑥𝑥, 𝑡𝑡) + 𝐻𝐻�𝛼𝛼(𝑥𝑥)𝜓𝜓𝛽𝛽(𝑥𝑥, 𝑡𝑡)

�. 

By comparing both sides, equations (7) and (8) will be obtained. 
A form that is identical to the complex Schrödinger equation may be ob-

tained by multiplying equation (9) with imaginary unit 𝑖𝑖 by both sides. 

𝑖𝑖 �
𝜕𝜕
𝜕𝜕𝜕𝜕
𝝍𝝍(𝑥𝑥, 𝑡𝑡)� = 𝑖𝑖 �−𝑯𝑯�(𝑥𝑥)𝝍𝝍(𝑥𝑥, 𝑡𝑡)�. 

The anti-selfadjointness of operator 𝑯𝑯�(𝑥𝑥) implies that: 
−𝑖𝑖𝑯𝑯�(𝑥𝑥) = 𝑯𝑯(𝑥𝑥). 

Therefore, the complex Schrödinger equation is obtained in the two-com-
ponent complex Hilbert space: 

𝑖𝑖
𝜕𝜕
𝜕𝜕𝜕𝜕
𝝍𝝍(𝑥𝑥, 𝑡𝑡) = 𝑯𝑯(𝑥𝑥)𝝍𝝍(𝑥𝑥, 𝑡𝑡). 

Because the Schrödinger quaternionic equation may be written equi-
valently to the two-component complex Schrödinger equation, there arises 
the question of whether quaternionic quantum mechanics is only a different 
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way of describing complex quantum mechanics, or introducing a new quality, 
absent in a complex quantum mechanics. 

5. Conclusion 

Considering the relationships between real, complex and quaternionic 
quantum theory, it is worth noting the different approaches regarding the rel-
evance of quaternionic Hilbert space in quantum mechanics. 

In one of his works Adler [Adler 2017] puts forward the hypothesis that 
quaternionic quantum mechanics is a physical theory that is clearly separate 
from complex quantum mechanics. 

Whether nature chooses a complex or a quaternionic quantum theory is 
ultimately an experimental matter. Many years ago, Peres proposed a test for 
the quaternionic effects. Without going into the intricacies of physical theo-
ries, it should be mentioned that ultimately the experiment showed some in-
teresting properties of quaternionic quantum mechanics. It turns out that by 
using quaternions one can describe a specific non-commutativity of phases, 
which is always equal to zero in the complex quantum mechanics. 

Such experiments were carried out with neutrons without result for non-
commutativity of the phase. However, in his book [Adler 1995], Adler 
through detailed calculations revealed that quaternionic effects in certain, 
specified conditions [Adler 1995; 2017] contain only the commutative phase 
lying in the complex sub-algebra of quaternions and hence the results of neut-
ron scattering experiments do not really give useful hints about possible quan-
ternionic effects. Therefore, the question of whether quaternionic quantum 
mechanics is merely a mathematical whim, or whether it involves the struc-
ture of reality, remains open. 

Returning to the discussion about the quantum mechanics formulated 
above, the real Hilbert space seems to be an attempt to create a space of  
quantum mechanics without the use of complex numbers, but maintaining the 
key properties of their structure. This is the premise that the structure, which 
is isomorphic with the field of the complex numbers, is necessary to describe 
the phenomena of quantum mechanics. 

This is due to the fact that there are some arguments against the formu-
lation of quantum mechanics over real space. They concern, among others, 
problems with the formulation of the Schrödinger equation in real space due 
to the lack of an imaginary unit. In real quantum mechanics there are also 
certain inaccuracies related to the uncertainty principle, which were discussed 
earlier.  
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To sum up the above considerations, despite the fact that many examples 
seem to suggest that complex quantum mechanics is characterized by signi-
ficant advantages over its real and quaternionic formulation, it is worth con-
sidering the possibility of noticing or omitting some important subtleties. It is 
possible that due to the fact that quantum mechanics from the beginning is 
developed in complex space, this formulation seems so natural that all its ad-
vantages are automatically emphasized by people studying its mathematical 
structure. It is also possible that there are other, unknown reasons why com-
plex quantum mechanics seems to be optimal, however the nature of reality 
does not determine this at all. 

In view of the above, it should be argued that the considerations presen-
ted in the work relate not only to quantum mechanics, but also to the entire 
nature of reality, and hence may also be useful in economic models. Physics 
is a science devoted to the study of reality, therefore the laws imposed by it 
are most likely respected by all kinds of economic mechanisms. 
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