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In this paper we, describe the design and fabrication process of Hall and magnetoresistor
cross-shaped sensors using Ing 53Ga, 47AS/INP layer structures as active media. The influence of
geometric correction factor G, on sensitivity parameters of these devices has been investigated.
The results have been used in order to optimize the structure design behavior at temperatures
ranging from 3 to 300 K. The large changes of the galvanomagnetic parameters vs. magnetic field
and temperature allow these devices to be used as signal and measurement magnetic field sensors.
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1. Introduction

Semiconductor magnetic field-sensors such as Hall devices and magnetoresistors are
widely used in many industrial and domestic applications [1-3]. Most of them are
based on the galvanomagnetic effects due to the Lorentz force on the charge carriers
[4-6]. Recently, 111-V semiconductors, especially the AlGaAs/GaAs and InGaAs/InP
material systems, have gained importance in optoelectronics and in high speed
electronics. A key parameter for such devices which determines their sensitivity to
a magnetic field is a high electron mobility, which is crucial for high output signal.
The high room-temperature electron mobility of n-type InGaAs has created new
interest in Hall sensors made from these materials. With the development of growth
techniques, it is now possible to fabricate high-quality 1l1-V heterostructures.
Optimization and control of electrical characteristics of epitaxial InGaAs layers require
accurate methods for measurement of the carrier density, whereas the mobility is
indicative of the purity and the degree of perfection of the films.
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In this paper we, propose a device structure and fabrication procedure of the
sensors. We describe and compare Hall devices and magnetoresistors fabricated with
undoped Ing 53Gag 47As/InP heterostructures grown by molecular beam epitaxy (MBE)
and metalorganic chemical vapor deposition (MOCVD) technology. This could open
a wide range of applications the construction of Hall or magnetoresistor sensors used
as signal or measurement devices.

2. Device structure and fabrication

The geometry and structure of the fabricated devices is shown in Fig. 1. One can
observe here the layout of the mask (Fig. 1a) and sensor after technological processes
(Fig. 1b). The epitaxial structures were grown by means of MBE and MOCVD
techniques. Details of the growth of lattice-matched In, 55Gag 47,AS/InP structures have
been given elsewhere [7-11]. The galvanomagnetic methods were used for the
characterization of materials for sensors. The temperature-controlled Van-der-Pauw
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Fig. 1. View of the Hall sensor: mask layout for cross-shaped sensor (a), the sensor structure after
etching (b).

and Hall measurements were performed in a closed-cycle He cryostat in the dark
[8, 10]. Basic properties of the samples studied are listed in Tab. 1. Cross-shaped
InGaAs Hall elements with a leg length | =1 mm and a width w =2 mm (Fig. 1), were
fabricated on the active layers with mesa etching by the lift-off technique. Four ohmic
electrodes were formed on the ends of each crossbar by alloying evaporated AuGe-Ni.
The chips of a size of 4x4 mm were mounted and bonded on a non-magnetic chip

Table 1. Basic properties of the samplesat T=293 K, B=0.6 T.

Sample Thickness  Concentration  Mobility Resistivity ~ Resistivity ~ Product
number tum]  ny [ uy m2Vs] po[@m]  pg[Qm]  nyt[m?]
273MBE 7.0 1.8x10%0 0.7 0.048 0.052 1.26x10%°

3017MOCVD 3.0 1.6x10% 11 0.0035 0.0037 4.8x10%°




Magnetic field sensors based on undoped In, 53Gag 47ASINP heterostructures... 629

carrier. Although theoretically the input power related efficiency of the Hall voltage
shows a maximum for I/w = 0.36, a ratio of |/w = 0.5 was chosen. For our geometry
structures the geometry dependence of the Hall voltage as a function of the Hall angle
O (tan® = 1, B) can be obtained by solving the potential problem [12-14].

To measure the exact Hall voltage U,,, the relation I/w should have the value of
more than 4, then Uy — Uy... The relation between Uy/U,,., is defined as the
geometrical correction factor for the Hall effect in the rectangular device:

U,  E,
Uy.  Epu

Gy = (1)

where Uy is the measured Hall voltage and U, is the Hall voltage measured in
a rectangle with | = « (G, = 1). The second part of Eq. (1) is only valid for devices
with constant dimensions in y-direction. It is important to note that G, is a ratio of
Hall voltages and thus not dependent on the thickness of the device, it is used upon
[15-17]. The transfer of this geometry factor of rectangular-shaped elements to
equivalent cross-shaped elements is done with the method of conformal mapping.
Calculation of the geometrical correction factor for the Hall effect in a cross-shaped
device (Fig. 2) is possible using the Haeusler—Lippmann procedure [14]:

- nl|_© _2s_0©
Gn = [1—exp[—2 Wj tan@}[l T W tan@} (2)

where tan® =y, B is the Hall angle, s — voltage electrode width and [/w = 1.7 for
our cross structure with a/b = 0.5. On applying the nomogram in Fig. 2 to obtain Gy
for a cross-shaped structure, we first take a/lb=0.5 (a=1 mm, b =2 mm) and then

Fig. 2. Comparison between equivalent G, for a rectangular and cross-shaped device [14].
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Fig. 3. Geometrical correction factor G vs. magnetic induction B for: 273MBE (a) and 3017MOCVD (b).

T 1.00 T .
0.964 o B=005T 1 o
o i J
o o = B=06T 0.98 ©o° © o o
T 0.944 o o B=15T -+ I 0.964 n %o 4
(O] [Oe g EnE ] I
g 092 = ® 1 S 0944 = o 1
3 u [ 8 "
£ 0901 o 1 = 0927 4 opogurt = o]
© (¢} [ y | |
Q © 0904 ®m B=06T . o 4
g 0881 1 £ o B=15T
Q (4] 0.88- u |
: . o £ o :
$ 0.86 [ ] T @ (.86 .. q
9] o v -
0.844 [ ] q 0.84 B
oo = o o o : 0 ooo o 0 O Oooooom”
0.82 ; 0.82 : T
30 40 50 607080 100 200 300 400 2 4 6 810 20 40 6080100 200 400
a Temperature [K] b Temperature [K]

Fig. 4. Geometrical correction factor Gy, vs. temperature T for: 273MBE (a) and 3017MOCVD (b).

/'w=1.71 and | =1.71w. For ¢/l =0.1 we obtain §/0.71w=0.1 and s'w=0.171.
Thereafter, having all parameters, we can determine the value of Gy for our
cross-shaped structure (see Fig. 1). The geometrical correction factor of the sensitivity
for cross-shaped elements with I/w = 0.5 and a magnetic field strength B, computed
using Eqg. (2), is presented in Fig. 3.

The G, at three different magnetic fields is plotted as a function of temperature in
Fig. 4.

3. Characteristic parameters of Hall and Gauss devices

One of the most important characteristics of a Hall effect magnetic field sensor is the
supply-current related sensitivity y A feature of a Hall sensor is a linear response of
the Hall voltage U, to the bias current | and perpendicular magnetic field B:

M

Uy, = 7IB = G, !B 3)

Ht
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where y= (Ry/t)Gy is the supply current related sensitivity, Ry is the Hall constant,
t is the thickness of the active semiconductor layer, | is the bias current and B is the
magnetic induction, ny is the Hall carrier concentration, r,, is the Hall scattering factor
of the majority carriers, e is the electron charge. The slope of the Hall voltage plotted
against magnetic induction B s the absolute sensitivity 7, connected with the maximum
output voltage [3, 17-19]

U V
7/0 — H,Bmax {T:| (4)

The input power of the Hall sensor can be described by the expression [20]:

2 2
P = I R - I —_—
X XX x P wt

®)

where Iy is the input current of Hall generator, Ry is the input resistance, p is the
resistivity.

The theoretical efficiency (for scattering on thermal vibrations of crystal lattice)
of the device is given by [20]:

2 52 2 52
R% B B

n=——-= 0.34-10‘16&‘2— (6)
4p°¢

where { is the coefficient connected with spreading current between the Hall
electrodes, practically ¢'= 2-5.

We now proceed to describe the galvanomagnetic properties of our structure
working as a Gauss device (magnetoresistors). Another key characteristics for
magnetoresistive sensors made from these heteroepitaxial films of high mobility are
current sensitivity § and voltage sensitivity S,. Of practical value in the design of
magnetoresistors are the approximate analytical expressions made with |/w > 0.4 for
weak and strong magnetic field [4, 10]. The basic electrical parameters of the sensor
built from 273MBE are presented in Tab. 2 and of that from 3017MOCVD in Tab. 3.

4. Results and discussion

The results of electrical characterization of two cross-shaped galvanomagnetic
sensor structures 273MBE with n,=1.8x10°m= and 3017MOCVD with
n, = 1.6x102! m=3 are presented here. Depending on the type of connection they can
work as a Hall or a magnetoresistor device. It was found that the geometrical function
G, for the Hall device depends on carrier concentration, magnetic field and
temperature (Figs. 3, 4.). It enables us to determine, from Eq. (3), the supply current
related sensitivity y varies with a change in temperature in the following way for
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current drive Uy(T) ~ Ry(T). Therefore, y is inversely proportional to the product
of carrier density and the thickness of the plate. This product denotes the surface charge
carrier density in the plate, so that to obtain a high ¥ it is necessary to have a low
sheet carrier density (see Tabs. 1-3). If a Hall device is biased by a constant voltage
Uy (T) ~ uy(T), the electron mobility has only second-order effects. This dependence
is usually much stronger than the previous one.

Magnetoresistive behavior of our cross-shaped sensors is presented in Tabs. 2
and 3. According to these results, the current sensitivity § exhibits better values for
the 273MBE layer which is more pure than 3017MOCVD. In order to calculate voltage
sensitivity S, ~ x4y B, we need an equation both for the case of weak (xyB < 1) and
strong (B > 1) magnetic field. However, in strong magnetic field some difference
arises due to the Hall mobility dependence on magnetic field. In these cases the S,
depends on Hall mobility which leads to higher values for 3017MOCVD than that of
273MBE layers (see Tabs. 2 and 3). Such behavior confirms our previous assumption
that for galvanomagnetic sensors the purest Ing 53Ga, 47As layers (273MBE) are more
useful for y and § sensitivities than 3017MOCVD. As expected, the 3017MOCVD
devices have better S, sensitivity than the 273MBE ones. On the basis of the obtained
results for galvanomagnetic and temperature properties of InGaAs thin films it can be
concluded that these materials can be successfully used as Hall and magnetoresistive
sensors with high performance.
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