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Abstract: In this paper, we consider the so-called Omega bankruptcy model, which can 
be seen as an alternative to the classical approach to ruin. In contrast to the classical 
model, we allow the process to go below the level zero, however not further than some 
fixed level −𝑑 < 0. In addition, when the process is below zero it can be killed with some 
intensity function 𝜔. Our aim is to show the relations between the Omega model and 
classical ruin for two important Lévy models, i.e. we consider the Crámer-Lundberg 
process and the Markov modulated Brownian motion. We also provide numerical 
experiments to confirm obtained analytical results.  

Keywords: ruin probability, the Omega model, the Crámer-Lundberg process, the Markov 
modulated Brownian motion.  

 1. Introduction 

In classical ruin theory, a company goes out of business when its surplus 
goes below the level zero. This moment is called classical ruin time. 
Therefore, the probability of such event is an important indicator of the 
financial condition in the company. Despite the fact that such a definition 
of bankruptcy may seem reasonable, it may not be sufficient for all 
economic circumstances. In particular, we do not know how long the 
process will stay below zero. It can be the case that this is only a short- 
-term situation and a company will regain liquidity, unless the situation is 
very bad. We can also think about companies that can perform their 
business even when they do not have funds. This can occur, for example, 
for companies owned by the state. Therefore there is a need to define 
another definition of bankruptcy. 

One can consider the idea of the Omega model, introduced in 
[Albrecher, Gerber, Shiu 2011] and further investigated in e.g. [Gerber, Shu, 
Yang 2012; Li, Palmowski 2018]. In this model, there is a distinction 
between technical ruin, i.e. down-crossing level zero and bankruptcy. 
Namely, a company can do business as usual even after technical  
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ruin. However, when surplus is on the negative half-line, a company can 
go bankrupt with the intensity function 𝜔(𝑥), where 𝑥 denotes the value 
of the surplus process. Therefore, one can define the bankruptcy moment 
as  

𝜏𝜔: = inf �𝑡 > 0:�  
𝑡

0
𝜔(𝑋𝑠)𝑑𝑠 > 𝑒1�, 

where 𝑋 is a stochastic process which models surplus level and 𝑒1 is an 
independent exponential random variable with the parameter 1. It turns 
out that such an approach is very general and covers the following 
particular examples:  
• If we set 𝜔(𝑥) = 0 for 𝑥 ≥ 0 and 𝜔(𝑥) = ∞ for 𝑥 < 0, then we have 

the case of classical ruin time. This is the only case when technical 
ruin is the same as bankruptcy.  

• A non trivial example can be the following  

𝜔(𝑥) = �
0 if 𝑥 > 0,

𝛾0 + 𝛾1(𝑥 + 𝑑) if 𝑥 ∈ [−𝑑, 0],
+∞ if 𝑥 < −𝑑

 

where −𝑑 < 0,𝛾0 > 0, and 𝛾1 ≤ 0 then 𝜔(𝑥) ≥ 0 on 𝑥 ∈ [−𝑑, 0] and 𝜔 
is an a non-increasing function on this interval. In such a model we have 
a linear relationship between intensity and the position of the surplus 
process. The assumption that 𝜔 is non-increasing on [−𝑑, 0] suits the 
intuition that the penalty for being close to zero should not be greater than 
the penalty for being far from it. In the literature, such an interval is often 
called the red zone. Note that if the surplus down-crosses level −𝑑 it is 
immediately killed. Therefore, we remove the company from a situation 
when the surplus is too low at the moment of bankruptcy. This model was 
investigated in e.g. [Gerber, Shu, Yang 2012; Li, Palmowski 2018]. 

A special case is when 𝛾1 = 0 and 𝛾0 > 0. In this situation we 
consider occupation time in the so-called red zone. Here we calculate the 
time when the surplus process stays below zero. Thus, bankruptcy means 
that the surplus process stays too long in the interval [−𝑑, 0] or down- 
-crossed level −𝑑. For more details see Section 6.2 in [Loeffen, Renaud, 
Zhou 2014].  

One can also consider the so-called Parisian ruin time with the 
random clock. In this model, every time the surplus is below zero (or 
another barrier level) we run the so-called implementation clock, which is 
an indendent exponential random variable with the parameter 𝑞 > 0. If 
the surplus stays below zero longer than the implementation clock the 
company is out of business. It turns out (see Section 5 in [Renaud 2014] 
with 𝛼 = 0) that the probability of such a bankruptcy has the same value 
as in the Omega model for  
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𝜔(𝑥) = � 0 if 𝑥 ≥ 0
 𝑞 if 𝑥 < 0 . 

Let us note that in the Parisian ruin example we do not consider 
bankruptcy when the process goes below some fixed level. However,  
in this paper we will always assume that such level, let us call it −𝑑, 
exists. Therefore, to avoid technical issues related with infinity one can 
consider an equivalent, in this case the definition of the Omega 
bankruptcy time is:  

𝜏𝜔𝑑 : = inf �𝑡 > 0:�  
𝑡

0
𝜔(𝑋𝑠)𝑑𝑠 > 𝑒1 ∨ 𝑋𝑡 < −𝑑�, 

then one can re-define the Omega function and set any values of 𝜔(𝑥) for 
𝑥 < −𝑑. 

An important assumption in our considerations is the choice of the 
underlying stochastic process for a company’s surplus level. In the risk 
theory and the actuarial science, we often consider the general Cramér- 
-Lundberg process, which is defined as follows  

𝑋𝑡 = 𝑥 + 𝑝𝑡 −�  
𝑁𝑡

𝑖=1

𝑈𝑖 + 𝜎𝐵𝑡 , 

where 𝑥 ∈ ℝ denotes the value of the initial capital, 𝑝 > 0 is a constant 
intensity of the premium income, {𝑁𝑡}𝑡∈[0,∞) is a homogeneous Poisson 
process with the intensity 𝜆 > 0, 𝑈𝑖 are positive 𝑖. 𝑖.𝑑. random variables 
with the common distribution function F, 𝜎 > 0 and 𝐵𝑡 is a standard 
Brownian motion which models the aggregation of small claims. The 
above process posseses the following probabilistic properties:  

• 𝑋0 = 𝑐𝑜𝑛𝑠𝑡 a.s.  
• 𝑋𝑡 − 𝑋𝑠 =𝑑 𝑋𝑡−𝑠, where 𝑡 ≥ 𝑠 ≥ 0 and =𝑑  means equality in the 

distribution.  
• 𝑋𝑡 − 𝑋𝑠 for 𝑡 ≥ 𝑠 is independent from ℱ𝑠, filtration generated by 

𝜎-field 𝜎(𝑋𝑖: 𝑖 ≤ 𝑠).  
• This process has right-continuous paths with left limits (càdlàg paths) 

and does not have positive jumps.  
The processes that satisfy the above conditions are called spectrally 

negative Lévy processes. This class of processes contain for example the 
linear Brownian motion, the Crámer-Lundberg process with phase-type 
jumps and 𝛼-stable processes. In addition, we exclude the case of 
processes with monotone paths. More information about such processes 
can be found for example in [Bertoin 1996] and [Kyprianou 2014]. 
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Moreover, we would like to state another generalization. Let us 
imagine that one would like to apply stochastic processes to the 
phenomenon which has a different structure with respect to change of 
season or the economic situation in the market. In such situations, Lévy 
processes can be an inappropriate choice because of stationarity and 
independents of the increments. Therefore later we will formally 
introduce spectrally negative Markov additive processes (see e.g. 
[Asmussen 2003; Breuer 2012; D’Auria et al. 2010; Dieker, Mandjes 
2011; Ivanovs, Mandjes 2010]). An element of this class is a bivariate 
process (𝑋, 𝐽) where 𝑋 can be responsible for a surplus level and 𝐽 can be 
seen as random environment which can have different states. When 𝐽 is 
on state 𝑖 then 𝑋 is behaving as 𝑋𝑖 which is a spectrally negative Lévy 
process. Therefore, distribution of increments of 𝑋 depends on the current 
state of 𝐽. In addition, if 𝐽 has only one state, then 𝑋 is just a spectrally 
negative Lévy process. 

The rest of the paper is organized as follows. First, we introduce 
some basic notation and definitions related to Lévy processes and 
Markov additive processes. In Section 2, we provide definitions 
associated to the Omega model. The last two sections are the main parts 
of this article. In Section 3, we consider the Crámer-Lundberg process 
with the exponential claims as a model example. This process is one of 
the most important processes in ruin theory, often used as a starting point 
of analysis and has numerous practical applications. For this model we 
provide the formula for Omega bankruptcy probability. In addition, we 
show that in this case, this probability is a linear function of the classical 
ruin probability. In section 4 we provide numerical results for the 
approximation of the probability in the Omega model for the Markov 
modulated Brownian motion (MMBM). This process can be seen as  
a Brownian motion in the random environment and is one of the most 
important examples of the Markov additive processes. Brownian motion 
appears in almost every application of stochastic processes and, as was 
mentioned, before can be responsible for the small claims in the non-life 
insurance model. Moreover, adding random environment makes this 
process even more flexible.  

1.1. Lévy processes and scale functions 

Let 𝑋 be the spectrally negative Lévy process defined on filtrated 
probability space (Ω,ℱ,𝔽 = {ℱ𝑡: 𝑡 ≥ 0},ℙ) which satisfies the usual 
conditions. Every spectrally negative Lévy process can be represented by 
the triple (𝑎,𝜎,Π) where 𝑎 ∈ ℝ, 𝜎 ≥ 0 and Π is the measure of (−∞, 0) 
which satisfy  
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�  
(−∞,0)

(1 ∧ 𝑥2)Π(𝑑𝑥) < ∞. 

Then the exponent of the Laplace transform of process 𝑋 is defined 
through  

𝜓(𝜃) = log �𝔼�𝑒𝜃𝑋1�� = 

𝑎𝜃 +
1
2
𝜎2𝜃2 +�  

(−∞,0)
�𝑒𝜃𝑥 − 1 − 𝜃𝑥1{−1<𝑥<0}�Π(𝑑𝑥) 

and is well-defined for 𝜃 ≥ 0. In addition, we would like to consider 
different starting points of the process, thus we need to use the classical 
Markovian notation, namely we will write ℙ𝑥(𝐴) for the probability of 
event 𝐴 given that 𝑋0 = 𝑥 almost certainly. Similarly this will be valid 
for expectations. Further, we will write ℙ(⋅) and 𝔼(⋅) when 𝑥 = 0. 

For 𝑎 ∈ ℝ let us define the following stopping times:  

𝜏𝑎+ = inf{𝑡 > 0:𝑋𝑡 ≥ 𝑎}, 𝜏𝑎− = inf{𝑡 > 0:𝑋𝑡 < 𝑎}. 

We will be interested in the representation of the following 
expression  

 𝔼𝑥 �𝑒−𝑞𝜏𝑏
+

, 𝜏𝑏+ < 𝜏𝑎−�, (1) 

for 𝑎 ≤ 𝑥 ≤ 𝑏. This expression can be seen in two ways. The first one is 
connected with the important idea of the killing of the process. Let us 
define 𝑒𝑞 as an exponential independent random variable with parameter 
𝑞 ≥ 0 (with the convention that for 𝑞 = 0, 𝑒𝑞 is +∞ a.s.). Then, if 𝑡 > 𝑒𝑞 
we are killing 𝑋𝑡, namely we put 𝑋 into an absorbing state. Therefore, the 
above expectation is just the probability that we cross level 𝑏 before we 
go below 𝑎 and before we get killed by 𝑒𝑞. From another point of view, 
we can think that we are paying one unit when the process reaches level 𝑏 
before we down-cross level 𝑎 and discount this unit with factor 𝑞. Thus 
above expectation is the expected present value of such payment. These 
two ways of thinking will be very useful in the spirit of this article and 
can be convenient for numerical calculations. 

Another important quantity of the interest is the probability of 
classical ruin  

ℙ𝑥(𝜏0− < ∞), for 𝑥 > 0. 

This probability is very interesting from our point of view. One can see 
that the above expressions can be treated as functions of some parameters, 
therefore it will be convenient to have some analytical representation  
of them. To do this we need to introduce the key tools of this paper. 
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For every 𝑞 ≥ 0 there exists function 𝑊(𝑞):ℝ → [0,∞), called 
(𝑞)-scale function, which satisfies 𝑊(𝑞)(𝑥) = 0 for 𝑥 < 0 and for [0,∞) 
is defined as a strictly increasing and continuous function through the 
following Laplace trasform  

�  
∞

0
𝑒−𝜃𝑥𝑊(𝑞)(𝑥)𝑑𝑥 =

1
𝜓(𝜃) − 𝑞

 for 𝜃 > Φ(𝑞), 

where Φ(𝑞) = sup{𝜃 ≥ 0:𝜓(𝜃) = 𝑞}. We will write 𝑊(𝑥) for 𝑞 = 0. 
The second scale function is defined by  

𝑍(𝑞)(𝑥): = 1 + 𝑞�  
𝑥

0
𝑊(𝑞)(𝑦)𝑑𝑦, 𝑥 ∈ ℝ. 

One can show that  

 𝔼𝑥�𝑒−𝑞𝜏𝑐
+ , 𝜏𝑐+ < 𝜏0−� = 𝑊(𝑞)(𝑥)

𝑊(𝑞)(𝑐)
 (2) 

and  

𝔼𝑥[𝑒−𝑞𝜏0− , 𝜏0− < ∞] = 𝑍(𝑞)(𝑥) −
𝑞

Φ(𝑞)
𝑊(𝑞)(𝑥), 

putting in above 𝑞 = 0 (and making a limit argument for 𝑞
Φ(𝑞)

) one can 
get that  

 ℙ𝑥(𝜏0− < ∞) = �
1 − 𝜓′(0 +)𝑊(𝑥) if 𝜓′(0+) > 0

1 if 𝜓′(0+) ≤ 0 . (3) 

Thus, for example, one can use scale functions for a deeper analysis 
of classical ruin time. We refer the reader to [Bertoin1996; Hubalek, 
Kyprianou 2011; Kuznetsov, Kyprianou, Rivero 2012; Kyprianou 2014], 
for more detail about scale functions.  

1.2. Markov additive processes 

In this section we would like to introduce some elements of the theory of 
Markov additive processes. Later on, we will be interested in one 
particular example of this class of processes, namely, the Markov 
modulated Brownian motion.  

Let us consider bivariate stochastic process (𝑋, 𝐽), where 𝑋 is a real- 
-valued càdlàg process and 𝐽 is a right-continuous stochastic process taking 
values in the finite set 𝐸 = {1,2, . . . ,𝑁}. We say that such a process is  
a Markov additive process if for fixed {𝐽𝑡 = 𝑖} vector (𝑋𝑡+𝑠 − 𝑋𝑡 , 𝐽𝑡+𝑠) is 
independent from ℱ𝑡 and is equal in distribution to (𝑋𝑠 − 𝑋0, 𝐽𝑠) for fixed 
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{𝐽0 = 𝑖}. Despite the formal definition there exists a very intuitive 
representation of every MAP, which we will present below. 

At the beginning, we can see that 𝐽𝑡 is a continuous time Markov 
chain. When 𝐽 is on state 𝑖 then process 𝑋 is behaving like some Lévy 
process 𝑋𝑖. When 𝐽 is changing state from 𝑖 to 𝑗 (𝑖 ≠ 𝑗) then process 𝑋 
can make the jump distributed like some random variable 𝑈𝑖𝑗 and then 
behaves like Lévy process 𝑋𝑗. All the above random elements are 
independent. This representation can be summarised in Figure 1.  

 

 
Fig. 1. An example of an approximated sample path of the MAP 

Source: own elaboration. 

One can see that we can divide time into intervals of occupation times 
of 𝐽 and then treat process 𝑋 as a Lévy process on each interval. These 
explain another well-known name for MAP, namely the ,,Markov- 
-modulated Lévy process”. Thus a MAP can be seen as a Lévy process in 
a random environment. In addition, note that if 𝑁 = 1 (thus 𝐽 has only 
one state) then 𝑋 is a Lévy process. Because of that, we would like to 
consider the generalization of spectrally negative Lévy processes namely, 
we assume that for every 𝑖 ∈ 𝐸 we have that 𝑋𝑖 is a spectrally negative 
Lévy process and 𝑈𝑖,𝑗 ≤ 0 a.s. for every 𝑖, 𝑗 ∈ 𝐸. Therefore, 𝑋 can have 
only negative jumps. We exclude the trivial case of monotonic paths of 
𝑋. In addition we assume that 𝐽 is an irreducible Markov chain with 𝑸 
being its intensity matrix and 𝝅 a uniquely determined stationary vector.  

In the case of spectrally negative Lévy processes, we saw that the  
so-called scale functions turn out to be a very important tool in the 
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investigation of the exit problems. In the MAP framework we can also 
define such functions, but now they need to be matrix-valued.  

Let us define the matrix exponent of the Laplace transform for the 
MAP as matrix 𝑭(𝛼) which will satisfy the following  

𝔼𝑥(𝑒𝛼𝑋𝑡 , 𝐽𝑡 = 𝑗|𝐽0 = 𝑖) = (𝑒𝑭(𝜶)𝑡)𝑖,𝑗, for 𝛼 ≥ 0, 

which has an explicit representation  

𝑭(𝛼) = diag(𝜓1(𝛼), . . . ,𝜓𝑁(𝛼)) +𝑸 ∘ 𝔼(𝑒𝛼𝑈𝑖𝑗), 

where (𝐴 ∘ 𝐵)𝑖𝑗 = (𝑎𝑖𝑗𝑏𝑖𝑗) is an entry-wise (Hadamard) matrix 
multiplication. 

From Kryprianou and Palmowski [Kryprianou, Palmowski 2008] we 
know that for 𝑞 ≥ 0 there exist the invertible matrix-valued function 
𝑾(𝑞): [0,∞) → ℝ𝑁×𝑁 such that for 0 ≤ 𝑥 ≤ 𝑎,  

 𝑬𝑥�𝑒−𝑞𝜏𝑎
+ , 𝜏𝑎+ < 𝜏0−, 𝐽𝜏𝑎+|𝐽0� = 𝑾(𝑞)(𝑥)𝑾(𝑞)(𝑎)−1. (4) 

Note that that above expected value is a 𝑁 × 𝑁 matrix, such that entry 
(𝑖, 𝑗) means that 𝐽0 = 𝑖 and 𝐽𝜏𝑎+ = 𝑗. At this point it can be confusing that 
we consider the "ending state" of the process 𝐽. However, if for 𝑖 ∈ 𝐸 one 
is just interested in the following  

𝔼𝑥[𝑒−𝑞𝜏𝑎+ , 𝜏𝑎+ < 𝜏0−|𝐽0 = 𝑖], 

then it is sufficient to sum up 𝑖-th row of the expression 
𝑾(𝑞)(𝑥)𝑾(𝑞)(𝑎)−1. Ivanovs [Ivanovs 2011] and Ivanvos and Palmowski 
[Ivanovs, Palmowski 2012] showed that 𝑾(𝑞) can be defined through  

�  
∞

0
𝑒−𝛼𝑥𝑾(𝑞)(𝑥)𝑑𝑥 = (𝑭(𝛼) − 𝑞𝐼)−1, for large enough 𝛼. 

They showed even more, namely that first we need to consider 
process (𝑋, 𝐽) killed with rate 𝑞 ≥ 0. This means, like before, that we 
would like to put our MAP into absorbing time after some random 
exponential time. Then one can express (𝑞)-scale matrix 𝑾(𝑞) in the 
following way  

 𝑾(𝑞)(𝑥) = 𝑒−𝚲𝑞+𝑥𝑳𝑞(𝑥), (5) 

where 𝚲𝑞+ is the transition rate matrix of Markov chain {𝐽𝜏𝑥+}𝑥≥0, i.e. for 
𝑖, 𝑗 ∈ 𝐸  

 ℙ(𝜏𝑥+ < 𝑒𝑞 , 𝐽𝜏𝑥+ = 𝑗|𝐽0 = 𝑖) = (𝑒𝚲𝑞+𝑥)𝑖𝑗, (6) 
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with 𝑒𝑞 being an independent exponential random variable of rate 𝑞 ≥ 0. 
We use, again, the convention that 𝑒0 = ∞. Moreover, 𝑳𝑞(𝑥) is a matrix 
of expected occupation times at 0 up to the first passage time over 𝑥. In 
addition, 𝑳𝑞: = 𝑳𝑞(∞) is the expected occupation density at 0.  

The second scale matrix 𝒁(𝑞) is defined through the 𝑾(𝑞) matrix function:  

𝒁(𝑞)(𝑥): = 𝐼 − �  
𝑥

0
𝑾(𝑞)(𝑦)𝑑𝑦(𝑭(0) − 𝑞𝐼). 

Now we are ready to formally introduce the titled Omega model.  

2. Omega killing and the Omega model 

In this section we assume that the background process is a spectrally negative 
Markov additive process. In the case of citing results connected with 
spectrally negative Lévy processes, one can think about taking 𝑁 = 1 as  
a cardinality of the state space of 𝐽. We start with a technical remark.  

 

Remark 2.1. If the function is matrix-valued it will always be bold in this 
paper. It will be also the case for the constants.  

At the beginning let us recall some definitions and results from 
[Czarna et al. 2018] and [Li, Palmowski 2018].  

 

Definition 2.1. Let 𝜔:𝐸 × ℝ → ℝ+ be a function defined as 𝜔(𝑖, 𝑥) =
𝜔𝑖(𝑥), where for a fixed 𝑖 ∈ 𝐸, 𝜔𝑖:ℝ → ℝ+ is a bounded, non-negative 
measurable function and its value formulates the matrix 𝝎(𝑥): =
𝑑𝑖𝑎𝑔(𝜔1(𝑥), . . . ,𝜔𝑁(𝑥)). Let 𝜆 > 0 be the upper bound of |𝜔𝑖(𝑥)| on 
[0,∞) for all 𝑖 ∈ 𝐸.  
 

Fix 𝜔 function which satisfies the above definition and consider the 
definition of (𝜔)-scale matrices for 𝑥 ≥ 𝑦  

 𝓦(𝜔)(𝑥,𝑦): = 𝐖(𝑥 − 𝑦) + ∫  𝑥𝑦 𝐖(𝑥 − 𝑧)𝝎(𝑧)𝓦(𝜔)(𝑧,𝑦)𝑑𝑧, (7) 

 𝓩(𝜔)(𝑥,𝑦): = 𝐼 + ∫  𝑥𝑦 𝑾(𝑥 − 𝑧)𝝎(𝑧)𝓩(𝜔)(𝑧,𝑦)𝑑𝑧. (8) 

Then we have that for 𝑎 ≤ 𝑥 ≤ 𝑏  

𝑬𝑥 �𝑒−∫  𝜏𝑏
+

0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠, 𝜏𝑏+ < 𝜏𝑎−, 𝐽𝜏𝑏+|𝐽0� = 𝓦(𝜔)(𝑥,𝑎)𝓦(𝜔)(𝑏,𝑎)−1 

and  

𝑬𝑥 �𝑒−∫  𝜏𝑎−
0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠, 𝜏𝑎− < 𝜏𝑏+, 𝐽𝜏𝑎−|𝐽0� = 

𝓩(𝜔)(𝑥,𝑎) −𝓦(𝜔)(𝑥,𝑎)𝓦(𝜔)(𝑏,𝑎)−1𝓩(𝜔)(𝑏,𝑎). 
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Let us mention some but not all of the possibilities to apply the above 
results. Firstly, one can see that we can use these expressions for the 
Omega model. As before, one can think about paying one unit when the 
process crosses level 𝑏 before it down-crosses level 𝑎 and before it is 
killed by Omega bankruptcy time. Then the first expected value is the 
expected present value of such payment. On the other hand, we can also 
apply the above results for a complex discounting structure, independent 
of the Omega model framework. These expressions can be used when 
one would like to have different factors for states of 𝐽, for example, 
related to the change of season or change of economic situation on the 
market. Therefore, yet again one can think about paying one unit when 
the process crosses level 𝑏 before it down-crosses level 𝑎 but know that 
every payment is discounted with intensity 𝜔. Therefore, one can see 
how these expressions generalize (1) and (4). 

Finally, we would like to formally introduce Omega bankruptcy time 
as  

 𝜏𝜔𝑑 : = inf �𝑡 ≥ 0:∫  𝑡0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠 > 𝑒1 ∨ 𝑋𝑡 < −𝑑�, (9) 

where 𝑑 > 0, 𝜔 is a function which satisfies Definition 2.1 and 𝑒1 is 
an independent exponential random variable with parameter 1. We will 
be interested in the following probability for 𝑖 ∈ 𝐸 and 𝑥 ≥ 0  

�𝜑(𝜔)(𝑥)�𝑖 = ℙ𝑥�𝜏𝜔𝑑 < ∞|𝐽0 = 𝑖�. 

Our aim is to obtain a close expression for this probability or to 
obtain the numerical approximation of it. However, we will begin with 
obvious inequalities, which will be the starting point for our analysis. 
Namely, for 𝑖 ∈ 𝐸 and 𝑥 ≥ 0 we have that  

 ℙ𝑥(𝜏−𝑑− < ∞|𝐽0 = 𝑖) ≤ ℙ𝑥�𝜏𝜔𝑑 < ∞|𝐽0 = 𝑖� ≤ 
ℙ𝑥(𝜏0− < ∞|𝐽0 = 𝑖). 

(10) 

We will need also some knowledge about one-sided problems, thus 
again we cite [Czarna et al. 2018] to get that for 𝑥 ≥ 0  

 𝑬𝑥 �𝑒−∫  𝜏0
−

0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠, 𝜏0− < ∞, 𝐽𝜏0−�𝐽0� = 

𝓩(𝜔)(𝑥) −𝓦(𝝎)(𝑥)𝑪𝒲(∞)−1𝒵(∞), 
(11) 

where matrix 𝑪𝒲(∞)−1𝒵(∞): = lim𝑐→∞𝓦(𝝎)(𝑐)−1𝓩(𝜔)(𝑐) exists and has 
finite entries.  

In the case when 𝑁 = 1 we have from [Li, Palmowski 2018] that for 
fixed level −𝑑 < 0 and 𝑥 ≥ −𝑑  
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 𝔼𝑥[𝑒∫  ∞
0 𝜔(𝑠)𝑑𝑠; 𝜏−𝑑− = ∞] = 𝑐𝒲−1(∞,−𝑑)𝒲(𝜔)(𝑥,−𝑑), (12) 

where 𝑐𝒲−1(∞,−𝑑) = [lim𝑐→∞𝒲(𝜔)(𝑐,−𝑑)]−1.  

 3. Probability of Omega bankruptcy  
     for the Crámer-Lundberg process 

The first process which will be treated as the model example is the Crámer- 
-Lundberg process. Remember that we define this process as follows  

𝑋𝑡 = 𝑥 + 𝑝𝑡 −�  
𝑁𝑡

𝑖=1

𝑈𝑖 , 

with the same meaning of the parameters as in the introductory section of 
this article. Before we proceed to the results, we would like to mention 
that the calculations below are done in the same manner as in [Li, 
Palmowski 2018] where the linear Brownian motion was the underlying 
process. They achieved the formula for the probability of bankruptcy in 
the Omega model and showed that this probability is in fact a function of 
classical ruin probability. As is shown below we get a similar result. Let 
us proceed to the calculations. 

We know that the Laplace exponent for the Cramér-Lundberg process 
is equal to  

𝜓(𝛼) = 𝑝𝛼 −
𝜆𝛼
𝜇 + 𝛼

. 

Thus one can obtain the formula for 𝑊(𝑞), namely  

𝑊(𝑞)(𝑥) =
1
𝑝

(𝐴+(𝑞)𝑒𝑞+(𝑞)𝑥 − 𝐴−(𝑞)𝑒𝑞−(𝑞)𝑥), 

where  

𝐴±(𝑞) =
𝜇 + 𝑞±(𝑞)

𝑞+(𝑞) − 𝑞−(𝑞)
, 𝑞±(𝑞)

=
𝑞 + 𝜆 − 𝜇𝑝 ± �(𝑞 + 𝜆 − 𝜇𝑝)2 + 4𝑝𝑞𝜇

2𝑝
. 

From (3) we know that  

𝜑(𝑥) = ℙ𝑥(𝜏0− < ∞) = 1 − 𝜓′(0 +)𝑊(𝑥), 

if 0 < 𝜓′(0+) = 𝑝 − 𝜆
𝜇
. Note that this assumption is a well-known net 

profit condition. In the language of stochastic processes, this is equivalent 
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to the fact that the drift of the process is strictly positive. This assumption 
will be also considered here. From the above one can see that we need to 
calculate the formula for the (0)-scale function. Therefore, note that  

𝑞+(0) =
𝜆 − 𝜇𝑝
𝑝

, 𝑞−(0) = 0, 

and 

𝑊(𝑥) =
1
𝑝 �
𝐴+(0)𝑒𝑞+(0)𝑥 − 𝐴−(0)𝑒𝑞−(0)𝑥� =

1
𝜆 − 𝜇𝑝 �

𝜆
𝑝
𝑒�

𝜆−𝜇𝑝
𝑝 �𝑥 − 𝜇�. 

Thus, we can go back to the representation of the probability of 
classical ruin time  

 𝜑(𝑥) = 1 − �𝑝 − 𝜆
𝜇
�𝑊(𝑥) = 𝜆

𝜇𝑝
𝑒�

𝜆−𝜇𝑝
𝑝 �𝑥. (13) 

This result is well-known in the literature, however one can see that 
the scale functions are very convenient tools for this problem. This will 
also be the case for the probability of Omega bankruptcy. 

Now we will proceed to some general calculations with some 
restrictions. Let us assume that function 𝜔 satisfies the following 
conditions  
• 𝜔(𝑥) ≥ 0 for 𝑥 ∈ [−𝑑, 0] and zero otherwise,  
• 𝜔(𝑥) is differentiable continuously function on [−𝑑, 0], where at the 

ending points we use the left and right derivative/limit respectively. 
Remember from (7) that when we put 𝑁 = 1 then the 𝜔-scale 

function satisfies the following  

 𝒲(𝜔)(𝑥,−𝑑)= 
(14)  𝑊(𝑥 + 𝑑) + ∫  𝑥+𝑑

0 𝑊(𝑥 + 𝑑 − 𝑦)𝜔(𝑦 − 𝑑)𝒲(𝜔)(𝑦 −
𝑑,−𝑑)𝑑𝑦, for 𝑥 ≥ −𝑑. 

The next proposition will give us the possibility for numerical 
calculations of the above scale function.  

 
Proposition 3.1. Function 𝒲(𝜔) satisfies the following differential 

equation for 𝑥 ∈ [−𝑑, 0]  

𝑝𝒲(𝜔)′′(𝑥,−𝑑) − [𝜔(𝑥) + (𝜆 − 𝜇𝑝)]𝒲(𝜔)′(𝑥,−𝑑) − [𝜇𝜔(𝑥) + 

𝜔′(𝑥)]𝒲(𝜔)(𝑥,−𝑑) = 0, 

with 𝒲(𝜔)(−𝑑,−𝑑) = 1
𝑝

,𝒲(𝜔)′(−𝑑,−𝑑) = 𝜆+𝜔(−𝑑)
𝑝2

.  
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Proof. Let us take 𝑧 = 𝑥 + 𝑑 ≥ 0 and denote 𝑔(𝑧): = 𝒲(𝜔)(𝑧 −
𝑑,−𝑑) = 𝒲(𝜔)(𝑥,−𝑑). Then from (14) we have that  

 𝑔(𝑧) = 𝑊(𝑧) + ∫  𝑧0 𝑊(𝑧 − 𝑦)𝜔(𝑦 − 𝑑)𝑔(𝑦)𝑑𝑦. (15) 

Let us observe, since 𝑞−(0) = 0, that  

�
𝑑
𝑑𝑧

− 𝑞+(0)�
𝑑
𝑑𝑧
𝑊(𝑥) = 0 

and  

�
𝑑
𝑑𝑧

− 𝑞+(0)�
𝑑
𝑑𝑧
𝑔(𝑧) = 

1
𝑝

[𝜇𝜔(𝑧 − 𝑑)𝑔(𝑧) + 𝜔′(𝑧 − 𝑑)𝑔(𝑧) +𝜔(𝑧 − 𝑑)𝑔′(𝑧)]. 

Therefore  

𝑝𝑔′′(𝑧) − [𝜔(𝑧 − 𝑑) + (𝜆 − 𝜇𝑝)]𝑔′(𝑧)− 
[𝜇𝜔(𝑧 − 𝑑) +𝜔′(𝑧 − 𝑑)]𝑔(𝑧) = 0, 

with the initial values 𝑔(0) = 1
𝑝
 and 𝑔′(0) = 𝜆+𝜔(−𝑑)

𝑝2
. To end this proof 

one needs to go back to 𝑥-domain.  

The second proposition will be related to the probability of Omega 
bankruptcy time. Remember that  

𝜏𝜔𝑑 = inf �𝑡 ≥ 0:�  
𝑡

0
𝜔(𝑋𝑠)𝑑𝑠 > 𝑒1 ∨ 𝑋𝑡 < −𝑑�. 

Therefore the probability of Omega bankruptcy is equal to  

𝜑(𝜔)(𝑥) = ℙ𝑥�𝜏𝜔𝑑 < ∞� = 1 − 𝔼𝑥 �𝑒−∫  ∞
0 𝜔(𝑠)𝑑𝑠; 𝜏−𝑑− = ∞� 

and from (12) we know that for 𝑥 ≥ −𝑑  

𝔼𝑥 �𝑒−∫  ∞
0 𝜔(𝑠)𝑑𝑠; 𝜏−𝑑− = ∞� = 𝑐𝒲−1(∞,−𝑑)𝒲(𝜔)(𝑥,−𝑑), 

with 𝑐𝒲−1(∞,−𝑑) = [lim𝑐→∞𝒲(𝜔)(𝑐,−𝑑)]−1.  

Proposition 3.2. Function 𝜑(𝜔)(𝑥) is given by  

𝜑(𝜔)(𝑥) = 𝜑(𝑥)
𝜇𝑝2

𝜆(𝜇𝑝 − 𝜆) 𝑐𝒲−1(∞,−𝑑)𝒲(𝜔)′(0,−𝑑), for 𝑥 ≥ 0, 

where as before 𝜑(𝑥) = ℙ𝑥(𝜏0− < ∞) = 𝜆
𝜇𝑝
𝑒
𝜆−𝜇𝑝
𝑝 𝑥 is a classical ruin 

probability. 
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Proof. First, we again make the substitution 𝑧 = 𝑥 + 𝑑 and from (15) 
and the fact that 𝜔(𝑧) = 0 for 𝑧 > 𝑑 one can get the following  

𝑔′(𝑧) =
𝜆
𝑝2
𝑒(𝜆−𝜇𝑝𝑝 )𝑧 �1 + �  

𝑑

0
𝑒−(𝜆−𝜇𝑝𝑝 )𝑦𝜔(𝑦 − 𝑑)𝑔(𝑦)𝑑𝑦� 

and  

𝑔(𝑧) = 𝑔(𝑑) +
𝑝

𝜇𝑝 − 𝜆
[1 − 𝑒

𝜆−𝜇𝑝
𝑝 (𝑧−𝑑)]𝑔′(𝑑). 

Thus when we get back to the 𝑥-domain using 𝑔(𝑧) = 𝒲(𝜔)(𝑥,−𝑑), 
then the above equation gives  

𝒲(𝜔)(𝑥,−𝑑) = 𝒲(𝜔)(0,−𝑑) +
𝑝

𝜇𝑝 − 𝜆
[1 − 𝑒

𝜆−𝜇𝑝
𝑝 𝑥]𝒲(𝜔)′(0,−𝑑). 

From the above equation it is clear that  

𝑐𝒲−1(∞,−𝑑) =
1

𝒲(𝜔)(0,−𝑑) + 𝑝
𝜇𝑝 − 𝜆𝒲

(𝜔)′(0,−𝑑)
. 

Therefore  

 𝜑(𝜔)(𝑥) = 

(16) 

 1 − 𝑐𝒲−1(∞,−𝑑)𝒲(𝜔)(𝑥,−𝑑) = 

𝑝
𝜇𝑝 − 𝜆

�𝑒
𝜆−𝜇𝑝
𝑝 𝑥�𝒲(𝜔)′(0,−𝑑)𝑐𝒲−1(∞,−𝑑) = 

 𝜑(𝑥) 𝜇𝑝2

𝜆(𝜇𝑝−𝜆)𝒲
(𝜔)′(0,−𝑑)𝑐𝒲−1(∞,−𝑑). 

Note that we still need to calculate 𝒲(𝜔)(0,−𝑑) and 𝒲(𝜔)′(0,−𝑑). 
We will use numerical methods to approximate them.  

The main question here is how 𝜑(𝜔)(𝑥) is related with the probability 
of the classical ruin time. In particular if 𝜔(𝑥) ≡ 0 then  

𝜑(𝜔)(𝑥 − 𝑑) = 𝜑(𝑥). 

This is due to the translation of process X by constant 𝑑 (more 
precisely due to the spatial homogeneity of the process). Let us recall the 
inequalities noted at (10)  

 𝜑(𝑥 + 𝑑) ≤ 𝜑(𝜔)(𝑥) ≤ 𝜑(𝑥). (17) 

The first inequality is not of the same form as in (2.4), but this is the 
same expression due to, again, the spatial homogeneously of process 𝑋. 
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We will show these inequalities in Figure 2, but to give numerical 
examples one needs to fix the Omega function. We will consider the 
shape of the Omega function which was mentioned in the introductory 
section. Namely, let us take  

𝜔(𝑥) = [𝛾0 + 𝛾1(𝑥 + 𝑑)]1{𝑥∈[−𝑑,0]}. 

As we mentioned before, we need to calculate 𝒲(𝜔)(0,−𝑑) and 
𝒲(𝜔)′(0,−𝑑) with the use of numerical methods. Note that if we set  

𝛾0 = −𝛾1𝑑 

then 𝜔 will be continuous at zero. This gives us a more reasonable 
interpretation because the penalty will be decreasing continuously to 
zero. Thus,  

𝜔(𝑥) = 𝛾1𝑥1{𝑥∈[−𝑑,0]}. 

For such a model we have that from Proposition 3.1 the following 
differential equation for 𝑥 ∈ [−𝑑, 0], holds  

𝑝𝒲(𝜔)′′(𝑥,−𝑑) − [𝛾1𝑥 + (𝜆 − 𝜇𝑝)]𝒲(𝜔)′(𝑥,−𝑑) − 𝛾1 

 [𝜇𝑥 + 1]𝒲(𝜔)(𝑥,−𝑑) = 0, (18) 

with the initial values 𝒲(𝜔)(−𝑑;−𝑑) = 1
𝑝
 and 𝒲(𝜔)′(−𝑑;−𝑑) = 𝜆−𝛾1𝑑

𝑝2
. 

It is straightforward that 𝛾1 ≤ 0 because we have the assumption that 
𝜔(𝑥) ≥ 0 for all 𝑥. Before we proceed to numerical examples let us 
recall the basic procedure for dealing with such differential equations 
with the use of numerical methods. 

To start one can set 𝑓(𝑥): = 𝒲(𝜔)(𝑥;−𝑑) and ℎ(𝑥): = 𝒲(𝜔)′(𝑥;−𝑑) 
for 𝑥 ∈ [−𝑑, 0]. Then (18) became  

⎩
⎨

⎧  
𝑑𝑓
𝑑𝑥

= ℎ(𝑥) 

𝑑ℎ
𝑑𝑥

=
(𝛾1𝑥 + (𝜆 − 𝜇𝑝))

𝑝
ℎ(𝑥) +

𝛾1(𝜇𝑥 + 1)
𝑝

𝑓(𝑥)
 

and 𝑓(−𝑑) = 1
𝑝
 and ℎ(−𝑑) = 𝜆−𝛾1𝑑

𝑝2
. On the interval of interest, this 

system has a unique solution ℎ and 𝑓 due to the Lipschitz condition with 
respect to the dependent variables and continuity. Therefore one can 
obtain an approximation for 𝒲(𝜔)(0,−𝑑) and 𝒲(𝜔)′(0,−𝑑) using one 
of the iterative methods, e.g. the classical Runge-Kutta method for the 
system of ODE. 
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Hence we are ready to show relations between the probabilities in the 
inequalities (17). Thus, let us fix the following  

𝜆 = 1, 𝜇 = 1, 𝛾1 = −0.2,𝑑 = 3,𝑝 = 1.25 

and consider Figure 2.  
 

 

Fig. 2. Comparison between 𝜑(𝑥), 𝜑(𝜔)(𝑥) and 𝜑(𝑥 + 𝑑) 
Source: own elaboration. 

From Figure 2 one can see the relations between these three 
probabilities and the trivial observation that if one increases capital then 
probabilities becomes smalle exponentially fast. Note, that if we increase 
the values of the penalty function 𝜔 then the probability of Omega 
bankruptcy time will become closer to the classical ruin time. However, if 
we choose to behave conversely then we will be close to the 𝜑(𝑥 + 𝑑).  

4. Numerical approach for the Omega model  
for the Markov modulated Brownian motion 

In this section, we will consider the Markov modulated Brownian motion 
(MMBM in short) as the underlying process. Namely, we will consider 
(𝑋, 𝐽), where 𝑋 will be an additive component and 𝐽 is a continuous time 
Markov chain. We assume that the state space 𝐸 = {1,2, . . . ,𝑁} of 
process 𝐽 can be of any finite size. However, when we proceed to 
numerical examples we will always fix the state space to be 𝐸 = {1,2}. 
We state this assumption only for the clarity of the numerical examples 
presented in this section.  
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When process 𝐽 is on the state 𝑖 ∈ 𝐸 then 𝑋 is behaving like a linear 
Brownian Motion with the parameters 𝜎𝑖 > 0 and 𝜇𝑖. To achieve almost 
certainly continuity of the paths we exclude all jumps from the reasoning, 
also these connected with the changing of the state. Moreover, we denote 
𝝈 and 𝝁 as the (column) vectors of 𝜎𝑖 and 𝜇𝑖, and Δ𝒗 as the diagonal 
matrix (of the proper size) with vector 𝒗 on the diagonal. Therefore, the 
matrix Laplace exponent 𝑭(𝑠) is given by  

𝑭(𝑠) =
1
2
Δ𝝈2𝑠2 + Δ𝝁𝑠 + 𝑸. 

For this process we know from Ivanovs [Ivanovs 2011] that despite 
the case when 𝜅: = 𝝅𝑇𝝁 = 0 and 𝑞 = 0 we have that  

 𝑾(𝑞)(𝑥) = (𝑒−𝚲𝑞+𝑥 − 𝑒𝚲𝑞−𝑥)𝚵𝑞, (19) 

where 𝚵𝑞−1 = −1
2
Δ𝝈(𝚲𝑞+ + 𝚲𝑞−) and 𝚲𝑞± are the (unique) right solutions to 

the matrix equation 𝑭(∓𝚲𝑞±) = 𝑞𝐼, namely  

1
2
Δ𝝈2(𝚲𝑞±)2 ∓ Δ𝝁𝚲𝑞± + (𝑸 − 𝑞𝐼) = 𝟎. 

We assume that 𝜅 > 0 to obtain positive asymptotic drift. From our 
point of view the general definition of 𝚲𝑞± will be important. Thus, let us 
recall from (6) that for 𝑖, 𝑗 ∈ 𝐸  

ℙ(𝜏𝑥+ < 𝑒𝑞 , 𝐽𝜏𝑥+ = 𝑗|𝐽0 = 𝑖) = (𝑒𝚲𝑞+𝑥)𝑖𝑗. 

Matrix 𝚲𝑞− plays the same role for process (−𝑋, 𝐽) (which is MMBM 
but with the drift vector −𝝁). The next proposition can be used for the 
identification of the classical ruin time for the MMBM. Note that the 
same can be proven just using spatial homogeneity, however, we would 
like to show that (11) involves quantities that can be computed explicitly.  

 

Proposition 4.1. For 𝑥 ≥ 0 and 𝑞 ≥ 0 we have that  

𝑷𝑥(𝜏0− < 𝑒𝑞 , 𝐽𝜏0−) = 𝒁(𝑞)(𝑥) −𝑾(𝑞)(𝑥)𝑪𝑊(∞)−1𝑍(∞) = 𝑒𝚲𝑞−𝑥 , 

where 𝑒𝑞 is an independent exponential random variable with parameter 
𝑞 (if 𝑞 = 0 then we set 𝑒𝑞 = ∞) and 𝑪𝒲(∞)−1𝒵(∞): = 
lim𝑐→∞𝑾(𝑞)(𝑐)−1𝒁(𝑞)(𝑐).  

We leave the proof of this proposition for the Appendix due to its 
long calculations. 

Therefore, we have the formula for the classical ruin probability for 
MMBM, namely after we set 𝑞 = 0 in the above proposition, one can get 
that for 𝑥 ≥ 0  
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𝑷𝑥(𝜏0− < ∞|𝐽0) = 𝑒𝚲−𝑥1, 

where 1 is a column vector of ones of the size 𝑁 × 1. 

Before we state our numerical method for the approximation of the 
probability of Omega bankruptcy, we need to consider the numerical 
method to obtain an approximation of the 𝚲𝑞± matrices. Formally our 
approximation will be valid for 𝑞 ≥ 0, but in the examples we will be 
interested in the case when 𝑞 = 0. Note that for this particular case there 
exist explicit formulas for these matrices (and even scale matrices) as was 
noted in [Czarna et al. 2018]. However, we would like to have a general 
formula that can work for any choice of the parameters in the MMBM 
model, as well as a different choice of parameter N. Here we will cite the 
results from [Breuer 2008] where an iterative method was derived. One 
can use other methods, for example, involving spectral analysis of the 
matrices 𝚲𝑞±, see [D’Auria et al. 2010]. 

Let us recall that Φ(𝑞) = sup{𝜃 ≥ 0:𝜓(𝜃) = 𝑞} is an inverse of 
function 𝜓(𝜃). In the case of the linear Brownian motion, one can obtain 
an explicit formula for this function, namely  

 Φ(𝑞) = −𝜇+�𝜇2+2𝑞𝜎2

𝜎2
. (20) 

Let us denote Φ𝑖(𝑞) as a function related to the linear Brownian 
motion with the parameters 𝜇𝑖 and 𝜎𝑖 for 𝑖 ∈ 𝐸. Then we denote ΔΦ: =
𝑑𝑖𝑎𝑔(Φ(𝑞𝑖 + 𝑞))𝑖∈𝐸, where 𝑞𝑖 = −𝑞𝑖𝑖 and 𝑞𝑖𝑖 is (𝑖, 𝑖)-entry of the matrix 
𝑸.  

Let 𝑼0: = −ΔΦ and 𝑼𝑛+1: = 𝑔(𝑼𝑛) for 𝑛 > 0 where row 𝑖 of the 
matrix 𝑔(𝑼𝑛) is defined as follows  

(𝑒𝑖)𝑇𝑔(𝑼𝑛) ≔ 

 −Φ𝑖(𝑞𝑖 + 𝑞)(𝑒𝑖)𝑇 + 𝑞𝑖(∑  𝑘∈𝐸 𝑝𝑖𝑘(𝑒𝑘)𝑇)[Φ𝑖(𝑞𝑖 + 𝑞)𝐼 + 𝑼(𝑛)] ∙ (21) 

[−
𝜎𝑖2

2
𝑼(𝑛)2 + 𝜇𝑖𝑼(𝑛) + (𝑞𝑖 + 𝑞)𝐼]−1, 

where 𝑒𝑖 is vector of zeros despite 𝑖’th position (canonical vector) and 𝑝𝑖𝑘 
is the probability that if process 𝐽 exits from state 𝑖 then it will go to state 
𝑘. It was proven that 𝑼𝑛 converges to matrix 𝚲𝑞+. As we mentioned 
before, to obtain a numerical method for matrix 𝚲𝑞− one needs to consider 
process (−𝑋, 𝐽) as the background for the above algorithm.  

As a first example, we will consider the following parameters  

Δ𝝁 = �0.25 0
0 0.1� ,Δ𝝈 = �0.5 0

0 0.3� ,𝑸 = �−2 2
1 −1� , 𝑞 = 0, 𝑥0 = 1. 
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Then we can apply above numerical method to derive an appro-
ximation of matrix 𝚲− and therefore the probability of classical ruin time. 
Hence we get the following approximation  

𝚲− ≈ �−4.819 0.618
3.915 −23.08� , 𝑒𝚲− ≈ �0.00915 0.000307

0.00195 0.0000654�. 

Note that the (𝑖, 𝑗) cell of matrix 𝑒𝚲− is the probability that  

ℙ1(𝜏0− < ∞, 𝐽(𝜏0−) = 𝑗|𝐽0 = 𝑖). 

Thus to obtain the desired probability we need to add up the cells in 
row 𝑖. One can be interested in how the probability of classical ruin time 
is different for MMBM and Brownian Motion 𝑋𝑖 with parameters 𝜇𝑖 and 
𝜎𝑖 for 𝑖 ∈ 𝐸. Remember that for Brownian Motion probability of classical 
ruin time takes the following form  

 ℙ𝑥(𝜏0− < ∞) = 𝑒−
2𝜇
𝜎2𝑥. (22) 

Consider Figure 3:  
   

 

Fig. 3. Comparison between the classical probabilities for two cases of MMBM when 
 𝐽0 = 1 and 𝐽0 = 2 and also between linear Brownian Motions 𝑋1 and 𝑋2 

Source: own elaboration. 

One can see that in Figure 3 the probabilities for the Markov 
modulated Brownian motion stay between the probabilities for 𝑋1 and 
𝑋2. This is a somewhat trivial observation but will become important 
later on.  
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Let us proceed to the numerical example for the probability of Omega 
bankruptcy for the MMBM. Our aim is to approximate  

(𝜑(𝜔)(𝑥))𝑖 = 1 − 𝔼𝑥 �𝑒−∫  ∞
0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠; 𝜏−𝑑− = ∞|𝐽0 = 𝑖�, 

for all 𝑖 ∈ 𝐸. Denote 𝜑𝑇
(𝜔)(𝑥) as the following vector of expected values 

for all 𝑖 ∈ 𝐸  

(𝜑𝑇
(𝜔)(𝑥))𝑖: = 1 − 𝔼𝑥 �𝑒−∫  𝑇

0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠; 𝜏−𝑑− = ∞|𝐽0 = 𝑖�. 

Therefore this is a modification of our bankruptcy time in such a way 
that we allow to be killed by penalty function only before time 𝑇. If we 
let 𝑇 → ∞ then 𝜑𝑇

(𝜔) converge to 𝜑(𝜔)(𝑥) entry-wise, by dominated 
convergence theorem. From now we will hold the assumption that 𝜅 > 0, 
thus roughly speaking, after a certain long time the process should be 
saved from the penalty. Therefore we can use that to set a big enough 𝑇 
to approximate our ruin time. Therefore, because we will approximate 
𝜑(𝜔) using an approximation of 𝜑𝑇

(𝜔) we will face a so-called cut-off 
error. 

Thus, we turn our problem into an approximation of 𝜑𝑇
(𝜔)(𝑥) and for 

that we will use the Monte Carlo methods. However we need to consider 
a few problems related to our method of approximation  
• How to simulate a sample path of the Markov modulated Brownian 

motion?  
• How to deal with the different starting points of process 𝑋?  
• How big should the parameter 𝑇 be?  
• How many simulations are sufficient to get a trustworthy 

approximation?  

Simulation of the sample path of the MMBM 

At the start let us recall the method of simulation of process 𝐽. Let us 
assume that 𝐽0 = 𝑖. Then we know that the time until 𝐽 change the state 
from 𝑖 to 𝑗 is distributed like an exponential distributed random variable 
with parameter 𝑞𝑖 = −𝑞𝑖,𝑖. Then, when 𝐽 is leaving state 𝑖 it can go to 
state 𝑗 with probability 𝑝𝑖,𝑗. Note that these probabilities can be 
determinant from matrix 𝑸. For more details, we refer to [Norris 1997]. 

Therefore, one can see that if we would like to simulate 𝐽 until some 
time 𝑇 then we need to simulate random numbers from the exponential 
distributions until their sum crosses level 𝑇. 

Let us assume that we simulate the sample path of process 𝐽 and 
(𝑋0, 𝐽0) = (0, 𝑖) for some 𝑖 ∈ 𝐸. Then, let 0 = 𝑇0,𝑇1, . .. be a sequence of 
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the successive jumps epoch of 𝐽 (namely, the times when 𝐽 changes the 
state). In the interval [𝑇𝑛,𝑇𝑛+1) we now that 𝐽 is constant and equal  
to some 𝑖 ∈ 𝐸. Thus in this interval, we can simulate increments of 𝑋 the 
same as for the linear Brownian motion with the parameters 𝜇𝑖 and 𝜎𝑖.  
In brief, we divide the time interval with the use of the occupation times 
of 𝐽 and then use well-known methods for the simulation of the linear 
Brownian motion.  

Different starting points of process 𝑿 

As we mentioned before, we would like to simulate (𝑋, 𝐽) efficiently with 
a different choice of 𝑋0. Note that if we sample the random path of 
process (𝑋, 𝐽) with 𝑋0 = 0 then we can translate this sample path of 𝑋 by 
the constant 𝑥 to obtain the sample path of process (𝑋, 𝐽) with 𝑋0 = 𝑥. 
Therefore, after one simulation of process (𝑋, 𝐽) with one starting point, 
we will have one simulation per every starting point.  

Choice of parameter 𝑻 

We need to choose such 𝑇 that 𝑋𝑇 will be “safe” with high probability. 
Note that if we choose 𝑇 for 𝑋0 = 0 then for a larger starting point this 𝑇 
will be also sufficient (because of the probability of ruin decrease when 
𝑋0 increase𝑠). Thus, we will only consider 𝑋0 = 0 and we will consider 
the following criteria. Let us take (if such 𝑚𝑎𝑥 𝑎𝑟𝑔 is unique)  

𝑖 = max arg𝑘∈𝐸 −
2𝜇𝑘
𝜎𝑘

. 

This means that we will take such 𝑋𝑖 for which probability of 
classical ruin time is the highest from all possible 𝑖 ∈ 𝐸. If such 
maximum is not unique then take these 𝑖’s which satisfy this maximum 
and take the one with the smallest drift. Note, that such 𝑋𝑖 will have a 
higher probability of classical ruin than process 𝑋 itself, therefore this 
will be our worst-case scenario. Note that 𝑋𝑇𝑖  is distributed as 
𝑁(𝜇𝑖𝑇,𝜎𝑖2𝑇), hence we know that 𝑋𝑇𝑖  will be greater than 𝜇𝑖𝑇 − 3𝜎√𝑇 
with high probability. Thus, our aim is to set 𝑇 big enough that the 
probability that the linear Brownian motion, which starts with the value 
𝜇𝑖𝑇 − 3𝜎√𝑇, ever crosses level zero is less than some fixed 𝜖. Then we 
must take the lowest value of 𝑇 which satisfy  

𝑒
−2𝜇𝑖√𝑇

𝜎𝑖
2 (𝜇𝑖𝑇−3𝜎𝑖√𝑇)

≤ 𝜖, 

due to (22). Let us assume that 𝜖 = 10−4. 
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Note that this method is somehow trivial and restrictive. One can find 
another bound for 𝑇 which is better for numerical approximation. 
However, in the example below parameter 𝑇 will have reasonable value.  

Number of simulations 

From the theory of the Monte Carlo simulations we know that the rate  
of convergence is 𝑛−

1
2, or to be more precise, on the confidence level 

𝛼 = 0.05 the relation between error (call it 𝑏), sample variance and the 
number of simulations is  

𝑏 =
1.96𝑆̂𝑛
√𝑛

. 

Thus, to obtain a trustworthy approximation of parameter 𝑛 one needs 
to make some pilot simulations to get 𝑆̂𝑛 and then we also need to choose 
an acceptable error on the chosen confidence level.  

Example of simulations 

Finally, we are ready to make an approximation of the probability  
of Omega bankruptcy ruin. Let us take the same parameters as was 
chosen for the classical probability of ruin. Namely,  

Δ𝝁 = �0.25 0
0 0.1� ,Δ𝝈 = �0.5 0

0 0.3� ,𝑸 = �−2 2
1 −1�. 

In addition for all 𝑖 ∈ 𝐸 we take  

𝜔𝑖(𝑥) = −0.02𝑥1{𝑥∈[−5,0]}, 

thus 𝑑 = 5. For such parameters we take that 𝑇 = 42 and 𝑆̂𝑛 ≈ 0.066. 
Therefore, we have that  

𝑏 ≈
0.129
√𝑛

, 

on the confidence level 𝛼 = 0.05. We will show the result for the error  
of the size 10−3, then it is sufficient to take 𝑁 = 104. Let us consider 
Figure 4.  

Note that we used the formula for the probability of Omega 
bankruptcy for the linear Brownian motion from [Li, Palmowski 2018]. 
One can see that, las before, the probabilities for the MMBM are between 
these for 𝑋1 and 𝑋2, however here one can see that there is a little 
difference between the cases of 𝐽0 = 1 and 𝐽0 = 2.  
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Fig. 4. Comparison between Omega bankruptcy probabilities for MMBM with different 
values of 𝐽0, 𝑋1 and 𝑋2  

Source: own elaboration. 

5. Concluding remarks 

In this paper we compared the Omega and classical ruin models for the 
two stochastic processes. An interesting result of this work seems to be 
Proposition 3.2. Namely, under the general assumptions about the 𝜔 
function, we obtain that the probability of Omega bankruptcy is a linear 
function of the probability of classical ruin time. It is also important  
to say that the same type of relation was obtained for the linear Brownian 
motion in [Li, Palmowski 2018]. They achieve this result for function 𝜔 
being a linear function. However, it seems that it should be possible to 
obtain the same type of relation for more general 𝜔, as was done in this 
paper. Hence, the following question arises. Is this relationship, between 
the probability of Omega bankruptcy and the probability of classical ruin, 
true for the general spectrally negative Lévy processes? Unfortunately, 
the methods used in this paper and in [Li, Palmowski 2018] depend on 
the shape of specific scale functions, therefore it cannot be done 
straightforwardly. 

In the second part of this article, we focused on the numerical 
analysis of the probability of classical ruin and the probability of Omega 
bankruptcy for the Markov modulated Brownian motion. For this case, 
we also noticed some relation between these probabilities, however it was 
only a numerical observation, and an important step would be to find 
such a relation with the use of analytic tools.  
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Appendix. Proof of Proposition 4.1 
Recall from (11) that  

 𝑬𝑥[𝑒−∫  𝜏0
−

0 𝜔𝐽𝑠(𝑋𝑠)𝑑𝑠, 𝜏0− < ∞, 𝐽𝜏0−|𝐽0] = 𝓩(𝜔)(𝑥) −𝓦(𝝎)(𝑥)𝑪𝒲(∞)−1𝒵(∞). 

If we take 𝜔(𝑖, 𝑥) = 0 for all 𝑖 ∈ 𝐸 and 𝑥 ≥ 0, then the above turns into  
𝑷𝑥[𝜏0− < ∞, 𝐽𝜏0−|𝐽0] = 𝒁(𝑞)(𝑥) −𝑾(𝑞)(𝑥)𝑪𝑊(∞)−1𝑍(∞), 

where 𝑪𝒲(∞)−1𝒵(∞) = lim𝑐→∞𝑾(𝑞)(𝑐)−1𝒁(𝑞)(𝑐). Recall that  

𝒁(𝑞)(𝑥) = 𝐼 − �  
𝑥

0
𝑾(𝑞)(𝑧)𝑑𝑧(𝑸 − 𝑞𝐼). 

Before we state the proof, let us recall from [Czarna et al. 2018] the 
relation between 𝚲𝑞+, 𝚲𝑞− and the model parameters  

 𝑪𝑞𝚲𝑞+ = Δ 2
𝝈2

[−𝑸 + 𝑞𝐼], (A1) 

where 𝑪𝑞 = (𝚲𝑞+ + 𝚲𝑞−)𝚲𝑞−(𝚲𝑞+ + 𝚲𝑞−)−1.  

Recall also (see [Ivanovs 2011]) that in the case of the Markov 
modulated Brownian motion we have that  
 lim

𝑥→∞
𝑳(𝑞)(𝑥) = 𝚵𝒒, (A2) 

where 𝑳(𝑞) was defined in (5). 

One can see that our proof can be divided into a few parts. Thus we 
will need the two lemmas.  

Lemma A1. For 𝑥 ≥ 0  

�  
𝑥

0
𝑾(𝑞)(𝑧)𝑑𝑧(𝑸 − 𝑞𝐼) = 𝐼 − 𝑒−𝚲𝑞+𝑥 −𝑾(𝑞)(𝑥)Δ𝝈2

2
𝚲𝑞+. 

Proof. After simple calculations, one can obtain the following  

�  
𝑥

0
𝑾(𝑞)(𝑧)𝑑𝑧(𝑸− 𝑞𝐼) = 

 
−[(𝚲𝑞+)−1𝑒−𝚲𝑞+𝑥 + �𝚲𝑞−)−1𝑒𝚲𝑞−𝑥�𝚵𝑞(𝑸− 𝑞𝐼) +
[(𝚲𝑞+)−1 + (𝚲𝑞−)−1]𝚵𝑞(𝑸− 𝑞𝐼).

 (A3) 

We will divide our calculations into two parts, namely  

−[(𝚲𝑞+)−1𝑒−𝚲𝑞+𝑥 + (𝚲𝑞−)−1𝑒𝚲𝑞−𝑥]𝚵𝑞(𝑸− 𝑞𝐼) = 

[(𝚲𝑞+)−1𝑒−𝚲𝑞+𝑥 + (𝚲𝑞−)−1𝑒𝚲𝑞−𝑥]�𝚲𝑞+ + 𝚲𝑞−�
−1Δ 2

𝝈2
(𝑸− 𝑞𝐼) =

(A.1)
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−[(𝚲𝑞+)−1𝑒−𝚲𝑞+𝑥 + (𝚲𝑞−)−1𝑒𝚲𝑞−𝑥]𝚲𝑞−(𝚲𝑞+ + 𝚲𝑞−)−1𝚲𝑞+ = 

−[𝑒−𝚲𝒒+𝒙(𝚲𝑞+)−1𝚲𝑞− + 𝑒𝚲𝑞−𝑥](𝚲𝑞+ + 𝚲𝑞−)−1𝚲𝑞+ = 

−[𝑒−𝚲𝒒+𝒙((𝚲𝑞+)−1(𝚲𝑞+ + 𝚲𝑞−) − 𝐼) + 𝑒𝚲𝑞−𝑥](𝚲𝑞+ + 𝚲𝑞−)−1𝚲𝑞+ = 

−𝑒−𝚲𝑞+𝑥 + [𝑒−𝚲𝑞+𝑥 − 𝑒𝚲𝑞−𝑥](𝚲𝑞+ + 𝚲𝑞−)−1𝚲𝑞+ = −𝑒−𝚲𝑞+𝑥 −𝑾(𝑞)(𝑥)Δ𝝈2
2
𝚲𝑞+ 

and  

 [(𝚲𝑞+)−1 + (𝚲𝑞−)−1]𝚵𝑞(𝑸− 𝑞𝐼) = 

−[(𝚲𝑞+)−1 + (𝚲𝑞−)−1][𝚲𝑞+ + 𝚲𝑞−]−1Δ 2
𝝈2

(𝑸− 𝑞𝐼) =
(A.1)

 

[(𝚲𝑞+)−1 + (𝚲𝑞−)−1]𝚲𝑞−(𝚲𝑞+ + 𝚲𝑞−)−1𝚲𝑞+ = 

(𝚲𝑞+)−1[𝚲𝑞− + 𝚲𝑞+][𝚲𝑞+ + 𝚲𝑞−]−1𝚲𝑞+ = 𝐼. 

 

The above calculations end the proof. 
 
Lemma A2. We have that  

𝑪𝒲(∞)−1𝒵(∞) = −Δ𝝈2
2
𝚲𝑞−. 

Proof. We have from the previous proposition, the fact that 𝚵 is 
invertible, the definition of scale matrix (5) and (A2) that  

𝑪𝒲(∞)−1𝒵(∞) = lim
𝑎→∞

𝑾−1(𝑎)𝒁(𝑞)(𝑎) = lim
𝑎→∞

𝑾−1(𝑎)[𝑒−𝚲𝑞
+𝑎 + 𝑾(𝑞)(𝑎)Δ𝝈2

2
𝚲𝑞+]

= lim
𝑎→∞

[𝑳(𝑞)(𝑎)]−1 + Δ𝝈2
2
𝚲𝑞+ = (𝚵𝒒)−1 + Δ𝝈2

2
𝚲𝑞+

= −Δ𝝈2
2

(𝚲𝑞+ + 𝚲𝑞−) + Δ𝝈2
2
𝚲𝑞+ = −Δ𝝈2

2
𝚲𝑞−.

 

Now we are ready to prove Proposition 4.1 

Proof of Proposition 4.1 

𝒁(𝑞)(𝑥)−𝑾(𝑞)(𝑥)𝑪𝒲(∞)−1𝒵(∞) = 

𝑒−𝚲𝑞+𝑥 + 𝑾(𝑞)(𝑥)Δ𝝈2
2
𝚲𝑞+ + 𝑾(𝑞)(𝑥)Δ𝝈2

2
𝚲𝑞− = + 

𝑾(𝒒)(𝒙)𝜟𝝈𝟐
𝟐

(𝜦𝒒+ + 𝜦𝒒−) = 𝒆−𝚲𝒒+𝒙 − (𝒆−𝚲𝒒+𝒙 − 𝒆𝜦𝒒−𝒙) = 𝒆𝜦𝒒−𝒙 
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BANKRUCTWO TYPU OMEGA DLA RÓŻNYCH MODELI LÉVY’EGO  

Streszczenie: W niniejszym artykule rozważamy model bankructwa typu Omega, który 
może być traktowany jako alternatywa wobec klasycznego pojęcia ruiny. W odróżnieniu 
od klasycznego modelu pozwalamy, aby proces znalazł się poniżej zera, jednakże nie 
poniżej ustalonego poziomu –d < 0. Gdy proces znajduje się poniżej zera, jest on 
„zabijany” z funkcją intensywności ω. Naszym celem jest ukazanie relacji pomiędzy 
modelem Omega a klasyczną ruiną dla dwóch istotnych modeli typu Lévy’ego, a więc 
rozważać będziemy proces Crámera-Lundberga oraz markowsko modulowany ruch 
Browna. W pracy podamy również wyniki numeryczne, które będą ilustrować wyniki  
z analiz.  

Słowa kluczowe: prawdopodobieństwo ruiny, model Omega, proces Crámera-Lundberga, 
markowsko modulowany ruch Browna.  

 

 

 

 

 

 

 

 




